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Abstract: This paper addresses the synchronization issue in T–S fuzzy reaction–diffusion neural
networks (TFRNNs) with time-varying delays and actuator saturation. First, an adaptive smooth
sampled-data (ASSD) controller is proposed to optimize communication resources. In the ASSD
controller, the dynamic forgetting factor is employed to process historical data smoothly, thereby
preventing data distortion due to unexpected events. Second, the Lyapunov–Krasovskii functional
(LKF), which captures more information about the system, is introduced, and it can provide greater
flexibility than the fixed-matrix LKF. Meanwhile, by employing the semi-looped-functional method,
the constraint for negative determination of the sum of its derivatives is removed, which enhances the
feasibility of expanding the solution. Consequently, a novel criterion and the corresponding algorithm
are established to obtain the larger maximum allowable sampling interval (MASI). Finally, simulations
demonstrate the effectiveness and superiority of the proposed theoretical results.
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1. Introduction

In recent years, Takagi–Sugeno fuzzy neural networks (TSFNNs), which are hybrid systems
combining fuzzy logic and neural networks (NNs), have garnered considerable research interest
because of their applications in nonlinear systems [1–4]. TSFNNs define input and output variables
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using fuzzy sets and fuzzy logic-based rules to establish their relationship, effectively capturing
dynamic information in physical systems [5–8]. In many domains, ranging from intelligent
transportation systems, financial risk analysis, medical diagnostics, and intelligent robotics, TSFNNs
have been widely applied. Synchronization, a critical dynamic behavior in TSFNNs, continues to
be a significant research focus. Synchronization can occur naturally or be achieved by design and
has critical applications in communication systems, image encryption, and power systems [9–12].
In [13], TFSNN synchronization was used for image encryption, effectively concealing and restoring
the original image. Thus, the study of synchronization holds significant importance.

Various factors influence the states of TSFNNs. Accurately describing these states requires
considering the effects of time delays and reaction–diffusion phenomena [14–17]. Appropriately timed
delays can reduce oscillatory tendencies in a system and promote faster convergence. However, time
delays can also result in the degradation of the system performance or even destabilization [18–20].
Therefore, it is crucial to account for the effects of delays. The study in [19] focused on observer-based
dissipativity control in TSFNNs with distributed delays. Li et al. [20] addressed the event-triggered
stabilization of a novel T–S fuzzy complex-valued memristive NN with mixed time-varying delays.
Additionally, TSFNNs inherently exhibit the reaction–diffusion phenomenon due to environmental
influences. This suggests that changes in the system’s state depend not only on time but also on the
spatial context. TFRNNs can better characterize the evolution of neurons during time and spatial
changes. TFRNNs are more realistic than traditional TSFNNs. The study in [21] addressed the outlier-
resistant nonfragile control problem in TFRDNNs. Liu et al. [22] explored the H∞ state estimation
problem in TFRNNs, considering gain uncertainties and semi-Markov jump parameters.

In modern control systems, digital computers are usually used for data signal acquisition and
measurement analysis, with the help of discrete-time SD controllers for controlling continuous-time
objects to realize the control function of the system [23–27]. This control method is called SD
control and is widely used in solving synchronization problems. You et al. [25] explored the issue
of exponential synchronization in inertial NN examined within the context of aperiodic sampling
and state quantization. The study in [26] addressed exponential synchronization in TFRNNs with
additive time-varying delays using both time SD control and time–space SD control. The study in
reference [27] employed a memory-based SD controller to investigate the synchronization of NNs in
the presence of parameter uncertainties. Most SD controls are built using data either at the current
moment or from previous moments. In reality, measured data can exhibit random fluctuations or
anomalies. These errors can manifest in various forms, including loss or anomalies in data from node
task conflicts and sampling jitter caused by hardware aging. Consequently, these issues may affect
sampling measurement results, potentially causing redundant data transmission. Moreover, memory-
based SD controllers inherently consume storage space. A very small sampling interval may deplete
storage space, rendering the system inoperable. In summary, we propose using an ASSD controller to
mitigate these challenges. This approach also provides further motivation for the research presented in
this paper.

Inspired by the discussions above, we aim to explore the synchronization of TFRNNs with time-
varying delays through the design of ASSD control. Table 1 lists fundamental mathematical symbols,
and the primary contributions of this study are summarized as follows:

(1) This study offers a comprehensive view of the synchronization of TFRNNs, considering factors
such as ASSD, reaction–diffusion and actuator saturation, thereby enhancing the applicability of the
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results.
(2) The improved ASSD controller uses the dynamic forgetting factor to allocate current and

historical measurements, effectively countering data distortion and improving the system’s control
performance.

(3) The LKFs with membership function and time-varying delays correlation capture system
information comprehensively. Furthermore, the compensation LKF V3(t) and the fuzzy zero equation
are employed to address the integral term with the membership function’s derivatives, increasing the
feasible range of matrix variables.

(4) Unlike the traditional LKF method, the semi-looped-functional method does not require the sum
of its derivatives to be negative definite. This results in the derivation of a synchronization criterion
with more relaxed constraints.

Table 1. Notations and descriptions.

