To overcome the limitations of solid-liquid phase change materials, such as liquid leakage, unstable shape, and serious corrosion at elevated temperatures, the design of a solid-solid phase change material using Ni-Ti-Zr as a metal element was utilized for its high thermal conductivity and stability to provide new thermal storage solutions for downhole tools. The influence of Zr content on the thermophysical properties and microstructure of the material was also investigated. The results showed that the designed solid-solid phase change material could reach 4129.93 × 106 J2K−1s−1m−4 quality factor, which was much higher than most of the phase change materials. This was attributed to the increase in Zr content, where Zr atoms took the place of Ti atoms, creating vacancy defect and leading to the distortion of the alloy lattice where the Ti2Ni phase gradually became the (Ti, Zr)2Ni phase, the rise in density and enthalpy of the phase transition, and the increase in the temperature of the phase transition. When the Zr content was 12%, the phase transition temperature of the alloy matched the downhole working temperature, demonstrating excellent thermal cycling stability, and is expected to be a heat storage material for downhole tools.
Citation: Wentao Qu, Qian Zhang, Guibian Li, Boyang Pan, Haiying Liu. Microstructure and thermophysical properties of NiTiZr phase change alloys for downhole tool heat storage[J]. AIMS Materials Science, 2025, 12(1): 85-100. doi: 10.3934/matersci.2025007
[1] | Chen Liang, Hai-Feng Huo, Hong Xiang . Modelling mosquito population suppression based on competition system with strong and weak Allee effect. Mathematical Biosciences and Engineering, 2024, 21(4): 5227-5249. doi: 10.3934/mbe.2024231 |
[2] | Liming Cai, Shangbing Ai, Guihong Fan . Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes. Mathematical Biosciences and Engineering, 2018, 15(5): 1181-1202. doi: 10.3934/mbe.2018054 |
[3] | Yang Li, Jia Li . Stage-structured discrete-time models for interacting wild and sterile mosquitoes with beverton-holt survivability. Mathematical Biosciences and Engineering, 2019, 16(2): 572-602. doi: 10.3934/mbe.2019028 |
[4] | Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng . The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppressio. Mathematical Biosciences and Engineering, 2019, 16(5): 4741-4757. doi: 10.3934/mbe.2019238 |
[5] | Yuanxian Hui, Genghong Lin, Qiwen Sun . Oscillation threshold for a mosquito population suppression model with time delay. Mathematical Biosciences and Engineering, 2019, 16(6): 7362-7374. doi: 10.3934/mbe.2019367 |
[6] | Rajivganthi Chinnathambi, Fathalla A. Rihan . Analysis and control of Aedes Aegypti mosquitoes using sterile-insect techniques with Wolbachia. Mathematical Biosciences and Engineering, 2022, 19(11): 11154-11171. doi: 10.3934/mbe.2022520 |
[7] | Bo Zheng, Lihong Chen, Qiwen Sun . Analyzing the control of dengue by releasing Wolbachia-infected male mosquitoes through a delay differential equation model. Mathematical Biosciences and Engineering, 2019, 16(5): 5531-5550. doi: 10.3934/mbe.2019275 |
[8] | Mugen Huang, Zifeng Wang, Zixin Nie . A stage structured model for mosquito suppression with immigration. Mathematical Biosciences and Engineering, 2024, 21(11): 7454-7479. doi: 10.3934/mbe.2024328 |
[9] | Daiver Cardona-Salgado, Doris Elena Campo-Duarte, Lilian Sofia Sepulveda-Salcedo, Olga Vasilieva, Mikhail Svinin . Optimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains. Mathematical Biosciences and Engineering, 2021, 18(3): 2952-2990. doi: 10.3934/mbe.2021149 |
[10] | Hui Wan, Huaiping Zhu . A new model with delay for mosquito population dynamics. Mathematical Biosciences and Engineering, 2014, 11(6): 1395-1410. doi: 10.3934/mbe.2014.11.1395 |
To overcome the limitations of solid-liquid phase change materials, such as liquid leakage, unstable shape, and serious corrosion at elevated temperatures, the design of a solid-solid phase change material using Ni-Ti-Zr as a metal element was utilized for its high thermal conductivity and stability to provide new thermal storage solutions for downhole tools. The influence of Zr content on the thermophysical properties and microstructure of the material was also investigated. The results showed that the designed solid-solid phase change material could reach 4129.93 × 106 J2K−1s−1m−4 quality factor, which was much higher than most of the phase change materials. This was attributed to the increase in Zr content, where Zr atoms took the place of Ti atoms, creating vacancy defect and leading to the distortion of the alloy lattice where the Ti2Ni phase gradually became the (Ti, Zr)2Ni phase, the rise in density and enthalpy of the phase transition, and the increase in the temperature of the phase transition. When the Zr content was 12%, the phase transition temperature of the alloy matched the downhole working temperature, demonstrating excellent thermal cycling stability, and is expected to be a heat storage material for downhole tools.
The study of Hom-algebras can be traced back to Hartwig, Larsson and Silvestrov's work in [1], where the notion of Hom-Lie algebra in the context of q-deformation theory of Witt and Virasoro algebras [2] was introduced, which plays an important role in physics, mainly in conformal field theory. Hom-algebras and Hom-coalgebras were introduced by Makhlouf and Silvestrov [3] as generalizations of ordinary algebras and coalgebras in the following sense: the associativity of the multiplication is replaced by the Hom-associativity and similar for Hom-coassociativity. They also defined the structures of Hom-bialgebras and Hom-Hopf algebras, and described some of their properties extending properties of ordinary bialgebras and Hopf algebras in [4,5]. In [6], Caenepeel and Goyvaerts studied Hom-bialgebras and Hom-Hopf algebras from a categorical view point, and called them monoidal Hom-bialgebras and monoidal Hom-Hopf algebras respectively, which are different from the normal Hom-bialgebras and Hom-Hopf algebras in [4]. Many more properties and structures of Hom-Hopf algebras have been developed, see [7,8,9,10] and references cited therein.
Later, Yau [11,12] proposed the definition of quasitriangular Hom-Hopf algebras and showed that each quasitriangular Hom-Hopf algebra yields a solution of the Hom-Yang-Baxter equation. The Hom-Yang-Baxter equation reduces to the usual Yang-Baxter equation when the twist map is trivial. Several classes of solutions of the Hom-Yang-Baxter equation were constructed from different respects, including those associated to Hom-Lie algebras [11,13,14,15], Drinfelds (co)doubles [16,17,18], and Hom-Yetter-Drinfeld modules [19,20,21,22,23,24,25,26].
It is well-known that classical nonlinear equations in Hopf algebra theory including the quantum Yang-Baxter equation, the Hopf equation, the pentagon equation, and the Long equation. In [27], Militaru proved that each Long dimodule gave rise to a solution for the Long equation. Long dimodules are the building stones of the Brauer-Long group. In the case where H is commutative, cocommutative and faithfully projective, the Yetter-Drinfeld category HHYD is precisely the Long dimodule category HHL. Of course, for an arbitrary H, the categories HHYD and HHL are basically different. In [28], Chen et al. introduced the concept of Long dimodules over a monoidal Hom-bialgebra and discussed its relation with Hom-Long equations. Later, we [29] extended Chen's work to generalized Hom-Long dimodules over monoidal Hom-Hopf algebras and obtained a kind solution for the quantum Yang-Baxter equation. For more details about Long dimodules, see [30,31,32,33] and references cited therein.
The main purpose of this paper is to construct a new braided monoidal category and present solutions for two kinds of nonlinear equations. Different to our previous work in [29], in the present paper we do all the work over Hom-Hopf algebras, which is more unpredictable than the monoidal version. Since Hom-Hopf algebras and monoidal Hom-Hopf algebras are different concepts, it turns out that our definitions, formulas and results are also different from the ones in [29]. Most important, we associate quantum Yang-Baxter equations and Hom-Long equations to the Hom-Long dimodule categories.
This paper is organized as follows. In Section 1, we recall some basic definitions about Hom-(co)modules and (co)quasitriangular Hom-Hopf algebras.
In Section 2, we first introduce the notion of (H,B)-Hom-Long dimodules over Hom-bialgebras (H,α) and (B,β), then we show that the Hom-Long dimodule category BHL forms an autonomous category (see Theorem 2.6) and prove that the category is equivalent to the category of left B∗op⊗H-Hom-modules (see Theorem 2.7).
In Section 3, for a quasitriangular Hom-Hopf algebra (H,R,α) and a coquasitriangular Hom-Hopf algebra (B,⟨|⟩,β), we prove that the Hom-Long dimodule category BHL is a subcategory of the Hom-Yetter-Drinfeld category H⊗BH⊗BHYD (see Theorem 3.5), and show that the braiding yields a solution for the quantum Yang-Baxter equation (see Corollary 3.2).
In Section 4, we prove that the category HM over a triangular Hom-Hopf algebra (resp., HM over a cotriangular Hom-Hopf algebra) is a Hom-Long dimodule subcategory of BHL (see Propositions 4.1 and 4.2). We also show that the Hom-Long dimodule category BHL is symmetric in case (H,R,α) is triangular and (B,⟨|⟩,β) is cotriangular (see Theorem 4.3).
In Section 5, we introduce the notion of (H,α)-Hom-Long dimodules and obtain a solution for the Hom-Long equation (see Theorem 5.10).
Throughout this paper, k is a fixed field. Unless otherwise stated, all vector spaces, algebras, modules, maps and unadorned tensor products are over k. For a coalgebra C, the coproduct will be denoted by Δ. We adopt a Sweedler's notation △(c)=c1⊗c2, for any c∈C, where the summation is understood. We refer to [34,35] for the Hopf algebra theory and terminology.
We now recall some useful definitions in [3,4,5,12,36,37].
Definition 1.1. A Hom-algebra is a quadruple (A,μ,1A,α) (abbr. (A,α)), where A is a k-linear space, μ:A⊗A⟶A is a k-linear map, 1A∈A and α is an endmorphism of A, such that
(HA1)α(aa′)=α(a)α(a′);α(1A)=1A,(HA2)α(a)(a′a″)=(aa′)α(a″);a1A=1Aa=α(a) |
are satisfied for a,a′,a″∈A. Here we use the notation μ(a⊗a′)=aa′.
