Research article

Adaptive smooth sampled-data control for synchronization of T–S fuzzy reaction-diffusion neural networks with actuator saturation

  • Received: 20 November 2024 Revised: 03 January 2025 Accepted: 08 January 2025 Published: 20 January 2025
  • MSC : 35B35, 93C42, 93C43, 96D21

  • This paper addresses the synchronization issue in T–S fuzzy reaction–diffusion neural networks (TFRNNs) with time-varying delays and actuator saturation. First, an adaptive smooth sampled-data (ASSD) controller is proposed to optimize communication resources. In the ASSD controller, the dynamic forgetting factor is employed to process historical data smoothly, thereby preventing data distortion due to unexpected events. Second, the Lyapunov–Krasovskii functional (LKF), which captures more information about the system, is introduced, and it can provide greater flexibility than the fixed-matrix LKF. Meanwhile, by employing the semi-looped-functional method, the constraint for negative determination of the sum of its derivatives is removed, which enhances the feasibility of expanding the solution. Consequently, a novel criterion and the corresponding algorithm are established to obtain the larger maximum allowable sampling interval (MASI). Finally, simulations demonstrate the effectiveness and superiority of the proposed theoretical results.

    Citation: Yuchen Niu, Kaibo Shi, Xiao Cai, Shiping Wen. Adaptive smooth sampled-data control for synchronization of T–S fuzzy reaction-diffusion neural networks with actuator saturation[J]. AIMS Mathematics, 2025, 10(1): 1142-1161. doi: 10.3934/math.2025054

    Related Papers:

  • This paper addresses the synchronization issue in T–S fuzzy reaction–diffusion neural networks (TFRNNs) with time-varying delays and actuator saturation. First, an adaptive smooth sampled-data (ASSD) controller is proposed to optimize communication resources. In the ASSD controller, the dynamic forgetting factor is employed to process historical data smoothly, thereby preventing data distortion due to unexpected events. Second, the Lyapunov–Krasovskii functional (LKF), which captures more information about the system, is introduced, and it can provide greater flexibility than the fixed-matrix LKF. Meanwhile, by employing the semi-looped-functional method, the constraint for negative determination of the sum of its derivatives is removed, which enhances the feasibility of expanding the solution. Consequently, a novel criterion and the corresponding algorithm are established to obtain the larger maximum allowable sampling interval (MASI). Finally, simulations demonstrate the effectiveness and superiority of the proposed theoretical results.