Notation Description
sym{X} X + XT

col{· · · } a column vector
diag{· · · } a block-diagonal matrix
Rn the n-dimensional Euclidean space
Rn×m the set of all n × m real matrices
In an n × n identity matrix
0n×m an n × m zero matrix
‖ς(t, x)‖ ‖ς(t, x)‖ = (

∫
Γ
ςT (t, x)ς(t, x)dx)(1/2)

C([−σ̄, 0] × Γ,Rn)
all continuous functions mapping from
[−σ̄, 0] × Γ to Rn

2. Preliminaries and problem formulation

The TFRNNs described by IF–THEN rules are considered as follows:
Plant rule i: IF C1(t) is Vi

1, C2(t) is Vi
2,..., and Cl(t) is Vi

l, then

∂ς(t, x)
∂t

=

ω∑
l=1

∂

∂xl
(Al

∂ς(t, x)
∂xl

) − Biς(t, x) + Ci f
(
ς(t, x)

)
+ Di f

(
ς(t − σ(t), x)

)
+ T(t), (2.1)

where for each i ∈ F , {1, 2, ..., p}, C~ and Mi
~ (~ = 1, ..., p) denote the ~th premise variable and

its corresponding fuzzy set. x = col{x1, x2, . . . , xω} is the spatial variable within Γ = [α1, α1] ×
. . . × [α

ω
, αω], and ∂Γ denotes its boundary. The state vector ς(t, x) = col{ς1(t, x), ς2(t, x), . . . , ςn(t, x)}

represents the system state. Al represents the transmission diffusion coefficient; Bi indicates the neuron
charging time constant; Ci and Di represent the connection weight matrix, T(t) is the external input,
and σ(t) denotes the time-varying delays that satisfy

0 ≤ σ(t) ≤ σ̄, σ̇(t) ≤ ð. (2.2)
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Utilizing the weighted average fuzzy blending approach, the TFRNNs are described as follows:

∂ς(t, x)
∂t

=

ι∑
i=1

hi
(
C (t)

){ m∑
l=1

∂

∂xl
(Al

∂ς(t, x)
∂xl

)−Biς(t, x)+Ci f (ς(t, x))+T(t)+ Di f (ς(t−σ(t), x))
}
, (2.3)

where C (t) = col{C1(t), C2(t), ..., Cl(t)} and hi(C (t)) is the normalized membership function, and it
satisfies

hi
(
C (t)

)
=

Vi(C (t)
)∑l

s=1V
s(C (t)

) ≥ 0,
∑

l
i=1hi

(
C (t)

)
= 1,

V
i(C (t)

)
=

∏
l
j=1V

i
j
(
C j(t)

)
,

∑
l
i=1ḣi

(
C (t)

)
= 0, (2.4)

and the term Vi
j
(
C j(t)

)
represents the membership grade of C j(t) in Vi

j.
Considering system (2.3) as the master system, the corresponding slave system is defined as follows:

∂ς̄(t, x)
∂t

=

ι∑
i=1

hi
(
C (t)

){ m∑
l=1

∂

∂xl
(Al

∂ς̄(t, x)
∂xl

) − Biς̄(t, x) + Ci f (ς̄(t, x)) + T(t) (2.5)

+ Di f (ς̄(t − σ(t), x)) + u(t, x)
}
.

The initial values and boundary conditions associated with systems (2.3) and (2.5) are specified as
follows:

ς(t, x) = ς̄(t, x) = 0, (t, x) ∈ [t0 − σ̄,+∞) × ∂Γ,

ς(s + t0, x) = g(s, x) ∈ C([−σ̄, 0] × Γ,Rn),
ς̄(s + t0, x) = ḡ(s, x) ∈ C([−σ̄, 0] × Γ,Rn).

Define the error vector as ψ(t, x) = ς(t, x) − ς̄(t, x). Combining (2.3) and (2.5), the resulting error
system is as follows:

∂ψ(t, x)
∂t

=

ι∑
i=1

hi(C (t))
{ m∑

l=1

∂

∂xl
(Al

∂ψ(t, x)
∂xl

) − Biψ(t, x)

+ Cig(t, x) + Dig(t − σ(t), x) + u(t, x)
}
, (2.6)

where g(t, x) = f (ς(t, x)) − f (ς̄(t, x)) satisfies

[g(t, x) −Ω1ψ(t, x)]T [g(t, x) −Ω2ψ(t, x)] ≤ 0, (2.7)

and Ω1, Ω2 are constant matrices and Ω2 ≥ Ω1.
Control rule j: IF C1(t) is V j

1, C2(t) is V j
2,..., and Cq(t) is V j

q, then

u(t, x) = K jψ(t, x), (2.8)

where K j are fuzzy the controller gains. By adopting a similar approach to that used for system (2.3),
we obtain

u(t, x) =

ι∑
j=1

h j(C (t))K jψ(t, x). (2.9)
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Furthermore, considering the effects of SD, the states ψ(t, x) can be measured at discrete sampling
points tk. Moreover, these samplings adhere to the assumption: 0 ≤ dk , tk+1 − tk ≤ dM, (k =

1, 2, . . . ,∞). Subsequently, an ASSD controller is employed to conserve communication resources
and improve anti-interference capabilities. The weighted measurement is expressed as:{

ψ̃(tk+1, x) = α(tk+1)ψ(tk+1, x) + (1 − α(tk+1))ψ̃(tk, x),
α(tk+1) = α0/(In(e + ‖ψ(tk+1, x) − ψ(tk, x)‖),

where α(tk+1)(0 < α(tk+1) ≤ 1) denotes the adaptive forgetting factor, starting with an initial value of
α0, which assigns weights to historical measurement data.

Remark 2.1. Data accuracy is crucial for system performance and safety in control systems, with
severe data distortion potentially causing system failure. The dynamic forgetting factor α(tk+1) in
the ASSD mechanism assigns decay weights to historical measurements, smoothing sampling values
and mitigating the impact of data distortion. A larger difference between the current and previous
measurements results in a smaller forgetting factor α(tk+1), and vice versa. Furthermore, a larger
deviation from the current measurement results in a smaller weight, while a smaller deviation leads to
a larger weight. As ψ̃(tk+1, x) is calculated iteratively, the ASSD mechanism requires storing only one
historical data ψ̃(tt, x), thus utilizing less storage space compared to memory-based SD control [27].
When α(tk+1) = 1, the ASSD control simplifies to the conventional SD control outlined in [25, 26].

Considering the effect of actuator saturation, the saturation function σ(u(t, x)) satisfies the following
conditions:

σ(u(t, x)) =

ι∑
j=1

h j(C (tk))σ(K jψ̃((t)k, x)), t ∈ [tk, tk+1),

where σ(ui(t, x)) = sign(ui(t, x))min {ûi(t, x), |ui(t, x)|} and ûi(t, x) represents the upper bound of the
controller.

Furthermore, by defining ϕ(K jψ̃(tk, x)) as the dead-zone nonlinearity function, the saturation
function σ(u(t, x)) is divided into two parts [28]:

σ(u(t, x)) = u(t, x) − ϕ(u(t, x)) =

ι∑
j=1

h j(C (tk))[K jψ̃(tk, x) − ϕ(K jψ̃(tk, x))], (2.10)

and the following holds for a real number ϕ̄ within the interval (0, 1):

ϕ̄ψ̃T (tk, x)KT
j K jψ̃(tk, x) ≥ ϕT (K jψ̃(tk, x))ϕ(K jψ̃(tk, x)). (2.11)

Remark 2.2. Actuator saturation is a critical factor that must be considered in controller design
[28, 29]. Actuator saturation must be considered for two primary reasons: the physical limitations
of the actuator and the impact of complex network conditions (such as external disturbances, packet
loss, and delay) on system performance. To better capture the impact of actuator saturation, this paper
models the saturation function σ(u(t, x)) as a combination of the linear segment u(t, x) and the dead-
zone nonlinear segment ϕ(u(t, x)), with their relationship defined in inequality (2.11). Additionally, the
actuator saturation can be ignored when the saturation upper bound ûi(t, x) approaches infinity.
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By substituting the aforementioned equations into the error system (2.6), we obtain:

∂ψ(t, x)
∂t

=

ι∑
i=1

ι∑
j=1

hi(C (t))h j(C (tk))
{ m∑

l=1

∂

∂xl
(Al

∂ψ(t, x)
∂xl

) − Biψ(t, x) + Cig(t, x)

+ Dig(t − σ(t), x) +K jψ̃(tk, x) − ϕ(K jψ̃(tk, x))
}
. (2.12)

Assumption 2.1. [30] Assume that hp(C (t)) is a continuously differentiable function, and
∣∣∣ḣp(C (t))

∣∣∣ ≤
λp with λp > 0, p ∈ N.

Lemma 2.1. [31] If ε(x) is a continuously differentiable real-valued function defined on the set Γ and
ε(x)/∂Γ = 0, then ∫

Γ

ε2(x)ds ≤ (
ᾱl − αl

π
)
2 ∫

Γ

(
∂ε2(x)
∂sl

)
2

ds, l = 1, 2, ...,m.

Lemma 2.2. [32] Consider κ(s) as the differentiable function mapping from [r1, r2] → Rn. Given
symmetric matrices X ∈ Rn×n > 0 and matrices N1,N2, ∈ R3n×n, the subsequent inequality is satisfied:

−

∫ r2

r1

κ̇T (s)Xκ̇(s)ds ≤ δϑT (N1X−1NT
1 +

1
3

N2X−1NT
2 )ϑ + sym

{
ϑT N1Π1 + ϑT N2Π2

}
,

where δ = r2 − r1, ϑ =
[
κT (r2) κT (r1) 1

δ

∫ r2

r1
κT (s)ds

]T
, Π1 = κT (r2) − κT (r1) and Π2 = κT (r2) + κT (r1) −

2
δ

∫ r2

r1
κT (s)ds.

3. Main results

For ease of presentation, the relevant notations are defined in Appendix A.

Theorem 3.1. For given scalars σ̄ > 0, ð, ϕ̄, o1, o2, and controller gain matrix K j, the master–slave
systems are asymptotically synchronized if there exist symmetric positive-definite matrices P1i, P2i, R1i,
R2i, Tr, S , Λ3, Ur, Wr, NAl, positive-definite diagonal matrices Λr, appropriate dimensional matrices
Yq, Hp, Gp, Mq, N, where r = 1, 2, p = 1, 2, 3, q = 1, 2, ..., 4 and i, j ∈ N, such that the following LMIs
hold:

σ̄P2i + G1 ≥ 0, σ̄P1i + G1 ≥ 0, (3.1)
R1i + G2 ≥ 0, R2i + G3 ≥ 0, (3.2)

ι∑
i=1

λi(R1i + G2) ≤ (1 − ð)T1, (3.3)

ι∑
i=1

λi(R2i + G3) ≤ T2, (3.4)[
A
[
tk+1, σ(t)

] √
dMΥ1

∗ −U1

]
< 0, σ(t) ∈ {0, σ̄}, (3.5)
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A
[
tk, σ(t)

] √
dMΥ2

∗ −U2

]
< 0, σ(t) ∈ {0, σ̄}, (3.6)

where the other notations are listed in Appendix B.

Proof.

V(t) =


5∑
α=1

Vα(t), t = tk,

8∑
β=1

Vβ(t), t , tk,
(3.7)

where we choose LKFs candidates are defined in Appendix C. �

Next, taking the derivative of V(t) for t ∈ (tk, tk+1) yields

V̇(t) ≤
∫

Γ

ζT (t, x)Σ[t, σ(t)]ζ(t, x)dx +

5∑
i=1

Li + 2
∫

Γ

m∑
l=1

∂2ψT (t, x)
∂xl∂t

NAl
∂ψ(t, x)
∂xl

dx

−

∫
Γ

∫ t

tk

∂ψT (s, x)
∂s

U1
∂ψ(s, x)
∂s

dsdx −
∫

Γ

∫ tk+1

t

∂ψT (s, x)
∂s

U2
∂ψ(t, x)
∂s

dsdx. (3.8)

Considering the characteristic described in (2.4) and using symmetric TFRNN weighting matrices
G1, G2, and G3, the fuzzy zero equations are derived as follows:

∫
Γ
ψT (t, x)

ι∑
i=1

.

h i(C(t))G1ψ(t, x)dx = 0,∫
Γ

∫ t

t−σ(t)
φ̄T (s, x)

ι∑
i=1

.

h i(C(t))G2φ̄(s, x)dsdx = 0,∫
Γ

∫ t

t−σ̄
ψT (s, x)

ι∑
i=1

.

h i(C(t))G3ψ(s, x)dsdx = 0.

For the fuzzy term L1 presented in Eq (3.8), given Assumption 2.1 and considering condition (3.1),
it can be deduced that:

L1 +

∫
Γ

ψT (t, x)
ι∑

i=1

ḣi(C (t))G1ψ(t, x)dx ≤
∫

Γ

ζT (t, x)Ξ1(t)ζ(t, x)dx. (3.9)

An analogous analysis applied to L2, L3, L4, and L5 in Eq (3.8) yields the following inequality from
conditions (3.2)–(3.4):

L2 + L4 ≤

∫
Γ

∫ t

t−σ(t)
ζT (s, x)Ξ2ζ(s, x)dsdx ≤ 0, (3.10)

L3 + L5 ≤

∫
Γ

∫ t

t−σ(t)
ζT (s, x)Ξ3ζ(s, x)dsdx ≤ 0. (3.11)

By Lemma 2.2, processing the integral term in (3.8) yields the following inequality:

−

∫
Γ

∫ t

tk

∂ψT (s, x)
∂s

U1
∂ψ(s, x)
∂s

ds
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≤

∫
Γ

ζT (t, x)
(
d1(t)Γ1U

−1
1 ΓT

1 + sym
{
ΦT

7 M1Φ4 + ΦT
7 M2Φ8

} )
ζ(t, x)dx, (3.12)

−

∫
Γ

∫ tk+1

t

∂ψT (s, x)
∂s

U2
∂ψ(s, x)
∂s

ds

≤

∫
Γ

ζT (t, x)
(
d2(t)Γ2U

−1
2 ΓT

2 + sym
{
ΦT

9 M3Φ5 + ΦT
9 M4Φ10

} )
ζ(t, x)dx, (3.13)

where Υ1 = [ΦT
7 M1 ΦT

7 M2],Υ2 = [ΦT
9 M3 ΦT

9 M4],U1 = diag{U1, 3U1},U2 = diag{U2, 3U2}.
Additionally, to improve the design flexibility of the proposed method, the matrix N and parameters

o1 and o2 are introduced through the following equations:

0 =2
∫

Γ

BN
( m∑

l=1

∂

∂xl

(
Al
∂ψ(t, x)
∂xl

)
− Biψ(t, x) + Cig(t, x)

+ Dig(t − σ(t), x) +K jψ̃(tk, x) − ϕ(K jψ̃(tk, x)) −
∂ψ(t, x)
∂t

)
ds, (3.14)

where B = o1ψ
T (t, x) + o2

∂ψT (t,x)
∂t .

Using Green’s formula and the specified boundary condition, the following equalities are
established:

2
∫

Γ

∂ψT (t, x)
∂t

N
m∑

l=1

∂

∂xl

(
Al
∂ψ(t, x)
∂xl

)
dx =2

∫
Γ

m∑
l=1

∂

∂xl

[
∂ψT (t, x)

∂t
NAl

∂ψ(t, x)
∂xl

]
dx

− 2
∫

Γ

m∑
l=1

∂2ψT (t, x)
∂xl∂t

NAl
∂ψ(t, x)
∂xl

dx

= − 2
∫

Γ

m∑
l=1

∂2ψT (t, x)
∂xl∂t

NAl
∂ψ(t, x)
∂xl

dx. (3.15)

Following the procedure in Eq (3.15) and applying Lemma 2.1, we obtain

2
∫

Γ

ψT (t, x)N
m∑

l=1

∂

∂xl

(
Al
∂ψ(t, x)
∂xl

)
dx = − 2

∫
Γ

m∑
l=1

∂ψT (t, x)
∂xl

NAl
∂ψ(t, x)
∂xl

dx

≤ − 2
∫

Γ

ψT (t, x)NAπψ(t, x)ds, (3.16)

where Aπ = diag
{
ω∑

l=1

( π
ᾱl−αl

)2A1l, ...,
ω∑

l=1

( π
ᾱl−αl

)2Anl

}
.

From (2.7) and (2.11), it is clear that the following inequalities hold:
−

∫
Γ

2ζT (t, x)[E5 −Ω1E1]T Λ1[E5 −Ω2E1]ζ(t, x)dx ≥ 0,
−

∫
Γ

2ζT (t, x)[E6 −Ω1E3]T Λ2[E6 −Ω2E3]ζ(t, x)dx ≥ 0,∫
Γ

2ζT (t, x)[ϕ̄ET
12K

T
j Λ3K jE12 − E

T
13Λ3E13]ζ(t, x)dx ≥ 0.

(3.17)

Combining (3.8)–(3.17), we deduce

V̇(t) ≤
∫

Γ

ζT (t, x)G(t, σ(t))ζT (t, x)dx, (3.18)
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where G[t, σ(t)] =
ι∑

i=1

ι∑
j=1
hi(C (t))h j(C (tk))C[t, σ(t)] + d1(t)Υ1U

−1
1 ΥT

1 + d2(t)Υ2U
−1
2 ΥT

2 .

In addition, from V6(t+
k ) = V7(t−k+1) = 0 and

5∑
α=1

Vα(t) being continuous, we can obtain

(
V(t−k+1) −

5∑
α=1

Vα(tk+1)
)
−

(
V(t+

k ) −
5∑
α=1

Vα(tk)
)

= V6(t−k+1) − V7(t+
k ) ≥ dM

∫
Γ

ζT (t, x)Fζ(t, x)dx. (3.19)

Based on the methodology in reference [33] and the condition A
[
t, σ(t)

]
= C

[
t, σ(t)

]
− F < 0, the

following inequality holds:

dkV̇(t) ≤ V6(t−k+1) − V7(t+
k ). (3.20)

By employing the Schur complement, the inequality A
[
t, σ(t)

]
< 0 remains valid for t ∈ (tk, tk+1)

and σ(t) ∈ [0, σ̄] given that it satisfy (3.5) and (3.6).

Remark 3.1. By introducing LKF, V4(t) =
∫

Γ
(tk+1 − t)ψ̃T (tk, x) S ψ̃(tk, x)dx, we obtain V̇4(t) =

−
∫

Γ
ζT (t, x)ET

12SE12ζ(t, x)dx, which leads to the sufficient condition in Theorem 3.1 for synchronizing
the master–slave system. The primary purpose of V4(t) is to facilitate finding a solution to the feasible
LMIs. Removing V4(t) renders the LMIs in Theorem 3.1 infeasible, as it sets the matrix diagonal
element −ET

12SE12 to zero. Consequently, without V4(t), the synchronization of the master–slave system
under ASSD control cannot be guaranteed.

Remark 3.2. Based on prior experience, capturing more system information in the constructed LKF
yields less conservative results. To achieve the larger MASI, V1(t) and V2(t) incorporate the properties
of the membership function and the time-varying delays. V5(t),V6(t), and V7(t) consider more detailed
system state information at the sampling point. In addition, when P1n = P2m (n,m ∈ N) holds, LKF
V1(t) simplifies to the basic quadratic form

∫
Γ

eT (t, x)Pe(t, x)dx [21, 26].

Remark 3.3. The integral terms L1 and L2, which are related to the derivatives of the membership
function, are handled using the fuzzy zero equations and the compensation LKF method. First, by using
the membership function’s property in (2.4), fuzzy zero equations are applied to introduce additional
TFRNN-weighting matrices via matrices G2 and G3. Then, the compensation LKF V3(t) introduces the
integral terms L4 and L5, which are independent of tcompensation LKF relaxed the initial constraints of

the membership function. Finally, the fuzzy zero equation and
ι∑

i=1
λi(R1i+G2) ≤ 0 and

ι∑
i=1
λi(R2i+G3) ≤ 0

to conditions (3.4) and (3.5).

Remark 3.4. The looped-functional method is commonly used to reduce conservatism in SD
control [24, 34, 35]. The advantage of this method is that it does not require the restriction matrix
to be positive definite in function but ensures that Vl(tk) = Vl(tk+1) = 0 at the terminal points
of the sampling interval. The semi-looped-functional method improves upon the looped-functional
method. In this paper, the terms V6(t) and V7(t) are referred to as semi-looped-functionals because
V6(t+

k ) = 0,V6(t−k+1) , 0 and V7(t+
k ) , 0,V7(t−k+1) = 0. Therefore, semi-looped-functionals offer more

flexibility than looped-functionals. In contrast, the sum of the derivatives of LKFs is typically required
to be negative definite in the traditional LKF approach [13, 17, 21, 24]. The discontinuities of semi-
looped-functionals enable the removal of the negative definite restriction. We ensure that V̇(t) meets
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the condition dMV̇(t) ≤ V6(t−k+1)−V7(t+
k ), resulting in V(tk) > V(tk+1). It is evident that the semi-looped-

functional method has more relaxed constraints and thus results in less conservative outcomes.

Corollary 3.1. For given scalars σ̄ > 0, ð, �, ϕ̄, o1, and o2, the master–slave systems are asymptotically
synchronized if there exist symmetric positive-definite matrices P1i, P2i, R1i, R2i, Tr, S , Λ3, Ur, Wr, NAl,
positive-definite diagonal matrices Λr; and appropriate dimensional matrices Yq, Hp, Gp, Mq, N, N̂r,
where r = 1, 2, p = 1, 2, 3, q = 1, 2, ..., 4 and i, j ∈ N, such that the following LMIs hold:

σ̄P2i + G1 ≥ 0, σ̄P1i + G1 ≥ 0, (3.21)
R1i + G2 ≥ 0, R2i + G3 ≥ 0, (3.22)
ι∑

i=1

λi(R1i + G2) ≤ (1 − ð)T1, (3.23)

ι∑
i=1

λi(R2i + G3) ≤ T2, (3.24)
A∗i j[tk+1, σ(t)]

√
dkΥ1 J

13
j

∗ −U1 0n

∗ ∗ J33
j

 < 0, σ(t) ∈ {0, σ̄}, (3.25)


A∗i j[tk, σ(t)]

√
dkΥ2 J

13
j

∗ −U2 0n

∗ ∗ J33
j

 < 0, σ(t) ∈ {0, σ̄}, (3.26)

where the relevant notations are given as follows:

C
∗[t, σ(t)] =Σ

[
t, σ(t)

]
+ Ξ1(t) + sym{−ET

1 NAπE1 − [E5 −Ω1E1]T Λ1[E5 −Ω2E1]
− [E6 −Ω1E3]T Λ2 × [E6 −Ω2E3] − ET

13Λ3E13

+
(
o1E

T
1 + o2E

T
2
)
(N

(
− BiE1 + CiE5 + DiE6 − E13 − E2

)
+ N̂ jE12)

+ ΦT
7 M1Φ4 + ΦT

7 M2Φ8 + ΦT
9 M3Φ5 + ΦT

9 M4Φ10},

A
∗[t, σ(t)

]
=C∗

[
t, σ(t)