Definition 1.2. Let (A,α) be a Hom-algebra. A left (A,α)-Hom-module is a triple (M,⊳,ν), where M is a linear space, ⊳:A⊗M⟶M is a linear map, and ν is an endmorphism of M, such that
(HM1)ν(a⊳m)=α(a)⊳ν(m),(HM2)α(a)⊳(a′⊳m)=(aa′)⊳ν(m);1A⊳m=ν(m) |
are satisfied for a,a′∈A and m∈M.
Let (M,⊳M,νM) and (N,⊳N,νN) be two left (A,α)-Hom-modules. Then a linear morphism f:M⟶N is called a morphism of left (A,α)-Hom-modules if f(h⊳Mm)=h⊳Nf(m) and νN∘f=f∘νM.
Definition 1.3. A Hom-coalgebra is a quadruple (C,Δ,ϵ,β) (abbr. (C,β)), where C is a k-linear space, Δ:C⟶C⊗C, ϵ:C⟶k are k-linear maps, and β is an endmorphism of C, such that
(HC1)β(c)1⊗β(c)2=β(c1)⊗β(c2);ϵ∘β=ϵ;(HC2)β(c1)⊗c21⊗c22=c11⊗c12⊗β(c2);ϵ(c1)c2=c1ϵ(c2)=β(c) |
are satisfied for c∈C.
Definition 1.4. Let (C,β) be a Hom-coalgebra. A left (C,β)-Hom-comodule is a triple (M,ρ,μ), where M is a linear space, ρ:M⟶C⊗M (write ρ(m)=m(−1)⊗m(0),∀m∈M) is a linear map, and μ is an endmorphism of M, such that
(HCM1)μ(m)(−1)⊗μ(m)(0)=β(m(−1))⊗μ(m(0)),ϵ(m(−1))m(0)=μ(m);(HCM2)β(m(−1))⊗m(0)(−1)⊗m(0)(0)=m(−1)1⊗m(−1)2⊗μ(m(0)) |
are satisfied for all m∈M.
Let (M,ρM,μM) and (N,ρN,μN) be two left (C,β)-Hom-comodules. Then a linear map f:M⟶N is called a map of left (C,β)-Hom-comodules if f(m)(−1)⊗f(m)(0)=m(−1)⊗f(m(0)) and μN∘f=f∘μM.
Definition 1.5. A Hom-bialgebra is a sextuple (H,μ,1H,Δ,ϵ,γ) (abbr. (H,γ)), where (H,μ,1H,γ) is a Hom-algebra and (H,Δ,ϵ,γ) is a Hom-coalgebra, such that Δ and ϵ are morphisms of Hom-algebras, i.e.,
Δ(hh′)=Δ(h)Δ(h′);Δ(1H)=1H⊗1H;ϵ(hh′)=ϵ(h)ϵ(h′);ϵ(1H)=1. |
Furthermore, if there exists a linear map S:H⟶H such that
S(h1)h2=h1S(h2)=ϵ(h)1HandS(γ(h))=γ(S(h)), |
then we call (H,μ,1H,Δ,ϵ,γ,S) (abbr. (H,γ,S)) a Hom-Hopf algebra.
Definition 1.6. ([36]) Let (H,β) be a Hom-bialgebra, (M,⊳,μ) a left (H,β)-module with action ⊳:H⊗M⟶M,h⊗m↦h⊳m and (M,ρ,μ) a left (H,β)-comodule with coaction ρ:M⟶H⊗M,m↦m(−1)⊗m(0). Then we call (M,⊳,ρ,μ) a (left-left) Hom-Yetter-Drinfeld module over (H,β) if the following condition holds:
(HYD)h1β(m(−1))⊗(β3(h2)⊳m(0)=(β2(h1)⊳m)(−1)h2⊗(β2(h1)⊳m)(0), |
where h∈H and m∈M.
When H is a Hom-Hopf algebra, then the condition (HYD) is equivalent to
(HYD)′ρ(β4(h)⊳m)=β−2(h11β(m(−1)))S(h2)⊗(β3(h12)⊳m0). |
Definition 1.7. ([36]) Let (H,β) be a Hom-bialgebra. A Hom-Yetter-Drinfeld category HHYD is a pre-braided monoidal category whose objects are left-left Hom-Yetter-Drinfeld modules, morphisms are both left (H,β)-linear and (H,β)-colinear maps, and its pre-braiding C−,− is given by
CM,N(m⊗n)=β2(m(−1))⊳ν−1(n)⊗μ−1(m0), | (1.1) |
for all m∈(M,μ)∈HHYD and n∈(N,ν)∈HHYD.
Definition 1.8. A quasitriangular Hom-Hopf algebra is a octuple (H,μ,1H,Δ,ϵ,S,β,R) (abbr. (H,β,R)) in which (H,μ,1H,Δ,ϵ,S,β) is a Hom-Hopf algebra and R=R(1)⊗R(2)∈H⊗H, satisfying the following axioms (for all h∈H and R=r):
(QHA1)ϵ(R(1))R(2)=R(1)ϵ(R(2))=1H,(QHA2)Δ(R(1))⊗β(R(2))=β(R(1))⊗β(r(1))⊗R(2)r(2),(QHA3)β(R(1))⊗Δ(R(2))=R(1)r(1)⊗β(r(2))⊗β(R(2)),(QHA4)Δcop(h)R=RΔ(h),(QHA5)β(R(1))⊗β(R(2))=R(1)⊗R(2), |
where Δcop(h)=h2⊗h1 for all h∈H. A quasitriangular Hom-Hopf algebra (H,R,β) is called triangular if R−1=R(2)⊗R(1).
Definition 1.9. A coquasitriangular Hom-Hopf algebra is a Hom-Hopf algebra (H,β) together with a bilinear form ⟨|⟩ on (H,β) (i.e., ⟨|⟩∈ Hom(H⊗H,k)) such that the following axioms hold:
(CHA1)⟨hg|β(l)⟩=⟨β(h)|l2⟩⟨β(g)|l1⟩,(CHA2)⟨β(h)|gl⟩=⟨h1|β(g)⟩⟨h2|β(l)⟩,(CHA3)⟨h1|g1⟩g2h2=h1g1⟨h2|g2⟩,(CHA4)⟨1|h⟩=⟨h|1⟩=ϵ(h),(CHA5)⟨β(h)|β(g)⟩=⟨h|g⟩, |
for all h,g,l∈H. A coquasitriangular Hom-Hopf algebra (H,⟨|⟩,β) is called cotriangular if ⟨|⟩ is convolution invertible in the sense of ⟨h1|g1⟩⟨g2|h2⟩=ϵ(h)ϵ(g), for all h,g∈H.
In this section, we will introduce the notion of Hom-Long dimodules and prove that the Hom-Long dimodule category is an autonomous category.
Definition 2.1. Let (H,α) and (B,β) be two Hom-bialgebras. A left-left (H,B)-Hom-Long dimodule is a quadruple (M,⋅,ρ,μ), where (M,⋅,μ) is a left (H,α)-Hom-module and (M,ρ,μ) is a left (B,β)-Hom-comodule such that
ρ(h⋅m)=β(m(−1))⊗α(h)⋅m(0), | (2.1) |
for all h∈H and m∈M. We denote by BHL the category of left-left (H,B)-Hom-Long dimodules, morphisms being H-linear B-colinear maps.
Example 2.2. Let (H,α) and (B,β) be two Hom-bialgebras. Then (H⊗B,α⊗β) is an (H,B)-Hom-Long dimodule with left (H,α)-action h⋅(g⊗x)=hg⊗β(x) and left (B,β)-coaction ρ(g⊗x)=x1⊗(α(g)⊗x2), where h,g∈H,x∈B.
Proposition 2.3. Let (M,μ),(N,ν) be two (H,B)-Hom-Long dimodules, then (M⊗N,μ⊗ν) is an (H,B)-Hom-Long dimodule with structures:
h⋅(m⊗n)=h1⋅m⊗h2⋅n,ρ(m⊗n)=β−2(m(−1)n(−1))⊗m(0)⊗n(0), |
for all m∈M,n∈N and h∈H.
Proof. From Theorem 4.8 in [21], (M⊗N,μ⊗ν) is both a left (H,α)-Hom-module and a left (B,β)-Hom-comodule. It remains to check that the compatibility condition (2.1) holds. For any m∈M,n∈N and h∈H, we have
ρ(h⋅(m⊗n))=β((h1⋅m)(−1)(h2⋅n)(−1))⊗(h1⋅m)(0)⊗(h2⋅n)(0)=β−1(m(−1)n(−1))⊗α(h1)⋅m(0)⊗α(h2)⋅n(0)=β((m⊗n)(−1))⊗α(h)⋅((m⊗n)(0)), |
as desired. This completes the proof.
Proposition 2.4. The Hom-Long dimodule category BHL is a monoidal category, where the tensor product is given in Proposition 2.3, the unit I=(k,id), the associator and the constraints are given as follows:
aU,V,W:(U⊗V)⊗W→U⊗(V⊗W),(u⊗v)⊗w→μ−1(u)⊗(v⊗ω(w)),lV:k⊗V→V,k⊗v→kν(v),rV:V⊗k→V,v⊗k→kν(v), |
for u∈(U,μ)∈BHL,v∈(V,ν)∈BHL,w∈(W,ω)∈BHL.
Proof. Straightforward.
Proposition 2.5. Let H and B be two Hom-Hopf algebras with bijective antipodes. For any Hom-Long dimodule (M,μ) in BHL, set M∗=Homk(M,k), with the (H,α)-Hom-module and the (B,β)-Hom-comodule structures:
θM∗:H⊗M∗⟶M∗,(h⋅f)(m)=f(SHα−1(h)⋅μ−2(m)),ρM∗:M∗⟶B⊗M∗,f(−1)⊗f(0)(m)=S−1Bβ−1(m(−1))⊗f(μ−2(m(0))), |
and the Hom-structure map μ∗ of M∗ is μ∗(f)(m)=f(μ−1(m)). Then M∗ is an object in BHL. Moreover, BHL is a left autonomous category.