    加载中


    [1] X. Sun, L. Zhang, J. Gu, Neural-network based adaptive sliding mode control for Takagi–Sugeno fuzzy systems, Inform. Sci., 628 (2023), 240–253. https://doi.org/10.1016/j.ins.2022.12.118 doi: 10.1016/j.ins.2022.12.118
    [2] X. Cai, K. Shi, Y. Sun, J. Cao, S. Wen, Z. Tian, Intelligent event-triggered control supervised by mini-batch machine learning and data compression mechanism for TS fuzzy NCSs under DoS attacks, IEEE Trans. Fuzzy Syst., 32 (2023), 804–815. https://doi.org/10.1109/TFUZZ.2023.3308933 doi: 10.1109/TFUZZ.2023.3308933
    [3] T. Gao, X. Bai, C. Wang, L. Zhang, J. Zheng, J. Wang, A modified interval type-2 Takagi–Sugeno fuzzy neural network and its convergence analysis, Pattern Recogn., 131 (2022), 108861. https://doi.org/10.1016/j.patcog.2022.108861 doi: 10.1016/j.patcog.2022.108861
    [4] A. Salimi-Badr, M. M. Ebadzadeh, A novel learning algorithm based on computing the rules' desired outputs of a TSK fuzzy neural network with non-separable fuzzy rules, Neurocomputing, 470 (2022), 139–153. https://doi.org/10.1016/j.neucom.2021.10.103 doi: 10.1016/j.neucom.2021.10.103
    [5] J. Liu, T. Yin, X. Xie, E. Tian, S. Fei, Event-triggered state estimation for T–S fuzzy neural networks with stochastic cyber-attacks, Int. J. Fuzzy Syst., 21 (2019), 532–544. https://doi.org/10.1007/s40815-018-0590-4 doi: 10.1007/s40815-018-0590-4
    [6] Z. Cai, L. Huang, Z. Wang, Particular-function-based preassigned-time stability of discontinuous system: Novel control scheme for fuzzy neural networks, IEEE Trans. Fuzzy Syst., 31 (2023), 1020-1030. https://doi.org/10.1109/TFUZZ.2022.3193759 doi: 10.1109/TFUZZ.2022.3193759
    [7] K. Shi, J. Wang, Y. Tang, S. Zhong, Reliable asynchronous sampled-data filtering of T–S fuzzy uncertain delayed neural networks with stochastic switched topologies, Fuzzy Sets Syst., 381 (2020), 1–25. https://doi.org/10.1016/j.fss.2018.11.017 doi: 10.1016/j.fss.2018.11.017
    [8] X. Cai, K. Shi, Y. Sun, J. Cao, S. Wen, C. Qiao, et al., Stability analysis of networked control systems under DoS attacks and security controller design with mini-batch machine learning supervision, IEEE Trans. Inf. Foren. Sec., 19 (2023), 3857–3865. https://doi.org/10.1109/TIFS.2023.3347889 doi: 10.1109/TIFS.2023.3347889
    [9] C. Zhang, H. Wu, X. Han, X. Zhang, Exponential synchronization of reaction-diffusion neural networks via switched event-triggered control, Inf. Sci., 648 (2023), 119599. https://doi.org/10.1016/j.ins.2023.119599 doi: 10.1016/j.ins.2023.119599
    [10] S. Lin, X. Liu, Synchronization and control for directly coupled reaction-diffusion neural networks with multiple weights and hybrid coupling, Neurocomputing, 487 (2022), 144–156. https://doi.org/10.1016/j.neucom.2022.02.061 doi: 10.1016/j.neucom.2022.02.061
    [11] D. Tong, B. Ma, Q. Chen, Y. Wei, P. Shi, Finite-time synchronization and energy consumption prediction for multilayer fractional-order networks, IEEE Trans. Circuits Syst. II. Express Briefs, 70 (2023), 2176–2180. https://doi.org/10.1109/TCSII.2022.3233420 doi: 10.1109/TCSII.2022.3233420
    [12] M. Shi, D. Tong, Q. Chen, W. Zhou, Pth moment exponential synchronization for delayed multi-agent systems with Lévy noise and Markov switching, IEEE Trans. Circuits Syst. II. Express Briefs, 71 (2024), 697–701. https://doi.org/10.1109/TCSII.2023.3304635 doi: 10.1109/TCSII.2023.3304635
    [13] S. Yan, Z. Gu, J. H. Park, X. Xie, Synchronization of delayed fuzzy neural networks with probabilistic communication delay and its application to image encryption, IEEE Trans. Fuzzy Syst., 31 (2023), 930–940. https://doi.org/10.1109/TFUZZ.2022.3193757 doi: 10.1109/TFUZZ.2022.3193757
    [14] X. W. Zhang, H. N. Wu, J. L. Wang, Z. Liu, R. Li, Membership-function-dependent fuzzy control of reaction-diffusion memristive neural networks with a finite number of actuators and sensors, Neurocomputing, 514 (2022), 94–100. https://doi.org/10.1016/j.neucom.2022.09.126 doi: 10.1016/j.neucom.2022.09.126
    [15] X. Yang, Q. Song, J. Cao, J. Lu, Synchronization of coupled Markovian reaction-diffusion neural networks with proportional delays via quantized control, IEEE Trans. Neural Netw. Learn. Syst., 30 (2019), 951–958. https://doi.org/10.1109/TNNLS.2018.2853650 doi: 10.1109/TNNLS.2018.2853650
    [16] R. Zhang, D. Zeng, J. H. Park, H. K. Lam, S. Zhong, Fuzzy adaptive event-triggered sampled-data control for stabilization of T–S fuzzy memristive neural networks with reaction-diffusion terms, IEEE Trans. Fuzzy Syst., 29 (2021), 1775–1785. https://doi.org/10.1109/TFUZZ.2020.2985334 doi: 10.1109/TFUZZ.2020.2985334
    [17] X. M. Zhang, Q. L. Han, X. Ge, A novel approach to ${H}_\infty$ performance analysis of discrete-time networked systems subject to network-induced delays and malicious packet dropouts, Automatica, 136 (2022), 110010. https://doi.org/10.1016/j.automatica.2021.110010 doi: 10.1016/j.automatica.2021.110010