]
− F, J33

j = −2�1N̂ j+ �
2
1 ϕ̄Λ3, J

13
j =

[
0n, ..., 0n,︸    ︷︷    ︸

11

N̂T
j 0n

]T
,

and the controller gains are given as follows:

K j = N−1N̂ j. (3.27)

Proof. To address this within the LMI framework, the nonlinear component of Theorem 3.1 has been
linearized as described in Corollary 3.1. Conducting a congruence transformation using

diag{In, ..., In,︸   ︷︷   ︸
15

N j} and diag{In, ..., In,︸   ︷︷   ︸
15

N j}

into (3.5) and (3.6), substituting N̂ j = NK j and −ϕ̄N̂ jΛ
−1
3 N̂ j ≤ −2�1N̂ j+ �

2
1 ϕ̄Λ3 one obtains (3.25)

and (3.26). This completes the proof. �
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4. Simulation results

Example 4.1. Consider system parameters of the TFRNNs as follows [26]:

Al =

[
0.6 0
0 0.6

]
, B1 =

[
1 0
0 1

]
, C1 =

[
2 −0.1
−5 3

]
, D1 =

[
−1.5 −0.1
−0.2 −2.5

]
, B2 =

[
1.2 0
0 1.2

]
,

C2 =

[
3.6 −0.4
−8 8

]
,D2 =

[
−3.6 −0.24
−0.6 −6

]
, αl = −1, αl = 5, σ(t) =

∣∣∣∣∣√2 sin(0.1t +
π

4
)
∣∣∣∣∣ ,

T(t) = 0, g(t, x) = tanh(ς(t, x)) − tanh(ς̄(t, x)), h1(C (t)) = 0.5 + 0.5 sin t, h2(C (t)) = 0.5 − 0.5 sin t.

From these conditions, we deduce that σ̄ =
√

2, ð =
√

2
10 , Ω1 = 02, and Γ2 = I2. For the master

system (2.3), the initial conditions are set as g1(s, x) = 1.5ρ(x) and g2(s, x) = −2ρ(x). For the slave
system (2.5), the initial conditions are defined as ḡ1(s, x) = 1.425ρ(x) and ḡ2(s, x) = −2.1ρ(x), where
ρ(x) = cos

(
π(x−2)

6

)
.

This paper employs three-dimensional surface plots to visually represent the system’s state
trajectories across time and space. These plots feature the spatial variable x and the time variable t as
independent variables, with the system state value ψi(t, x) as the dependent variable. When u(t, x) = 0,
Figure 1 shows the trajectories of states ψi(t, x) and ‖ψ(t, x)‖. Figure 1(a) and (b) show that the surface
fluctuates continuously, indicating that the system state trajectories oscillate across the entire spatial
range. Additionally, Figure 1(c) shows the evolution of ‖ψ(t, x)‖. It quantitatively represents the
synchronization error, showing how close or far the master–slave system is from the desired state.
A smaller error value indicates a higher level of synchronization between the master–slave system.
From Figure 1(c), the ‖ψ(t, x)‖ is divergent and cannot converge to 0. In summary, this implies that the
TFSRDNN master–slave system cannot achieve synchronization without ASSD control inputs.

Figure 1. Trajectories of states without control input. (a) ψ1(t, x). (b) ψ2(t, x). (c) ‖ψ(t, x)‖.

AIMS Mathematics Volume 10, Issue 1, 1142–1161.



1153

Using Algorithm 1 and the solving parameters o1 = −0.1943 and o2 = 0.4210, we obtain the
MASI dM = 0.0767. Utilizing the matrix relations presented in (3.27), the corresponding controller
gains are solved as K1 = K2 = [−6.9728 − 2.9979; 3.0663 − 6.8996]. We then analyzed the
system’s motion trajectory images to evaluate the controller’s effectiveness. Figure 2 illustrates the
controlled trajectories of states ψi(t, x) and ‖ψ(t, x)‖ using these controller gains. Figure 2(a) and (b)
show the original fluctuating surface gradually becoming the plane at ψi(t, x) = 0. In simpler terms,
the system’s states ψi(t, x) approach 0 across all spatial dimensions. Figure 3(c) depicts the evolution
of the controlled ‖ψ(t, x)‖, demonstrating its rapid convergence under ASSD control inputs. Notably,
around t = 2, ‖ψ(t, x)‖ reaches 0 and is not fluctuating. Comparing Figures 1 and 2 shows that the ASSD
controller and Corollary 3.1, as designed in this paper, effectively synchronize the master–slave system.

Algorithm 1: Solve the upper bound of the MASI.
Input: σ̄, ð, �, ϕ̄, o1, o2, d1

Output: Maximum dM

1 begin
2 Solve LMIs (3.21)-(3.26)
3 if there is no solution then
4 go to Line 8
5 else
6 go to Line 15
7 end
8 for Ta = 0 : 0.0001 : 1 do
9 k = fix(Ta × 104) and dk+1 ← dk + Ta

10 Solve LMIs (32)-(38)
11 if there is no solution then
12 S ave dM ← dk and break
13 end
14 end
15 for Tb = 0 : 0.0001 : 1 do
16 k = fix(Tb × 104) and dk+1 ← dk − Tb

17 Solve LMIs (32)-(38)
18 if there is solution then
19 S ave dM ← dk+1 and break
20 end
21 end
22 end
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Figure 2. Trajectories of controlled states and the corresponding ASSD control input. (a)
ψ1(t, x); (b) ψ2(t, x). (c)‖ψ(t, x)‖.

Figure 3. Trajectories of ASSD control input. (a) u1(t, x); (b) u2(t, x).