Proof. It is not hard to check that (M∗,θM∗,μ∗) is an (H,α)-Hom-module and (M∗,ρM∗,μ∗) is a (B,β)-Hom-comodule. Further, for any f∈M∗, m∈M, h∈H, we have
(h⋅f)(−1)⊗(h⋅f)(0)(m)=S−1Bβ−1(m(−1))⊗(h⋅f)(μ−2(m(0)))=S−1Bβ−1(m(−1))⊗f(SHα−1(h)⋅μ−4(m(0))),β(f(−1))⊗(α(h)⋅f(0))(m)=β(f(−1))⊗f(0)(SH(h)⋅μ−2(m))=β(S−1Bβ−2(m(−1)))⊗f(μ−2(SHα(h)⋅μ−2(m(0))))=S−1Bβ−1(m(−1))⊗f(SHα−1(h)⋅μ−4(m(0))). |
Thus M∗∈BHL.
Moreover, for any f∈M∗ and m∈M, one can define the left evaluation map and the left coevaluation map by
evM:f⊗m⟼f(m),coevM:1k⟼∑ei⊗ei, |
where ei and ei are dual bases in M and M∗ respectively. Next, we will show that (M∗,evM,coevM) is the left dual of M.
It is easy to see that evM and coevM are morphisms in BHL. For this, we need the following computation
(rM∘(idM⊗evM)∘aM,M∗,M∘(coevM⊗idM)∘l−1M)(m)=(rM∘(idM⊗evM)∘aM,M∗,M)(∑i(ei⊗ei)⊗μ−1(m))=(rM∘(idM⊗evM))(∑iμ−1(ei)⊗(ei⊗m))=rM(∑iμ−1(ei)⊗ei(m))=rM(μ−1(m)⊗1k)=m. |
Similarly, we get
(lM∗∘(evM⊗idM∗)∘a−1M∗,M,M∗∘(idM∗⊗coevM)∘r−1M∗)(f)=(lM∗∘(evM⊗idM∗)∘a−1M∗,M,M∗)(∑iμ∗−1(f)⊗(ei⊗ei))=(lM∗∘(evM⊗idM∗))(∑if⊗ei)⊗μ∗−1(ei))=lM∗(∑if(ei)⊗μ∗−1(ei))=lM∗(1k⊗μ∗−1(f))=f. |
So BHL admits the left duality. The proof is finished.
Theorem 2.6. The Hom-Long dimodule category BHL is an autonomous category.
Proof. By Proposition 2.5, it is sufficient to show that BHL is also a right autonomous category. In fact, for any (M,μ)∈BHL, its right dual (∗M,~coevM,~evM) is defined as follows:
∙ ∗M=Homk(M,k) as k-modules, with the Hom-module and Hom-comodule structures:
(h⋅f)(m)=f(S−1Hα−1(h)⋅μ−2(m)),f(−1)⊗f(0)(m)=SBβ−1(m(−1))⊗f(μ−2(m(0))), |
where f∈∗M, m∈M, and the Hom-structure map μ∗ of ∗M is μ∗(f)(m)=f(μ−1(m));
∙ The right evaluation map and the right coevaluation map are given by
~evM:m⊗f⟼f(m),~coevM:1k⟼∑ai⊗ai, |
where ai and ai are dual bases of M and ∗M respectively. By similar verification in Proposition 2.5, one may check that BHL is a right autonomous category, as required. This completes the proof.
Recall from [17] that for any finite dimensional Hom-Hopf algebra B, B∗ is also a Hom-Hopf algebra with the following structures
(f∗g)(y):=f(β−2(y1))g(β−2(y2)),ΔB∗(f)(xy):=f(β−2(xy)),1B∗:=ϵ,ϵB∗(f):=f(1H),SB∗:=S∗,αB∗(f):=f∘β−1, |
where x,y∈H, f,g∈B∗.
Theorem 2.7. If B is a finite dimensional Hom-Hopf algebra, then the Hom-Long dimodule category BHL is identified to the category of left B∗op⊗H-Hom-modules, where B∗op⊗H means the usual tensor product Hom-Hopf algebra.
Proof. Define the functor Ψ from B∗op⊗HM to BHL by
Ψ(M):=Mask−module,Ψ(f):=f, |
where (M,μ,⇁) is a B∗op⊗H-Hom-module, f:M→N is a morphism of B∗op⊗H-Hom-modules. Further, the H-action on M is defined by
h⋅m:=(ϵB⊗h)⇁m,forallm∈M,h∈H, |
and the B-coaction on M is given by
m(−1)⊗m(0):=∑ei⊗(ei⊗1H)⇁m, |
where ei and ei are dual bases of B and B∗ respectively.
First, we will show (M,μ,⋅) is a left (H,α)-Hom-module. Actually, for any m∈M, h,g∈H, we have 1H⋅m=(ϵB⊗1H)⇁m=μ(m), and
α(h)⋅(g⋅m)=(ϵB⊗α(h))⇁((ϵB⊗g)⇁m)=(ϵB⊗hg)⇁μ(m)=(hg)⋅μ(m), |
which implies (M,μ,⋅)∈HM.
Second, one can show that (M,μ)∈BM in a similar way.
At last, for any m∈M, h∈H, we have
(h⋅m)(−1)⊗(h⋅m)(0)=∑ei⊗(ei⊗1H)⇁(h⋅m)=∑ei⊗(ei⊗α(h))⇁μ(m)=∑β(ei)⊗((ϵB⊗1H)(ei⊗h)⇁μ(m)=∑β(ei)⊗((ϵB⊗h)(ei⊗1H)⇁μ(m)=∑β(ei)⊗α(h)⋅((ei⊗1H)⇁μ(m))=β(m(−1))⊗α(h)⋅m(0), |
which implies (M,μ)∈BHL.
Conversely, for any object (M,μ), (N,ν), and morphism f:U→V in BHL, one can define a functor Φ from BHL to B∗op⊗HM
Φ(M):=Mask−modules,Φ(f):=f, |
where the (B∗op⊗H,β∗⊗α)-Hom-module structure on M is given by
(p⊗h)⇁m=p(m(−1))h⋅μ−1(m(0)), |
for all p∈B∗,h∈H,m∈M. It is straightforward to check that (M,μ,⇁) is an object in BHL to B∗op⊗HM, and hence Φ is well defined.
Note that Φ and Ψ are inverse with each other. Hence the conclusion holds.
In this section, we will prove that the Hom-Long dimodule category BHL over a quasitriangular Hom-Hopf algebra (H,R,α) and a coquasitriangular Hom-Hopf algebra (B,⟨|⟩,β) is a braided monoidal subcategory of the Hom-Yetter-Drinfeld category H⊗BH⊗BHYD.
Theorem 3.1. Let (H,R,α) be a quasitriangular Hom-Hopf algebra and (B,⟨|⟩,β) a coquasitriangular Hom-Hopf algebra. Then the category BHL is a braided monoidal category with braiding
CM,N:M⊗N→N⊗M,m⊗n→⟨m(−1)|n(−1)⟩R(2)⋅ν−2(n(0))⊗R(1)⋅μ−2(m(0)), | (3.1) |
for all m∈(M,μ)∈BHL and n∈(N,ν)∈BHL.
Proof. We will first show that the braiding CM,N is a morphism in BHL. In fact, for any m∈M,n∈N and h∈H, we have
CM,N(h1⋅m⊗h2⋅n)=⟨(h1⋅m)(−1)|(h2⋅n)(−1)⟩R(2)⋅ν−2(h2⋅n)(0)⊗R(1)⋅μ−2(h1⋅m)(0)(2.1)=⟨β(m(−1))|β(n(−1))⟩R(2)⋅ν−2(α(h2)⋅n(0))⊗R(1)⋅μ−2(α(h1)⋅m(0))(HM2)=⟨m(−1)|n(−1)⟩α−1(R(2)h2)⋅ν−1(n(0))⊗α−1(R(1)h1)⋅μ−1(m(0)),h⋅CM,N(m⊗n)=⟨m(−1)|n(−1)⟩h⋅(R(2)⋅ν−2(n(0))⊗R(1)⋅μ−2(m(0)))=⟨m(−1)|n(−1)⟩h1⋅(α−1(R(2))⋅ν−2(n(0)))⊗h2⋅(α−1(R(1))⋅μ−2(m(0)))(HM2)=⟨m(−1)|n(−1)⟩α−1(h1R(2))⋅ν−1(n(0))⊗α−1(h2R(1))⋅μ−1(m(0))(QHA4)=⟨m(−1)|n(−1)⟩α−1(R(2)h2)⋅ν−1(n(0))⊗α−1(R(1)h1)⋅μ−1(m(0)). |
The third equality holds since ⟨|⟩ is β-invariant and the fifth equality holds since R is α-invariant. So CM,N is left (H,α)-linear. Similarly, one may check that CM,N is left (B,β)-colinear.
Now we prove that the braiding CM,N is natural. For any (M,μ),(M′,μ′), (N,ν),(N′,ν′) ∈BHL, let f:M→M′ and g:N→N′ be two morpshisms in BHL, it is sufficient to verify the identity (g⊗f)∘CM,N=CM′,N′∘(f⊗g). For this purpose, we take m∈M,n∈N and do the following calculation:
(g⊗f)∘CM,N(m⊗n)=⟨m(−1)|n(−1)⟩(g⊗f)(R(2)⋅ν−2(n(0))⊗R(1)⋅μ−2(m(0)))=⟨m(−1)|n(−1)⟩g(R(2)⋅ν−2(n(0)))⊗f(R(1)⋅μ−2(m(0)))=⟨m(−1)|n(−1)⟩R(2)⋅g(ν−2(n(0)))⊗R(1)⋅f(μ−2(m(0))),CM′,N′∘(f⊗g)(m⊗n)=CM′,N′(f(m)⊗g(n))=⟨f(m)(−1)|g(n)(−1)⟩R(2)⋅ν−2(g(n)(0))⊗(R(1)⋅μ−2(f(m)(0))=⟨m(−1)|n(−1)⟩R(2)⋅ν−2(g(n(0)))⊗R(1)⋅μ−2(f(m(0)))=⟨m(−1)|n(−1)⟩R(2)⋅g(ν−2(n(0)))⊗R(1)⋅f(μ−2(m(0))). |
The sixth equality holds since f,g are left (B,β)-colinear. So the braiding CM,N is natural, as needed.
Next, we will show that the braiding CM,N is an isomorphsim with inverse map
C−1M,N:N⊗M→M⊗N,n⊗m→⟨S−1(m(−1))|n(−1)⟩S(R(1))⋅μ−2(m(0))⊗R(2)⋅ν−2(n(0)). |
For any m∈M,n∈N, we have
C−1M,N∘CM,N(m⊗n)=⟨m(−1)|n(−1)⟩C−1M,N(R(2)⋅ν−2(n(0))⊗R(1)⋅μ−2(m(0)))=⟨m(−1)|n(−1)⟩⟨S−1(β−1(m(0)(−1)))|β−1(n(0)(−1))⟩S(r(1))⋅μ−2(α(R(2))⋅μ−2(m(0)(0)))⊗r(2)⋅ν−2(α(R(1))⋅ν−2(n(0)(0)))(HCM2)=⟨β−1(m(−1)1)|β−1(n(−1)1)⟩⟨S−1(β−1(m(−1)2))|β−1(n(−1)2)⟩S(r(1))⋅(α−1(R(2))⋅μ−3(m(0)))⊗r(2)⋅(α−1(R(1))⋅ν−3(n(0)))(HM2)=⟨m(−1)1|n(−1)1⟩⟨S−1(m(−1)2)|n(−1)2⟩α−1(S(r(1))R(2))⋅μ−2(m(0))⊗α−1(r(2)R(1))⋅ν−2(n(0))(CHA1)=⟨S−1(β−1(m(−1)2))β−1(m(−1)1)|β(n(−1))⟩1H⋅μ−2(m(0))⊗1H⋅ν−2(n(0))=⟨β−2(S−1(m(−1)2)m(−1)1)|n(−1)⟩1H⋅μ−2(m(0))⊗1H⋅ν−2(n(0))=⟨ϵ(m(−1))1H|n(−1)⟩μ−1(m(0))⊗ν−1(n(0))=ϵ(m(−1))ϵ(n(−1))μ−1(m(0))⊗ν−1(n(0))=m⊗n. |
The second equality holds since ρ(R(2)⋅ν−2(n(0)))=β−1(n(0)(−1))⊗α(R(2))⋅n(0)(0) and the fifth equality holds since R−1=S(r(1))⊗r(2).
Now let us verify the hexagon axioms (H1,H2) from Section XIII. 1.1 of [38]. We need to show that the following diagram (H1) commutes for any (U,μ),(V,ν),(W,ω)∈BHL:
![]() |
For this purpose, let u∈U,v∈V,w∈W, then we have
aV,U,W∘CU,V⊗W∘aU,V,W((u⊗v)⊗w)=aV,U,W∘CU,V⊗W(μ−1(u)⊗(v⊗ω(w)))=⟨β−1(u(−1))|β−2(v(−1))β−1(w(−1))⟩aV,U,W(R(2)⋅(ν−2⊗ω−2)(v(0)⊗ω(w(0)))⊗R(1)⋅μ−3(u(0)))=⟨β(u(−1))|v(−1)β(w(−1))⟩aV,U,W(R(2)⋅(ν−2(v(0))⊗ω−1(w(0)))⊗R(1)⋅μ−3(u(0)))=⟨β(u(−1))|v(−1)β(w(−1))⟩α−1(R(2)1)⋅ν−3(v(0))⊗(R(2)2⋅ω−1(w(0))⊗α(R(1))⋅μ−2(u(0)))(QHA3)=⟨β(u(−1))|v(−1)β(w(−1))⟩r(2)⋅ν−3(v(0))⊗(α(R(2))⋅ω−1(w(0))⊗(R(1)r(1))⋅μ−2(u(0))) |
and
(idV⊗CU,W)∘aV,U,W∘(CU,V⊗idW)((u⊗v)⊗w)=⟨u(−1)|v(−1)⟩(idV⊗CU,W)∘aV,U,W((R(2)⋅ν−2(v(0))⊗R(1)⋅μ−2(u(0)))⊗w)=⟨u(−1)|v(−1)⟩(idV⊗CU,W)α−1(R(2))⋅ν−3(v(0))⊗(R(1)⋅μ−2(u(0))⊗ω(w))=⟨u(−1)|v(−1)⟩⟨β−1(u(0)(−1))|β(w(−1))⟩α−1(R(2))⋅ν−3(v(0))⊗(r(2)⋅ω−1(w(0))⊗r(1)⋅μ−2(α(R(1))⋅μ−2(u(0)(0))))(HCM2)=⟨β−1(u(−1)1)|v(−1)⟩⟨β−1(u(−1)2)|β(w(−1))⟩α−1(R(2))⋅ν−3(v(0))⊗(r(2)⋅ω−1(w(0))⊗α−1(r(1)R(1))⋅μ−2(u(0)))(CHA2)=⟨u(−1)|β−1(v(−1))w(−1)⟩α−1(R(2))⋅ν−3(v(0))⊗(r(2)⋅ω−1(w(0))⊗α−1(r(1)R(1))⋅μ−2(u(0)))=⟨β(u(−1))|v(−1)β(w(−1))⟩R(2)⋅ν−3(v(0))⊗(α(r(2))⋅ω−1(w(0))⊗(r(1)R(1))⋅μ−2(u(0))) |
Since r = R , it follows that a_{V, U, W}\circ C_{U, V{\otimes} W}\circ a_{U, V, W} = (id_{V}{\otimes} C_{U, W})\circ a_{V, U, W}\circ(C_{U, V}{\otimes} id_{W}) , that is, the diagram ( H_{1} ) commutes.
Now we check that the diagram ( H_{2} ) commutes for any (U, \mu), (V, \nu), (W, \omega)\in{} ^{B}_{H}\Bbb{L} :
![]() |
In fact, for any u\in U, v\in V, w\in W , we obtain
\begin{eqnarray*} &&a^{-1}_{W,U,V}\circ C_{U{\otimes} V, W}\circ a^{-1}_{U,V,W}(u{\otimes} (v{\otimes} w))\\ & = &a^{-1}_{W,U,V}\circ C_{U{\otimes} V, W}((\mu(u){\otimes} v){\otimes} \omega^{-1}(w))\\ & = &\langle \beta^{-1}(u_{(-1)})\beta^{-1}(v_{(-2)})|\beta^{-1}(w_{(-1)})\rangle a^{-1}_{W,U,V}\\ &&\; \; \; \; \; \; \; \; \; \; (R^{(2)}{\cdot} \omega^{-3}(w_{(0)}){\otimes} R^{(1)}{\cdot} (\mu^{-1}(u_{(0)}){\otimes} \nu^{-2}(v_{(0)})))\\ & = &\langle \beta(u_{(-1)})v_{(-1)}|\beta(w_{(-1)})\rangle a^{-1}_{W,U,V}\\ &&\; \; \; \; \; \; \; \; \; \; (R^{(2)}{\cdot} \omega^{-3}(w_{(0)}){\otimes} (R^{(1)}_{1}{\cdot} \mu^{-1}(u_{(0)}){\otimes} R^{(1)}_{2}{\cdot} \nu^{-2}(v_{(0)})))\\ & = &\langle \beta(u_{(-1)})v_{(-1)}|\beta(w_{(-1)})\rangle\\ &&\; \; \; \; \; \; \; \; \; \; (\omega(R^{(2)}{\cdot} \omega^{-2}(w_{(0)})){\otimes} R^{(1)}_{1}{\cdot} \mu^{-1}(u_{(0)})){\otimes}{\alpha}^{-1}(R^{(1)}_{2}){\cdot} \nu^{-3}(v_{(0)})\\ & = &\langle \beta(u_{(-1)})v_{(-1)}|\beta(w_{(-1)})\rangle\\ &&\; \; \; \; \; \; \; \; \; \; (\alpha^{-1}(R^{(2)}){\cdot}\omega^{-2}(w_{(0)}){\otimes} R^{(1)}_{1}{\cdot} \mu^{-1}(u_{(0)})){\otimes} \alpha(R^{(1)}_{2}){\cdot} \nu(v_{(0)})\\ &\stackrel{(QHA2)}{ = }&\langle \beta(u_{(-1)})v_{(-1)}|\beta(w_{(-1)})\rangle\\ &&\; \; \; \; \; \; \; \; \; \; (\alpha^{-1}(R^{(2)}r^{(2)}){\cdot}\omega^{-2}(w_{(0)}){\otimes} R^{(1)}{\cdot} \mu^{-1}(u_{(0)})){\otimes} \alpha^{-1}(r^{(1)}){\cdot} \nu^{-3}(v_{(0)}). \end{eqnarray*} |
Also we can get
\begin{eqnarray*} &&(C_{U,W}{\otimes} id_{V})\circ a^{-1}_{U,W,V}\circ(id_{U}{\otimes} C_{V,W})(u{\otimes} (v{\otimes} w))\\ & = &\langle v_{(-1)})|w_{(-1)}\rangle(C_{U,W}{\otimes} id_{V})\circ a^{-1}_{U,W,V} (u{\otimes} (R^{(2)}{\cdot} \omega^{-2}(w_{(0)}){\otimes} R^{(1)}{\cdot} \nu^{-2}(v_{(0)})))\\ & = &\langle v_{(-1)})|w_{(-1)}\rangle(C_{U,W}{\otimes} id_{V}) ((\mu(u){\otimes} R^{(2)}{\cdot}\omega^{-2}(w_{(0)})){\otimes}{\alpha}^{-1}(R^{(1)}){\cdot} \nu^{-3}(v_{(0)}))\\ & = &\langle v_{(-1)})|w_{(-1)}\rangle\langle \beta(u_{(-1)})|\beta^{-1}(w_{(0)(-1)})\rangle\\ &&\; \; \; \; \; (r^{(2)}{\cdot}\omega^{-2}(\alpha(R^{(2)}){\cdot} \omega^{-2}(w_{(0)(0)})){\otimes} r^{(1)}{\cdot} \mu^{-1}(u_{(0)})){\otimes}{\alpha}^{-1}(R^{(1)}){\cdot} \nu^{-3}(v_{(0)})\\ &\stackrel{(HCM2)}{ = }&\langle v_{(-1)})|\beta^{-1}(w_{(-1)1})\rangle\langle \beta(u_{(-1)})|\beta^{-1}(w_{(-1)2})\rangle\\ &&\; \; \; \; \; (r^{(2)}{\cdot}({\alpha}^{-1}(R^{(2)}){\cdot} \omega^{-3}(w_{(0)})){\otimes} r^{(1)}{\cdot} \mu^{-1}(u_{(0)})){\otimes}\alpha^{-1}(R^{(1)}){\cdot} \nu^{-3}(v_{(0)})\\ &\stackrel{(CHA1)}{ = }&\langle u_{(-1)}\beta^{-1}(v_{(-1)})|w_{(-1)}\rangle\\ &&\; \; \; \; \; (\alpha^{-1}(r^{(2)}R^{(2)}){\cdot} \omega^{-2}(w_{(0)}){\otimes} r^{(1)}{\cdot} \mu^{-1}(u_{(0)})){\otimes}\alpha^{-1}(R^{(1)}){\cdot} \nu^{-3}(v_{(0)}). \end{eqnarray*} |
So the diagram ( H_{2} ) commutes since r = R . This ends the proof.
Corollary 3.2. Under hypotheses of Theorem 3.1, the braiding C is a solution of the quantum Yang-Baxter equation
\begin{eqnarray*} &&(id_{W}{\otimes} C_{U,V})\circ a_{W,U,V}\circ( C_{U,W}{\otimes} id_{V})\circ a^{-1}_{W,V,U}\circ( id_{U}{\otimes} C_{V,W})\circ a_{U,V,W}\nonumber\\ & = &a_{W,V,U}\circ( C_{W,V}{\otimes} id_{U})\circ a^{-1}_{W,V,U}\circ( id_{V}{\otimes} C_{U,W})\circ a_{V,U,W}\circ( C_{U,V}{\otimes} id_{W}). \end{eqnarray*} |
Proof. Straightforward.
Lemma 3.3. Let (H, R, \alpha) be a quasitriangular Hom-Hopf algebra and (B, \langle|\rangle, \beta) a coquasitriangular Hom-Hopf algebra. Define a linear map
\begin{eqnarray*} (H{\otimes} B){\otimes} M\rightarrow M,(h{\otimes} x)\rightharpoonup m = \langle x|m_{(-1)}\rangle {\alpha}^{-3}(h){\cdot} \mu^{-1}(m_{(0)}), \end{eqnarray*} |
for any h\in H, x\in B and m\in(M, \mu)\in{}^{B}_{H} \Bbb L . Then (M, \mu) becomes a left (H{\otimes} B) -Hom-module.
Proof. It is sufficient to show that the Hom-module action defined above satisfies Definition 1.2. For any h, g\in H, x, y\in B and m\in M , we have
\begin{eqnarray*} (1_{H}{\otimes} 1_{B})\rightharpoonup m = \langle 1_{B}|m_{(-1)}\rangle 1_{H}{\cdot} \mu^{-1}(m_{(0)}) = \epsilon(m_{(-1)})m_{(0)} = \mu(m). \end{eqnarray*} |
That is, (1_{H}{\otimes} 1_{B})\rightharpoonup m = \mu(m) . For the equality \mu((h{\otimes} x)\rightharpoonup m) = (\alpha(h){\otimes} \beta(x))\rightharpoonup \mu(m) , we have
\begin{eqnarray*} (\alpha(h){\otimes} \beta(x))\rightharpoonup \mu(m) & = &\langle \beta(x)|\beta(m_{(-1)})\rangle \alpha^{-2}(h){\cdot} m_{(0)}\\ & = &\langle x|m_{(-1)}\rangle \alpha^{-2}(h){\cdot} m_{(0)} = \mu((h{\otimes} x)\rightharpoonup m), \end{eqnarray*} |
as required. Finally, we check the expression ((h{\otimes} x)(g{\otimes} y))\rightharpoonup \mu(m) = (\alpha(h){\otimes}\beta(x))\rightharpoonup((g{\otimes} y)\rightharpoonup m) . For this, we calculate
\begin{eqnarray*} &&(\alpha(h){\otimes}\beta(x))\rightharpoonup ((g{\otimes} y)\rightharpoonup m)\\ & = &\langle y|m_{(-1)}\rangle(\alpha(h){\otimes}\beta(x)){\cdot} (\alpha^{-3}(g){\cdot} \mu^{-1}(m_{(0)}))\\ & = &\langle y|m_{(-1)}\rangle\langle \beta(x)|m_{(0)(-1)}\rangle\alpha^{-2}(h){\cdot}(\alpha^{-3}(g){\cdot}\mu^{-2}(m_{(0)(0)}))\\ &\stackrel{(HCM2)}{ = }&\langle y|\beta^{-1}(m_{(-1)1})\rangle\langle x|\beta^{-1}(m_{(-1)2})\rangle \alpha^{-3}(hg){\cdot} m_{(0)}\\ &\stackrel{(CHA1)}{ = }&\langle xy|\beta(m_{(-1)})\rangle\alpha^{-3}(hg){\cdot} m_{(0)}\\ & = &((h{\otimes} x)(g{\otimes} y))\rightharpoonup \mu(m). \end{eqnarray*} |
So (M, \mu) is a left (H{\otimes} B) -Hom-module. The proof is completed.
Lemma 3.4. Let (H, R, \alpha) be a quasitriangular Hom-Hopf algebra and (B, \langle|\rangle, \beta) a coquasitriangular Hom-Hopf algebra. Define a linear map
\begin{eqnarray*} \overline{\rho}: M\rightarrow (H{\otimes} B){\otimes} M,\; \overline{\rho}(m) = m_{[-1]}{\otimes} m_{[0]} = R^{(2)} {\otimes} \beta^{-3}(m_{(-1)}){\otimes} R^{(1)}{\cdot} \mu^{-1}(m_{(0)}), \end{eqnarray*} |
for any m\in (M, \mu) . Then (M, \mu) becomes a left (H{\otimes} B) -Hom-comodule.
Proof. We first show that \overline{\rho} satisfies Eq (HCM2). On the one side, we have
\begin{eqnarray*} &&\Delta(m_{[-1]}){\otimes} \mu(m_{[0]})\\ & = &( R^{(2)}_{1} {\otimes}\beta^{-3}(m_{(-1)1})){\otimes}( R^{(2)}_{2} {\otimes}\beta^{-3}(m_{(-1)2})){\otimes}\alpha(R^{(1)}){\cdot} m_{(0)}\\ & = &({\alpha}(r^{(2)}){\otimes}\beta^{-2}(m_{(-1)})){\otimes}({\alpha}(R^{(2)}){\otimes}\beta^{-3}(m_{(0)(-1)})){\otimes}\alpha(R^{(1)})(r^{(1)}{\cdot} \mu^{-2}(m_{(0)(0)})). \end{eqnarray*} |
On the other side, we have
\begin{eqnarray*} &&\; \; (\alpha{\otimes}\beta)(m_{[-1]}){\otimes} \overline{\rho}(m_{[0]})\\ && = ({\alpha}(r^{(2)}){\otimes} {\beta}^{-2}(m_{(-1)})){\otimes}(R^{(2)} {\otimes} \beta^{-3}( ( r^{(1)} {\cdot} \mu^{-1}(m_{(0)}) )_{(-1)} ) {\otimes} R^{(1)} \\ &&\; \; \; \; \; \; \; \; \; \; {\cdot} \mu^{-1}(( r^{(1)} {\cdot} \mu^{-1}(m_{(0)}) )_{(0)} ) \\ && = ({\alpha}(r^{(2)}){\otimes}\beta^{-2}(m_{(-1)})){\otimes}(R^{(2)}{\otimes}\beta^{-3}(m_{(0)(-1)})){\otimes} R^{(1)} {\cdot} (r^{(1)}{\cdot} \mu^{-2}(m_{(0)(0)})). \end{eqnarray*} |
Since R is \alpha -invariant, we have \Delta(m_{[-1]}){\otimes} \mu(m_{[0]}) = (\alpha{\otimes}\beta)(m_{[-1]}){\otimes} \overline{\rho}(m_{[0]}) , as needed.
For Eq (HCM1), we have
\begin{eqnarray*} (\epsilon_{H}{\otimes}\epsilon_{B})(m_{[-1]})m_{[0]} & = &\epsilon_{H}(R^{(2)})\epsilon_{B}(m_{(-1)})R^{(1)}{\cdot} \mu^{-1}(m_{(0)})\\ & = &1_{H}{\cdot} m = \mu(m),\\ (\alpha{\otimes}\beta)(m_{[-1]}){\otimes} \mu(m_{[0]}) & = &(\alpha(R^{(2)}){\otimes} \beta^{-2}(m_{(-1)})){\otimes} \mu(R^{(1)}{\cdot} \mu^{-1}(m_{(0)}))\\ & = & R^{(2)} {\otimes} \beta^{-3}(\beta(m_{(-1)})){\otimes} R^{(1)}{\cdot} \mu^{-1}(\mu(m_{(0)}))\\ & = & \overline{\rho}(\mu(m)), \end{eqnarray*} |
as desired. And this finishes the proof.
Theorem 3.5. Let (H, R, \alpha) be a quasitriangular Hom-Hopf algebra and (B, \langle|\rangle, \beta) a coquasitriangular Hom-Hopf algebra. Then the Hom-Long dimodules category ^{B}_{H} \Bbb L is a monoidal subcategory of Hom-Yetter-Drinfeld category ^{H{\otimes} B}_{H{\otimes} B}\Bbb {YD} .