    [18] S. Gong, Z. Guo, S. Wen, Finite-time synchronization of T–S fuzzy memristive neural networks with time delay, Fuzzy Sets Syst., 459 (2023), 67–81. https://doi.org/10.1016/j.fss.2022.10.013 doi: 10.1016/j.fss.2022.10.013
    [19] H. Li, C. Li, D. Ouyang, S. K. Nguang, Z. He, Observer-based dissipativity control for T–S fuzzy neural networks with distributed time-varying delays, IEEE Trans. Cybern., 51 (2021), 5248–5258. https://doi.org/10.1109/TCYB.2020.2977682 doi: 10.1109/TCYB.2020.2977682
    [20] X. Li, T. Huang, J. A. Fang, Event-triggered stabilization for Takagi–Sugeno fuzzy complex-valued memristive neural networks with mixed time-varying delays, IEEE Trans. Fuzzy Syst., 29 (2021), 1853–1863. https://doi.org/10.1109/TFUZZ.2020.2986713 doi: 10.1109/TFUZZ.2020.2986713
    [21] F. Fang, Y. Liu, J. H. Park, Y. Liu, Outlier-resistant nonfragile control of T–S fuzzy neural networks with reaction-diffusion terms and its application in image secure communication, IEEE Trans. Fuzzy Syst., 31 (2023), 2929–2942. https://doi.org/10.1109/TFUZZ.2023.3239732 doi: 10.1109/TFUZZ.2023.3239732
    [22] Y. Liu, F. Fang, J. Zhou, Y. Liu, ${H}_\infty$ state estimation for T–S fuzzy reaction-diffusion delayed neural networks with randomly occurring gain uncertainties and semi-Markov jump parameters, Neurocomputing, 493 (2022), 385–396. https://doi.org/10.1016/j.neucom.2022.04.060 doi: 10.1016/j.neucom.2022.04.060
    [23] X. Cai, K. Shi, K. She, S. Zhong, Y. Soh, Y. Yu, Performance degradation estimation mechanisms for networked control systems under DoS attacks and its application to autonomous ground vehicle, IEEE Trans. Cybern., 54 (2024), 2992–3002. https://doi.org/10.1109/TCYB.2023.3286878 doi: 10.1109/TCYB.2023.3286878
    [24] W. Ji, J. Qiu, H. K. Lam, A new sampled-data output-feedback controller design of nonlinear systems via fuzzy affine models, IEEE Trans. Cybern., 52 (2022), 1681–1690. https://doi.org/10.1109/TCYB.2020.2984331 doi: 10.1109/TCYB.2020.2984331
    [25] Z. You, H. Yan, H. Zhang, M. Wang, K. Shi, Sampled-data control for exponential synchronization of delayed inertial neural networks with aperiodic sampling and state quantization, IEEE Trans. Neural Netw. Learn. Syst., 35 (2024), 5079–5091. https://doi.org/10.1109/TNNLS.2022.3202343 doi: 10.1109/TNNLS.2022.3202343
    [26] R. Zhang, D. Zeng, J. H. Park, H. K. Lam, X. Xie, Fuzzy sampled-data control for synchronization of T–S fuzzy reaction–diffusion neural networks with additive time-varying delays, IEEE Trans. Cybern., 51 (2020), 2384–2397. https://doi.org/10.1109/TCYB.2020.2996619 doi: 10.1109/TCYB.2020.2996619
    [27] S. Wang, K. Shi, J. Wang, Y. Yu, S. Wen, J. Yang, et al., Synchronization sampled-data control of uncertain neural networks under an asymmetric Lyapunov–Krasovskii functional method, Expert Syst. Appl., 239 (2023), 122475. https://doi.org/10.1016/j.eswa.2023.122475 doi: 10.1016/j.eswa.2023.122475
    [28] L. Sun, Y. Wang, G. Feng, Control design for a class of affine nonlinear descriptor systems with actuator saturation, IEEE Trans. Autom. Control, 60 (2015), 2195–2200. https://doi.org/10.1109/TAC.2014.2374712 doi: 10.1109/TAC.2014.2374712
    [29] H. Lu, Y. Deng, W. Zhou, Adaptive event-triggered $ H_\infty $ control for networked control systems with actuator saturation and random nonlinearities, IEEE Access, 8 (2020), 220723–220733. https://doi.org/10.1109/ACCESS.2020.3043337 doi: 10.1109/ACCESS.2020.3043337
    [30] Y. Li, Y. He, Y. Yang, Stability analysis for delayed T–S fuzzy systems: A compensation Lyapunov-Krasovskii functional method combined with free-weighting matrices, ISA Trans., 142 (2023), 12–19. https://doi.org/10.1016/j.isatra.2023.08.020 doi: 10.1016/j.isatra.2023.08.020
    [31] J. Zhou, S. Xu, B. Zhang, Y. Zou, H. Shen, Robust exponential stability of uncertain stochastic neural networks with distributed delays and reaction-diffusions, IEEE Trans. Neural Netw. Learn. Syst., 23 (2012), 1407–1416. https://doi.org/10.1109/TNNLS.2012.2203360 doi: 10.1109/TNNLS.2012.2203360
    [32] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [33] Z. Sheng, C. Lin, S. Xu, A semi-looped-functional for stability analysis of sampled-data systems, IEEE/CAA J. Automat. Sinica, 10 (2023), 1332–1335. https://doi.org/10.1109/JAS.2023.123498 doi: 10.1109/JAS.2023.123498
    [34] H. B. Zeng, K. L. Teo, Y. He, A new looped-functional for stability analysis of sampled-data systems, Automatica, 82 (2017), 328–331. https://doi.org/10.1016/j.automatica.2017.04.051 doi: 10.1016/j.automatica.2017.04.051
    [35] H. B. Zeng, K. L. Teo, Y. He, H. Xu, W. Wang, Sampled-data synchronization control for chaotic neural networks subject to actuator saturation, Neurocomputing, 260 (2017), 25–31. https://doi.org/10.1016/j.neucom.2017.02.063 doi: 10.1016/j.neucom.2017.02.063
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(248) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog