Citation: Xiaoling Liang, Chen Xu, Duansong Wang. Adaptive neural network control for marine surface vehicles platoon with input saturation and output constraints[J]. AIMS Mathematics, 2020, 5(1): 587-602. doi: 10.3934/math.2020039
[1] | Y. Liu, Z. Geng, Finite-time optimal formation tracking control of vehicles in horizontal plane, Nonlinear Dynam., 76 (2014), 481-495. doi: 10.1007/s11071-013-1141-z |
[2] | T. P. Nascimento, L. F. S. Costa, A. G. S. Conceicão, et al. Nonlinear model predictive formation control: An iterative weighted tuning approach, J. Intell. Robot. Syst., 80 (2015), 441-454. doi: 10.1007/s10846-015-0183-5 |
[3] | Q. Wang, Y. Wang, H. Zhang, The formation control of multi-agent systems on a circle, IEEE/CAA J. Autom. Sin., 5 (2016), 148-154. |
[4] | B. Das, B. Subudhi, B. B. Pati, Cooperative formation control of autonomous underwater vehicles: An overview, Int. J. Autom. comput., 13 (2016), 199-225. doi: 10.1007/s11633-016-1004-4 |
[5] | S. S. Stankovic, M. J. Stanojevic, D. D. Siljak, Decentralized overlapping control of a platoon of vehicles, IEEE T. Contr. Syst. T., 8 (2000), 816-832. doi: 10.1109/87.865854 |
[6] | H. Li, Y. Shi, W. Yan, Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed γ-gain stability, Automatica, 68 (2016), 148-154. doi: 10.1016/j.automatica.2016.01.057 |
[7] | S. J. Yoo, B. S. Park, Guaranteed performance design for distributed bounded containment control of networked uncertain underactuated surface vessels, J. Franklin I., 354 (2017), 1584-1602. doi: 10.1016/j.jfranklin.2016.12.008 |
[8] | Q. Hou, J. Dong, Adaptive fuzzy reliable control for switched uncertain nonlinear systems based on closed-loop reference model, Fuzzy Set. Syst., DOI: https://doi.org/10.1016/j.fss.2019.04.016. |
[9] | W. He, Z. Yin, C. Sun, Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function, IEEE T. Cybernetics, 47 (2016), 1641-1651. |
[10] | Z. Peng, D. Wang, Z. Chen, et al. Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics, IEEE T. Contr. Syst. T., 21 (2012), 513-520. |
[11] | L. Chen, C. Li, Y. Sun, et al. Distributed finite-time tracking control for multiple uncertain EulerLagrange systems with input saturations and error constraints, IET Contr. Theory Appl., 13 (2018), 123-133. |
[12] | S. Dai, S. He, H. Lin, et al. Platoon formation control with prescribed performance guarantees for USVs, IEEE T. Ind. Electron., 65 (2018), 4237-4246. doi: 10.1109/TIE.2017.2758743 |
[13] | E. Rimon, D. E. Koditschek, Exact robot navigation using artificial potential functions, IEET T. Robotic. Autom., 8 (1992): 501-518. |
[14] | C. P. Bechlioulis, G. A. Rovithakis, Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance, IEEE T. Automat. Contr., 53 (2008), 2090-2099. doi: 10.1109/TAC.2008.929402 |
[15] | J. Na, Q. Chen, X. Ren, et al. Adaptive prescribed performance motion control of servo mechanisms with friction compensation, IEEE T. Ind. Electron., 61 (2013), 486-494. |
[16] | E. G. Gilbert, I. Kolmanovsky, K. T. Tan, Nonlinear control of discrete-time linear systems with state and control constraints: A reference governor with global convergence properties, In: Proceedings of 1994 33rd IEEE Conference on Decision and Control, IEEE, 1 (1994), 144-149. doi: 10.1109/CDC.1994.411031 |
[17] | E. Gilbert, I. Kolmanovsky, Nonlinear tracking control in the presence of state and control constraints: A generalized reference governor, Automatica, 38 (2002), 2063-2073. doi: 10.1016/S0005-1098(02)00135-8 |