Proof. Let m\in(M, \mu)\in {}^{B}_{H}\mathcal{L} and h\in H . Here we first note that \rho(h{\cdot} \mu^{-1}(m_{(0)})) = m_{(0)(-1)}{\otimes}\alpha(h){\cdot} \mu^{-1}(m_{(0)(0)}) . It is sufficient to show that the left (H{\otimes} B) -Hom-module action in Lemma 3.3 and the left (H{\otimes} B) -Hom-comodule structure in Lemma 3.4 satisfy the compatible condition Eq (HYD). Indeed, for any h \in H , x \in B , m \in M , we have
\begin{eqnarray*} &&(h_1 {\otimes} x_1)({\alpha} {\otimes} {\beta} )(m_{[-1]}) {\otimes} ({\alpha}^3(h_2) {\otimes} {\beta}^3(x_2))\rightharpoonup m_{[0]} \\ & = & h_1 {\alpha}(R^{(2)}) {\otimes} x_1 {\beta}^{-2}(m_{(-1)}) {\otimes} \langle {\beta}^3(x_2) | (R^{(1)} {\cdot} \mu^{-1}(m_{(0)}))_{(-1)} \rangle h_2 {\cdot} \mu^{-1}( (R^{(1)} {\cdot} \mu^{-1}(m_{(0)}))_{(0)} )\\ & = & h_1 {\alpha}(R^{(2)}) {\otimes} x_1 {\beta}^{-3}(m_{(-1)1}) {\otimes} \langle {\beta}^3(x_2) | m_{(-1)2} \rangle h_2 {\cdot} ( R^{(1)} {\cdot} \mu^{-1}(m_{(0)}) )\\ & = & h_1 {\alpha}(R^{(2)}) {\otimes} x_1 {\beta}^{-3}(m_{(-1)1}) {\otimes} \langle x_2 | {\beta}^{-3}(m_{(-1)2}) \rangle {\alpha}^{-1}(h_2 {\alpha}(R^{(1)}) ) {\cdot} m_{(0)} \\ & = & R^{(2)} h_2 {\otimes} {\beta}^{-3}(m_{(-1)2}) x_2 \langle x_1 | {\beta}^{-3}(m_{(-1)1}) \rangle {\otimes} ({\alpha}^{-1}(R^{(1)}) {\alpha}^{-1}(h_1)) {\cdot} m_{(0)} \\ & = & \langle {\alpha}^2(x_1) | m_{(-1)} \rangle R^{(2)} h_2 {\otimes} {\beta}^{-3}(m_{(0)(-1)}) x_2 {\otimes} ({\alpha}^{-1}(R^{(1)}) {\alpha}^{-1}(h_1)) {\cdot} \mu^{-1}(m_{(0)(0)}) \\ & = & \langle {\alpha}^2(x_1) | m_{(-1)} \rangle (R^{(2)} {\otimes} {\beta}^{-3}( {{\alpha}^{-1}(h_1) {\cdot} \mu^{-1}(m_{(0)}) }_{(-1)} ) )(h_2 {\otimes} x_2) \\ &&\; \; \; \; \; \; \; \; \; \; \; \; {\otimes} R^{(1)} {\cdot} \mu^{-1}({{\alpha}^{-1}(h_1) {\cdot} \mu^{-1}(m_{(0)}) }_{(0)}) \\ & = & {({\alpha}^2(h_1) {\otimes} {\beta}^2(x_1))\rightharpoonup m}_{[-1]} (h_2 {\otimes} x_2) {\otimes} {({\alpha}^2(h_1) {\otimes} {\beta}^2(x_1))\rightharpoonup m}_{[0]}. \end{eqnarray*} |
So (M, \mu)\in{}^{H{\otimes} B}_{H{\otimes} B}\Bbb{HYD} . The proof is completed.
Proposition 3.6. Under hypotheses of Theorem 3.5, ^{B}_{H}\Bbb{L} is a braided monoidal subcategory of ^{H{\otimes} B}_{H{\otimes} B}\Bbb{HYD} .
Proof. It is sufficient to show that the braiding in the category ^{B}_{H}\Bbb{L} is compatible to the braiding in ^{H{\otimes} B}_{H{\otimes} B}\Bbb{HYD} . In fact, for any m\in (M, \mu) and n\in (N, \nu) , we have
\begin{eqnarray*} C_{M,N}(m{\otimes} n) & = & ({\alpha}^2(R^{(2)}) {\otimes} {\beta}^{-1}(m_{(-1)}))\rightharpoonup \nu^{(-1)}(n) {\otimes} {\alpha}^{-1}(R^{(1)}) {\cdot} \mu^{-2}(m_{(0)}) \\ & = & \langle {\beta}^{-1}(m_{(-1)}) | {\beta}^{-1}(n_{(-1)}) \rangle {\alpha}^{-1}(R^{(2)}) {\cdot} \nu^{-2}(n_{(0)}) {\otimes} {\alpha}^{-1}(R^{(1)}) {\cdot} \mu^{-2}(m_{(0)}) \\ & = & \langle m_{(-1)} | n_{(-1)} \rangle R^{(2)} {\cdot} \nu^{-2}(n_{(0)}) {\otimes} R^{(1)} {\cdot} \mu^{-2}(m_{(0)}), \end{eqnarray*} |
as desired.This finishes the proof.
In this section, we obtain a sufficient condition for the Hom-Long dimodule category ^{B}_{H} \Bbb L to be symmetric.
Let \mathcal{C} be a monoidal category and C a braiding on \mathcal{C} . The braiding C is called a symmetry [38,39] if C_{Y, X}\circ C_{X, Y} = id_{X\otimes Y} for all X, Y\in \mathcal{C} , and the category \mathcal{C} is called symmetric.
Proposition 4.1. Let (H, R, \alpha) be a triangular Hom-Hopf algebra and (B, \beta) a Hom-Hopf algebra. Then the category _{H} \Bbb M of left (H, \alpha) -Hom-modules is a symmetric subcategory of ^{B}_{H} \Bbb L under the left (B, \beta) -comodule structure \rho(m) = 1_{B}\otimes \mu(m) , where m\in (M, \mu)\in{}_{H} \Bbb M , and the braiding is defined as
\begin{eqnarray*} C_{M,N}: M{\otimes} N\rightarrow N{\otimes} M, m{\otimes} n\rightarrow R^{(2)}{\cdot} \nu^{-1}(n){\otimes} R^{(1)}{\cdot} \mu^{-1}(m), \end{eqnarray*} |
for all m\in (M, \mu)\in{}_{H} \Bbb M, n\in (N, \nu)\in{}_{H} \Bbb M.
Proof. It is clear that (M, \rho, \mu) is a left (B, \beta) -Hom-comodule under the left (B, \beta) -comodule structure given above. Now we check that the left (B, \beta) -comodule structure satisfies the compatible condition Eq (2.1). For this purpose, we take h\in H, m\in(M, \mu)\in{}_{H} \Bbb M , and calculate
\begin{eqnarray*} \rho(h{\cdot} m) = 1_{B}\otimes \mu(h{\cdot} m) = 1_{B}\otimes \alpha(h){\cdot}\mu(m) = \beta(m_{(-1)})\otimes \alpha(h){\cdot} m_{(0)}. \end{eqnarray*} |
So, Eq (2.1) holds. That is, (M, \rho, \mu) is an (H, B) -Hom-Long dimodule.
Next we verify that any morphism in _{H} \Bbb M is left (B, \beta) -colinear, too. Indeed, for any m\in (M, \mu)\in{}_{H} \Bbb M and n\in (N, \nu)\in{}_{H} \Bbb M . Assume that f: (M, \mu)\rightarrow (N, \nu) is a morphism in _{H} \Bbb M , then
\begin{eqnarray*} (id_{B}\otimes f)\rho(m) = 1_{B}\otimes f(\mu(m)) = 1_{B}\otimes\nu(f(m)) = \rho(f(m)). \end{eqnarray*} |
So f is left (B, \beta) -colinear, as desired. Therefore, _{H} \Bbb M is a subcategory of ^{B}_{H} \Bbb L .
Finally, we prove that _{H} \Bbb M is a symmetric subcategory of ^{B}_{H} \Bbb L . Since C_{M, N}(m{\otimes} n) = R^{(2)}{\cdot} \nu^{-1}(n){\otimes} R^{(1)}{\cdot} \mu^{-1}(m), for all m\in (M, \mu)\in{}_{H} \Bbb M and n\in (N, \nu)\in{}_{H} \Bbb M , we have
\begin{eqnarray*} C_{N,M}\circ C_{M,N}(m{\otimes} n) & = &C_{N,M}(R^{(2)}{\cdot} \nu^{-1}(n){\otimes} R^{(1)}{\cdot} \mu^{-1}(m))\\ & = &r^{(2)}{\cdot}\mu^{-1}(R^{(1)}{\cdot} \mu^{-1}(m)){\otimes} r^{(1)}{\cdot}\nu^{-1}(R^{(2)}{\cdot} \nu^{-1}(n))\\ & = &r^{(2)}{\cdot}({\alpha}^{-1}(R^{(1)}){\cdot} \mu^{-2}(m)){\otimes} r^{(1)}{\cdot}({\alpha}^{-1}(R^{(2)}){\cdot} \nu^{-2}(n))\\ & = &\alpha^{-1}(r^{(2)}R^{(1)}){\cdot} \mu^{-1}(m){\otimes} \alpha^{-1}(r^{(1)}R^{(2)}){\cdot} \nu^{-1}(n)\\ & = &1_{H}{\cdot} \mu^{-1}(m){\otimes} 1_{H}{\cdot} \nu^{-1}(n) = m{\otimes} n. \end{eqnarray*} |
It follows that the braiding C_{M, N} is symmetric. The proof is completed.
Proposition 4.2. Let (B, \langle|\rangle, \beta) be a cotriangular Hom-Hopf algebra and (H, \alpha) a Hom-Hopf algebra. Then the category ^{B} \Bbb M of left (B, \beta) -Hom-comodules is a symmetric subcategory of ^{B}_{H} \Bbb L under the left (H, \alpha) -module action h{\cdot} m = \epsilon(h)\mu(m) , where h\in H, m\in (M, \mu)\in{}^{B} \Bbb M , and the braiding is given by
\begin{eqnarray*} C_{M,N}: M{\otimes} N\rightarrow N{\otimes} M, m{\otimes} n\rightarrow \langle m_{(-1)}|n_{(-1)}\rangle \nu^{-2}(n_{(0)}){\otimes} \mu^{-2}(m_{(0)}), \end{eqnarray*} |
for all m\in (M, \mu)\in{}^{B} \Bbb M, n\in (N, \nu)\in{}^{B} \Bbb M.
Proof. We first show that the left (H, \alpha) -module action defined above forces (M, \mu) to be a left (H, \alpha) -module, but this is easy to check. For the compatible condition Eq (2.1), we take h\in H, m\in(M, \mu)\in{}^{B} \Bbb M and calculate as follows:
\begin{eqnarray*} \rho(h{\cdot} m) = 1_{B}{\otimes}\mu(h{\cdot} m) = 1_{B}{\otimes}\epsilon(h)\mu( m) = \beta(m_{(-1)})\otimes \alpha(h){\cdot} m_{(0)}. \end{eqnarray*} |
So, Eq (2.1) holds, as required. Therefore, (M, \rho, \mu) is an (H, B) -Hom-Long dimodule.
Now we verify that any morphism in ^{B} \Bbb M is left (H, \alpha) -linear, too. Indeed, for any m\in (M, \mu)\in{}^{B} \Bbb M and n\in (N, \nu)\in{}^{B} \Bbb M . Assume that f: (M, \mu)\rightarrow (N, \nu) is a morphism in ^{B} \Bbb M , then
\begin{eqnarray*} f(h{\cdot} m) = f(\epsilon(h)\mu(m)) = \epsilon(h)\mu(f(m)) = h{\cdot} f(m). \end{eqnarray*} |
So f is left (H, \alpha) -linear, as desired. Therefore, ^{B} \Bbb M is a subcategory of ^{B}_{H} \Bbb L .
Finally, we show that ^{B} \Bbb M is a symmetric subcategory of ^{B}_{H} \Bbb L . Since C_{M, N}(m{\otimes} n) = \langle m_{(-1)}|n_{(-1)}\rangle \nu^{-1}(n_{(0)}){\otimes} \mu^{-1}(m_{(0)}), for all m\in (M, \mu)\in{}^{B} \Bbb M and n\in (N, \nu)\in{}^{B} \Bbb M , then
\begin{eqnarray*} &&C_{N,M}\circ C_{M,N}(m{\otimes} n)\\ & = &\langle m_{(-1)}|n_{(-1)}\rangle C_{N,M}(\nu^{-1}(n_{(0)}){\otimes} \mu^{-1}(m_{(0)}))\\ & = &\langle m_{(-1)}|n_{(-1)}\rangle\langle {\beta}^{-1}(n_{(0)(-1)})|{\beta}^{-1}(m_{0(-1)})\rangle(\mu^{-2}(m_{(0)(0)}){\otimes} \nu^{-2}(n_{(0)(0)})\\ & = &\langle \beta^{-1}(m_{(-1)1})|\beta^{-1}(n_{(-1)1})\rangle\langle {\beta}^{-1}(n_{(-1)2})|{\beta}^{-1}(m_{(-1)2})\rangle\mu^{-1}(m_{(0)}){\otimes} \nu^{-1}(n_{(0)})\\ & = &\epsilon(m_{(-1)})\epsilon(n_{(-1)})\mu^{-1}(m_{(0)}){\otimes} \nu^{-1}(n_{(0)}) = m{\otimes} n, \end{eqnarray*} |
where the fourth equality holds since \langle | \rangle is {\beta} -invariant. It follows that the braiding C_{M, N} is symmetric. The proof is completed.
Theorem 4.3. Let (H, \alpha) be a triangular Hom-Hopf algebra and (B, \langle|\rangle, \beta) a cotriangular Hom-Hopf algebra. Then the category ^{B}_{H} \Bbb L is symmetric.
Proof. For any m\in (M, \mu)\in{}^{B}_{H} \Bbb L and n\in (N, \nu)\in{}^{B}_{H} \Bbb L , we have
\begin{eqnarray*} &&C_{N,M}\circ C_{M,N}(m{\otimes} n)\\ & = &\langle m_{(-1)}|n_{(-1)}\rangle C_{N,M}(R^{(2)}{\cdot} \nu^{-2}(n_{(0)}){\otimes} R^{(1)}{\cdot} \mu^{-2}(m_{(0)}))\\ & = &\langle m_{(-1)}|n_{(-1)}\rangle\langle \beta(n_{(0)(-1)})|\beta(m_{(0)(-1)})\rangle \\ &&\; \; \; \; \; \; \; \; r^{(2)}{\cdot}\mu^{-2}(\alpha(R^{(1)}){\cdot}\mu^{-2}( m_{(0)(0)})){\otimes} r^{(1)}{\cdot}\nu^{-2}(\alpha(R^{(2)}){\cdot} \nu^{-2}(n_{(0)(0)}))\\ & = &\langle \beta^{-1}(m_{(-1)1})|\beta^{-1}(n_{(-1)1})\rangle\langle \beta^{-1}(n_{(-1)2})|\beta^{-1}(m_{(-1)2})\rangle\\ &&\; \; \; \; \; \; \; \; \alpha^{-1}(r^{(2)}R^{(1)}){\cdot} \mu^{-2}(m_{(0)}){\otimes}\alpha^{-1}(r^{(1)}R^{(2)}){\cdot} \nu^{-2}(n_{(0)})\\ & = &\epsilon(m_{(-1)})\epsilon(n_{(-1)}) 1_{H}{\cdot} \mu^{-2}(m_{(0)}){\otimes} 1_{H}{\cdot} \nu^{-2}(n_{(0)})\\ & = &\epsilon(m_{(-1)})\epsilon(n_{(-1)}) \mu^{-1}(m_{(0)}){\otimes}\nu^{-1}(n_{(0)})\\ & = &m{\otimes} n, \end{eqnarray*} |
as desired. This finishes the proof.
In this section, we will present a kind of new solutions of the Hom-Long equation.
Definition 5.1. Let (H, \alpha) be a Hom-bialgebra and (M, \mu) a Hom-module over (H, {\alpha}) . Then R\in End(M{\otimes} M) is called the solution of the Hom-Long equation if it satisfies the nonlinear equation:
\begin{eqnarray} R^{12}\circ R^{23} = R^{23}\circ R^{12}, \end{eqnarray} | (5.1) |
where R^{12} = R{\otimes}\mu, R^{23} = \mu{\otimes} R .
Example 5.2. If R\in End(M{\otimes} M) is invertible, then it is easy to see that R is a solution of the Hom-Long equation if and only if R^{-1} is too.
Example 5.3. Let (M, \mu) be an (H, {\alpha}) -Hom-module with a basis \{m_1, m_2, \cdots, m_n\} . Assume that \mu is given by \mu(m_i) = a_im_i , where a_i\in k, \; i = 1, 2, \cdots, n . Define a map
\begin{eqnarray*} R:\; M{\otimes} M\rightarrow M{\otimes} M,\; \; R(m_i{\otimes} m_j) = b_{ij}m_i{\otimes} m_j, \end{eqnarray*} |
where b_{ij}\in k, \; i, j = 1, 2, ,\cdots, n. Then R is a solution of Eq (5.1). Furthermore, if a_i = 1 , for all i = 1, 2, \cdots, n , then R is a solution of the classical Long equation.
Proposition 5.4. Let (M, \mu) be an (H, {\alpha}) -Hom-module with a basis \{m_1, m_2, \cdots, m_n\} . Assume that R, S\in End(M{\otimes} M, \mu{\otimes}\mu^{-1}) given by the matrix formula
\begin{eqnarray*} R(m_k{\otimes} m_l) = x_{kl}^{ij}m_i{\otimes} \mu^{-1}(m_j),\; \; S(m_k{\otimes} m_l) = y_{kl}^{ij}m_i{\otimes} \mu^{-1}(m_j), \end{eqnarray*} |
and \mu(m_l) = z_{l}^{i}m_i , where x_{kl}^{ij}, y_{kl}^{ij}, z_{l}^{i}\in k . Then S^{12}\circ R^{23} = R^{23}\circ S^{12} if and only if
\begin{eqnarray*} z_{u}^{i}x_{vw}^{jk}y_{ij}^{pq} = z_{i}^{p}x_{jw}^{qk}y_{uv}^{ij}, \end{eqnarray*} |
for all k, p, q, u, v, w = 1, 2, \cdots, n . In particular, R is a solution of the Hom-Long equation if and only if
\begin{eqnarray*} z_{u}^{i}x_{vw}^{jk}x_{ij}^{pq} = z_{i}^{p}x_{jw}^{qk}x_{uv}^{ij}. \end{eqnarray*} |
Proof. According to the definition of R, S, \mu , we have
\begin{eqnarray*} S^{12}\circ R^{23}(m_{u}{\otimes} m_{v}{\otimes} m_{w}) & = &S^{12}(z_{u}^{i}m_{i}{\otimes} x_{vw}^{jk}m_{j}{\otimes} \mu^{-1}(m_{k}))\\ & = &z_{u}^{i}x_{vw}^{jk}y_{ij}^{pq}(m_{p}{\otimes} \mu^{-1}(m_{q}){\otimes} m_{k}),\\ R^{23}\circ S^{12}(m_{u}{\otimes} m_{v}{\otimes} m_{w}) & = &R^{23}(y_{uv}^{ij}m_{i}{\otimes}\mu^{-1}(m_{j}){\otimes} m_{w})\\ & = &y_{uv}^{ij}z_{i}^{p}x_{jw}^{qk}(m_{p}{\otimes} \mu^{-1}(m_{q}){\otimes} m_{k}). \end{eqnarray*} |
It follows that S^{12}\circ R^{23} = R^{23}\circ S^{12} if and only if z_{u}^{i}x_{vw}^{jk}y_{ij}^{pq} = z_{i}^{p}x_{jw}^{qk}y_{uv}^{ij}. Furthermore, R^{12}\circ R^{23} = R^{23}\circ R^{12} if and only if z_{u}^{i}x_{vw}^{jk}x_{ij}^{pq} = z_{i}^{p}x_{jw}^{qk}x_{uv}^{ij}. The proof is completed.
In the following proposition, we use the notation: for any F\in End(M{\otimes} M) , we denote F^{12} = F{\otimes} \mu, F^{23} = \mu{\otimes} F, F^{13} = (id{\otimes}\tau)\circ (F {\otimes} \mu)\circ (id{\otimes} \tau) , and \tau^{(123)}(x{\otimes} y{\otimes} z) = (z, x, y).
Proposition 5.5. Let (M, \mu) be an (H, {\alpha}) -Hom-module and R\in End(M{\otimes} M) . The following statements are equivalent:
(1) R is a solution of the Hom-Long equation.