To demonstrate the ASSD controller’s effectiveness in complex real-world scenarios, we examine
actuator saturation. Figure 3(a) and (b) illustrate the effects of actuator saturation on control inputs.
At u1(t, x) = 0.60 and u2(t, x) = 0.32, the originally curved boundary transitions to a straight one.
This indicates that the saturation upper limits are 0.60 and 0.32, respectively. The ASSD controller
effectively synchronizes the master–slave system, even under actuator saturation, demonstrating its
reliability.

In SD control, MASI is a key performance indicator. A larger MASI indicates the use of fewer
communication resources to achieve the desired control effect. Table 2 compares the MASI values for
Corollary 3.1 in this paper with those of existing methods, highlighting the superiority of our method.
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Under identical conditions, Corollary 3.1 in this paper is less conservative. It achieves the 12.2%
and 35.9% improvement in MASI values compared with Corollary 1 [26] and Theorem 1 [26], which
MASI values are 0.0683 and 0.0564, respectively.

Table 2. MASIs dM in different methods.

Method MASI dM Increased
Corollary 3.1 0.0767 −

Corollary 1 [26] 0.0683 12.2%
Theorem 1 [26] 0.0564 35.9%

Example 4.2. Consider the TFRNNs with the following parameters:

Al =

[
0.8 0
0 0.8

]
, B1 =

[
0.9 0
0 0.9

]
, C1 =

[
2.2 −0.11
−5.5 3.3

]
, D1 =

[
−1.65 −0.11
−0.22 −2.75

]
, B2 =

[
1.8 0
0 1.8

]
,

C2 =

[
4.4 −0.22
−6.6 6.6

]
,D2 =

[
−3.1 −0.22
−0.44 −5.2

]
, αl = 0, αl = 6, σ(t) =

2et − 2
2 + et ,T(t) = 0,

h1(C (t)) = 0.9(1 + 0.1sint), h2(C (t)) = 0.1(1 − 0.9sint), g(t, x) = tanh(ς(t, x)) − tanh(ς̄(t, x)),

from which we obtain σ̄ = 2, ð = 4/9, Ω1 = 02, and Ω2 = I2. For the master system (2.3), set
initial conditions as g1(s, x) = 2.8ρ(x) and g2(s, x) = −1.3ρ(x). For the slave system (2.5), set them as
ḡ1(s, x) = 2.7ρ(x) and ḡ2(s, x) = −1.4ρ(x), and ρ(x) = cos(πx).

For u(t, x) = 0, Figure 4 illustrates the trajectories of states ψi(t, x) and ‖ψ(t, x)‖. Observations from
Figure 4(a) and (b) reveal that the system’s state continuously oscillates. Furthermore, Figure 4(c)
indicates that ‖ψ(t, x)‖ never converges to 0. This means that without control inputs, the master-
slave system cannot achieve synchronization. Based on Algorithm 1 and the choice of solving
parameters o1 = −2.4019 and o2 = −1.9352, we can obtain the MASI dM = 0.2753. Utilizing the
matrix relations presented in (3.27), the corresponding controller gains are solved as K1 = K2 =

[−1.8731 0.2639; 0.4181 − 3.3359]. Figure 5 shows the controlled trajectories of states ψi(t, x) and
‖ψ(t, x)‖ using these controller gains. Figure 5(a) and (b) illustrate that the system state effectively
converges to 0 under ASSD control. In Figure 5(c), the ‖ψ(t, x)‖ rapidly converges to 0 after control is
applied, around t = 5. The master–slave system achieves synchronization in Figure 5, demonstrating
the effectiveness of Corollary 3.1 and the ASSD controller. Figure 6(a) and (b) show the impact of
actuator saturation on control inputs. These reveal that actuator saturation affects control input values,
setting upper limits at 0.10 and 0.20.
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Figure 4. Trajectories of states without control input. (a) ψ1(t, x); (b) ψ2(t, x); (c) ‖ψ(t, x)‖.

Figure 5. Trajectories of controlled states and the corresponding ASSD control input. (a)
ψ1(t, x); (b) ψ2(t, x); (c)‖ψ(t, x)‖.

Figure 6. Trajectories of ASSD control input. (a) u1(t, x); (b) u2(t, x).
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5. Conclusions

The synchronization issue of TFRNNs with time-varying delays and actuator saturation has
been investigated. Then, the ASSD controller has been utilized for synchronization to conserve
communication resources and enhance system resilience. Subsequently, we have constructed the
LKFs that incorporate more system information. Moreover, fuzzy zero equations and compensation
LKF have been used to handle terms with derivatives of the membership function, relaxing the
constraints. The semi-looped-functional terms have been constructed to enlarge the feasible space
further. Furthermore, sufficient conditions for synchronizing TFRNNs and a search algorithm for
MASI have been established. Finally, two simulations have been exemplified to demonstrate the
approach’s feasibility.
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A. Appendix-A

ζ(t, x) =

[
ψT (t, x)

∂ψT (t, x)
∂t

ψT (t − σ(t), x) ψT (t − σ̄, x) gT (t, x) gT (t − σ(t), x) φT
0 (x) φT

1 (t, x)

φT
2 (t, x) ψT (tk, x) ψT (tk+1, x) ψ̃T (tk, x) ϕT (K jψ̃(tk, x))

]T

,

d1(t) = t − tk, d2(t) = tk+1 − t,Er =
[
0n×(r−1)n In 0n×(13−r)n

]
,

φ̄(s, x) =

[
ψT (s, x) g(t, x)

]T

, φT
0 (x) =

1
dk

∫ tk+1

tk
ψT (s, x)ds, φT

1 (t, x) =
1

d1(t)

∫ t

tk
ψT (s, x)ds,

φT
2 (t, x) =

1
d2(t)

∫ tk+1

t
ψT (s, x)ds, φ3(t, x) = [ψT (t, x) ψT (tk, x) ψT (tk+1, x)]T

,

φ4(t, x) = [ψT (tk, x) ψT (tk+1, x)]T , φ5(t, x) = ψ(t, x) − ψ(tk, x), φ6(t, x) = ψ(tk+1, x) − ψ(t, x).