[18] | D. Li, G. Ma, C. Li, et al. Distributed attitude coordinated control of multiple spacecraft with attitude constraints, IEEE T. Aero. Elec. Syst., 54 (2018): 2233-2245. |
[19] | K. P. Tee, S. S. Ge, E. H. Tay, Barrier Lyapunov functions for the control of output-constrained nonlinear systems, Automatica, 45 (2009), 918-927. doi: 10.1016/j.automatica.2008.11.017 |
[20] | B. S. Park, S. J. Yoo, An error transformation approach for connectivity-preserving and collisionavoiding formation tracking of networked uncertain underactuated surface vessels, IEEE T. Cybernetics, 49 (2018), 2955-2966. |
[21] | Z. Zhao, W. He, S. S. Ge, Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints, IEEE T. Contr. Syst. T., 22 (2014), 1536-1543. doi: 10.1109/TCST.2013.2281211 |
[22] | B. Zhou, X. Yang, Global stabilization of the multiple integrators system by delayed and bounded controls, IEEE T. Automat. Contr., 61 (2015), 4222-4228. |
[23] | X. Liang, M. Hou, G. Duan, Adaptive dynamic surface control for integrated missile guidance and autopilot in the presence of input saturation, J. Aerospace Eng., 28 (2014), 04014121. |
[24] | W. He, Y. Dong, C. Sun, Adaptive neural impedance control of a robotic manipulator with input saturation, IEEE T. Syst. Man Cy. S., 46 (2015), 334-344. |
[25] | H. Wang, X. Liu, K. Liu, Adaptive neural data-based compensation control of non-linear systems with dynamic uncertainties and input saturation, IET Contr. Theory Appl., 9 (2015), 1058-1065. doi: 10.1049/iet-cta.2014.0709 |
[26] | D. Q. Mayne, J. B. Rawlings, C. V. Rao, et al. Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814. doi: 10.1016/S0005-1098(99)00214-9 |
[27] | X. Liang, M. Hou, H. Guo, A continuous predictive approach based on backstepping with application to integrated guidance and control design, In: 35th Chinese Control Conference, IEEE, 2016, 10870-10874. |
[28] | N. Ji, J. Liu, Vibration control for a flexible satellite with input constraint based on Nussbaum function via backstepping method, Aerosp. Sci. Technol., 77 (2018), 563-572. doi: 10.1016/j.ast.2018.03.049 |
[29] | Q. Zhou, L. Wang, C. Wu, et al. Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint, IEEE T. Syst. Man Cy. S., 47 (2016), 1-12. |
[30] | Y. Li, S. Tong, T. Li, Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation, Fuzzy Set. Syst., 248 (2014), 138-155. doi: 10.1016/j.fss.2013.11.006 |
[31] | L. Sun, W. Huo, Z. Jiao, Adaptive backstepping control of spacecraft rendezvous and proximity operations with input saturation and full-state constraint, IEEE T. Ind. Electron., 64 (2016), 480-492. |
[32] | H. Wang, D. Wang, Z. Peng, Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation, Nonlinear Dynam., 77 (2014), 107-117. doi: 10.1007/s11071-014-1277-5 |
[33] | W. He, S. S. Ge, Y. Li, et al. Neural network control of a rehabilitation robot by state and output feedback, J. Intell. Robot. Syst., 80 (2015), 15-31. doi: 10.1007/s10846-014-0150-6 |
[34] | D. Li, W. Zhang, W. He, et al. Two-layer distributed formation-containment control of multiple Euler-Lagrange systems by output feedback, IEEE T. Cybernetics, 49 (2018), 675-687. |
[35] | W. Ren, Y. Cao, Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues, Springer Science & Business Media, 2010. |
[36] | K. P. Tee, S. S. Ge, Control of fully actuated ocean surface vessels using a class of feedforward approximators, IEEE T. Contr, Syst. T., 14 (2006), 750-756. doi: 10.1109/TCST.2006.872507 |