B. Appendix-B

Φ1 = [ET
1 ET

5 ]T , Φ2 = [ET
3 ET

6 ]T , Φ3 = [ET
10 ET

11]T
, Φ4 = E1 − E10, Φ5 = E11 − E1,

Φ6 = E11 − E10,Φ7 = [ET
1 ET

10 ET
8 ]T ,Φ8 = E1 + E10 − 2E8, Φ9 = [ET

11 ET
1 ET

9 ]T ,

Φ10 = E11 + E1 − 2E9, P(t) = [σ(t)P1i + (σ̄ − σ(t))P2i], Ξ1(t) = ET
1

ι∑
i=1

λi[P(t) + G1]E1,

Ξ2 = ΦT
1

ι∑
i=1

λi[(R1i + G2) − (1 − ð)T1]Φ1, Ξ3 = ET
1

ι∑
i=1

λi[(R2i + G3) − T2]E1,

L1 =

∫
Γ

ψT (t, x)
ι∑

i=1

ḣi(C (t))P(t)ψ(t, x)dx, L2 =

∫
Γ

∫ t

t−σ(t)
φ̄T (s, x)(

ι∑
i=1

ḣi(C (t))R1i)φ̄(s, x)dsdx,

L3 =

∫
Γ

∫ t

t−σ̄
ψT (s, x)(

ι∑
i=1

ḣi(C (t))R2i)ψ(s, x)dsdx, L4 = −

∫
Γ

∫ t

t−σ(t)
φ̄T (t, x)T1φ̄(t, x)dsdx,

L5 = −

∫
Γ

∫ t

t−σ̄
ψT (s, x)T2ψ(s, x)dsdx, A

[
t, σ(t)

]
= C

[
t, σ(t)

]
− F,

Σ
[
t, σ(t)

]
=

ι∑
i=1

hi(C (t))
{
ET

1 P(t)E2 + ðET
1 (P1i − P2i)E1 + ΦT

1 R1iΦ1 + ET
1 R2iE1 − E

T
4 R2iE

T
4
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− (1 − ð)ΦT
2 R1iΦ2

}
+ σ(t)ΦT

1 T1Φ1 + σ̄ET
1 T2E1 − E

T
12SE12 + sym{ET

1 Y2Φ3 + ET
1 Y4E8

+ ET
2 W1Φ4} + d1(t)sym{ET

2 Y2Φ3 + ET
2 Y1E1 + ET

1 Y3E8} + E
T
1 Y1E1 − E

T
8 Y4E8

+ sym{ET
1 H2Φ3 + ET

1 H3E1 − E
T
2 W2Φ5} − d2(t)sym{ET

2 H1E1 + ET
2 H2Φ3

+ ET
2 H3E9} + E

T
1 H1E1 + ET

2 (d2(t)U1 + d1(t)U2)E2,

C
[
t, σ(t)

]
= Σ

[
t, σ(t)

]
+ Ξ1(t) + sym{−ET

1 NAπE1 − [E5 − Γ1E1]T Λ1[E5 − Γ2E1]
− [E6 − Γ1E3]T Λ2[E6 − Γ2E3] + ϕ̄ET

12K
T
j Λ3K jE12 − E

T
13Λ3E13 +

(
o1E

T
1 + o2E

T
2
)
N
(
− BiE1

+ CiE5 + DiE6 +K jE12 − E13 − E2
)
} + sym

{
ΦT

7 M1Φ4 + ΦT
7 M2Φ8 + ΦT

9 M3Φ5 + ΦT
9 M4Φ10

}
,

F = sym{ET
11Y2Φ3 + ET

10H2Φ3 + ET
10H3E7} + E

T
11Y1E11

+ ET
10H1E10 + dkE

T
7 Y3E7 + ET

7 Y4E7 + ΦT
6 (U1 − U2)Φ6.

C. Appendix-C

V1(t) =

∫
Γ

ψT (t, x)
ι∑

i=1

hi(C (t))P(t)ψ(t, x)dx,

V2(t) =

∫
Γ

∫ t

t−σ(t)
φ̄T (s, x)

ι∑
i=1

hi(C (t))R1iφ̄(s, x)dsdx +

∫
Γ

∫ t

t−σ̄
ψT (s, x)

ι∑
i=1

hi(C (t))R2iψ(s, x)dsdx,

V3(t) =

∫
Γ

∫ t

t−σ(t)

∫ t

u
φ̄T (s, x)T1φ̄(s, x)dsdudx +

∫
Γ

∫ t

t−σ̄

∫ t

u
ψT (s, x)T2ψ(s, x)dsdudx,

V4(t) =

∫
Γ

(tk+1 − t)ψ̃T (tk, x)S ψ̃(tk, x)dx, V5(t) = 2
∫

Γ

m∑
l=1

∂ψT (t, x)
∂xl

NAl
∂ψ(t, x)
∂xl

dx,

V6(t) =

∫
Γ

d1(t)ψT (t, x)[Y1 2Y2]φ3(t, x)dx +

∫
Γ

d1(t)φT
1 (t, x)Y3d1(t)φ1(t, x)dx

+

∫
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∫
Γ

dkφ
T
5 (t, x)W1φ5(t, x)dx,

V7(t) = −

∫
Γ
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∫
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2ψT (t, x)H3d2(t)φ2(t, x)dx

+

∫
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dkφ
T
6 (t, x)W2φ6(t, x)dx,

V8(t) =d2(t)
∫
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tk

∂ψT (s, x)
∂s

U1
∂ψ(s, x)
∂s

dsdx − d1(t)
∫

Γ
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t

∂ψT (s, x)
∂s
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∂s

dsdx.
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