(2) U = \tau\circ R is a solution of the equation:
U^{13}\circ U^{23} = \tau^{(123)}\circ U^{13}\circ U^{12}. |
(3) T = R\circ\tau is a solution of the equation:
T^{12}\circ T^{13} = T^{23}\circ T^{13}\circ\tau^{(123)}. |
(4) W = \tau\circ R \circ \tau is a solution of the equation:
\tau^{(123)}\circ W^{23}\circ W^{13} = W^{12}\circ W^{13}\circ\tau^{(123)}. |
Proof. We just prove (1)\Leftrightarrow (2) , and similar for (1)\Leftrightarrow (3) and (1)\Leftrightarrow (4). Since R = \tau\circ U , R is a solution of the Hom-Long equation if and only if R^{12}\circ R^{23} = R^{23}\circ R^{12} , that is,
\begin{eqnarray} \tau^{12}\circ U^{12}\circ \tau^{23}\circ U^{23} = \tau^{23}\circ U^{23}\circ\tau^{12}\circ U^{12}. \end{eqnarray} | (5.2) |
While \tau^{12}\circ U^{12}\circ \tau^{23} = \tau^{23}\circ\tau^{13}\circ U^{13} and \tau^{23}\circ U^{23}\circ\tau^{12} = \tau^{23}\circ\tau^{12}\circ U^{13} , (5.2) is equivalent to
\tau^{23}\circ \tau^{13}\circ U^{13}\circ U^{23} = \tau^{23}\circ\tau^{12}\circ U^{13}\circ U^{12}, |
which is equivalent to U^{13}\circ U^{23} = \tau^{(123)}\circ U^{13}\circ U^{12} from the fact \tau^{23}\circ\tau^{12} = \tau^{(123)} .
Next we will present a new solution for Hom-Long equation by the Hom-Long dimodule structures. For this, we give the notion of (H, {\alpha}) -Hom-Long dimodules.
Definition 5.6. Let (H, \alpha) be a Hom-bialgebra. A left-left (H, {\alpha}) -Hom-Long dimodule is a quadruple (M, {\cdot}, \rho, \mu) , where (M, {\cdot}, \mu) is a left (H, \alpha) -Hom-module and (M, \rho, \mu) is a left (H, \alpha) -Hom-comodule such that
\begin{eqnarray} \rho(h{\cdot} m) = {\alpha}(m_{(-1)}){\otimes} \alpha(h){\cdot} m_{0}, \end{eqnarray} | (5.3) |
for all h\in H and m\in M .
Remark 5.7. Clearly, left-left (H, {\alpha}) -Hom-Long dimodules is a special case of (H, B) -Hom-Long dimodules in Definition 2.1 by setting (H, {\alpha}) = (B, {\beta}).
Example 5.8. Let (H, {\alpha}) be a Hom-bialgebra and (M, {\cdot}, \mu) be a left (H, {\alpha}) -Hom-module. Define a left (H, {\alpha}) -Hom-module structure and a left (H, {\alpha}) -Hom-comodule structure on (H{\otimes} M, {\alpha}{\otimes} \mu) as follows:
\begin{eqnarray*} h{\cdot}(g{\otimes} m) = {\alpha}(g){\otimes} h{\cdot}\mu(m), \; \; \rho(g{\otimes} m) = g_1{\otimes} g_2{\otimes}\mu(m), \end{eqnarray*} |
for all h, g\in H and m\in M . Then (H{\otimes} M, {\alpha}{\otimes} \mu) is an (H, {\alpha}) -Hom-Long dimodule.
Example 5.9. Let (H, {\alpha}) be a Hom-bialgebra and (M, \rho, \mu) be a left (H, {\alpha}) -Hom-comodule. Define a left (H, {\alpha}) -Hom-module structure and be a left (H, {\alpha}) -Hom-comodule structure on (H{\otimes} M, {\alpha}{\otimes} \mu) as follows:
\begin{eqnarray*} h{\cdot}(g{\otimes} m) = hg{\otimes}\mu(m), \; \; \rho(g{\otimes} m) = m_{(-1)}{\otimes} {\alpha}(g){\otimes} m_0, \end{eqnarray*} |
for all h, g\in H and m\in M . Then (H{\otimes} M, {\alpha}{\otimes} \mu) is an (H, {\alpha}) -Hom-Long dimodule.
Theorem 5.10. Let (H, {\alpha}) be a Hom-bialgebra and (M, {\cdot}, \rho, \mu) be a (H, {\alpha}) -Hom-Long dimodule. Then the map
\begin{eqnarray} R_{M}: M{\otimes} M\rightarrow M{\otimes} M,\; \; \; \; m{\otimes} n\mapsto n_{(-1)}{\cdot} m {\otimes} n_0, \end{eqnarray} | (5.4) |
is a solution of the Hom-Long equation, for any m, n\in M.
Proof. For any l, m, n\in M , we calculate
\begin{eqnarray*} R_{M}^{12}\circ R_{M}^{23}(l{\otimes} m{\otimes} n) & = &R_{M}^{12}(\mu(l){\otimes} n_{(-1)}{\cdot} m{\otimes} n_0)\\ & = &(n_{(-1)}{\cdot} m)_{(-1)}{\cdot}\mu(l){\otimes}(n_{(-1)}{\cdot} m)_{0}{\otimes} \mu(n_0)\\ & = &{\alpha}(m_{(-1)}){\cdot}\mu(l){\otimes}{\alpha}(n_{(-1)}){\cdot} m_{0}{\otimes}\mu(n_0),\\ R_{M}^{23}\circ R_{M}^{12}(l{\otimes} m{\otimes} n) & = &R_{M}^{23}(m_{(-1)}{\cdot} l{\otimes} m_0{\otimes} \mu(n))\\ & = &\mu(m_{(-1)}{\cdot} l){\otimes}{\alpha}(n_{(-1)})){\cdot} m_0{\otimes}\mu(n_0)\\ & = &{\alpha}(m_{(-1)}){\cdot}\mu(l){\otimes}{\alpha}(n_{(-1)}){\cdot} m_{0}{\otimes}\mu(n_0). \end{eqnarray*} |
So we have R_{M}^{12}\circ R_{M}^{23} = R_{M}^{23}\circ R_{M}^{12} , as desired. And this finishes the proof.
The work of S. Wang is supported by the Anhui Provincial Natural Science Foundation (No. 1908085MA03) and the Key University Science Research Project of Anhui Province (No. KJ2020A0711). The work of X. Zhang is supported by the NSF of China (No. 11801304) and the Young Talents Invitation Program of Shandong Province. The work of S. Guo is supported by the NSF of China (No. 12161013) and Guizhou Provincial Science and Technology Foundation (No. [2019]1050).
The authors declare there is no conflict of interest.
[1] |
Zhang Y, Xu M, Song J, et al. (2022) Study on the corrosion change law and prediction model of cement stone in oil wells with CO2 corrosion in ultra-high-temperature acid gas wells. Constr Build Mater 323: 125879. https://doi.org/10.1016/j.conbuildmat.2021.125879 doi: 10.1016/j.conbuildmat.2021.125879
![]() |
[2] |
Li H, Zhang X, Qi D, et al. (2015) Failure analysis of the adhesive metal joint bonded on anticorrosion plastic alloy composite pipe. Eng Fail Anal 47: 49–55. https://doi.org/10.1016/j.engfailanal.2014.09.009 doi: 10.1016/j.engfailanal.2014.09.009
![]() |
[3] |
Peng Z, Lv F, Feng Q, et al. (2022) Enhancing the CO2-H2S corrosion resistance of oil well cement with a modified epoxy resin. Constr Build Mater 326: 126854. https://doi.org/10.1016/j.conbuildmat.2022.126854 doi: 10.1016/j.conbuildmat.2022.126854
![]() |
[4] |
Qu W, Pan B, Gong H, et al. (2023) Electrochemical corrosion and impedance studies of Ti-30Zr-xNb (x = 7, 10, 13 at.%) alloy in simulated downhole environment. J Solid State Electr 27: 1155–1164. https://doi.org/10.1007/s10008-023-05430-z doi: 10.1007/s10008-023-05430-z
![]() |
[5] |
Xue Z, Zhang C, Li Z, et al. (2022) An on-site temperature prediction method for passive thermal management of high-temperature logging apparatus. Meas Control 55: 1180–1189. https://doi.org/10.1177/00202940221076809 doi: 10.1177/00202940221076809
![]() |
[6] |
Liu Y, Zheng R, Li J (2022) High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review. RSER 168: 112783. https://doi.org/10.1016/j.rser.2022.112783 doi: 10.1016/j.rser.2022.112783
![]() |
[7] |
Sharma RK, Ganesan P, Tyagi V (2016) Long-term thermal and chemical reliability study of different organic phase change materials for thermal energy storage applications. J Therm Anal Calorim 124: 1357–1366. https://doi.org/10.1007/s10973-016-5281-5 doi: 10.1007/s10973-016-5281-5
![]() |
[8] |
Peng J, Deng C, Wei F, et al. (2023) A hybrid thermal management system combining liquid cooling and phase change material for downhole electronics. J Energy Storage 72: 108610. https://doi.org/10.1016/j.est.2023.108610 doi: 10.1016/j.est.2023.108610
![]() |
[9] |
Yang X, Li C, Ma Y, et al. (2023) High thermal conductivity of porous graphite/paraffin composite phase change material with 3D porous graphite foam. Chem Eng J 473: 145364. https://doi.org/10.1016/j.cej.2023.145364 doi: 10.1016/j.cej.2023.145364
![]() |
[10] |
Song Z, Deng Y, Li J, et al. (2018) Expanded graphite for thermal conductivity and reliability enhancement and supercooling decrease of MgCl2·6H2O phase change material. Materials Res Bull 102: 203–208. https://doi.org/10.1016/j.materresbull.2018.02.024 doi: 10.1016/j.materresbull.2018.02.024
![]() |
[11] |
Li G, Zhang B, Li X, et al. (2014) The preparation, characterization and modification of a new phase change material: CaCl2·6H2O-MgCl2·6H2O eutectic hydrate salt. Sol Energ Mat Sol C 126: 51–55. https://doi.org/10.1016/j.solmat.2014.03.031 doi: 10.1016/j.solmat.2014.03.031
![]() |
[12] |
Wu Y, Wang T (2015) Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-stabilized phase change material for thermal energy storage. Energy Convers Manage 101: 164–171. https://doi.org/10.1016/j.enconman.2015.05.006 doi: 10.1016/j.enconman.2015.05.006
![]() |
[13] |
Wu Y, Wang T (2014) Preparation and characterization of hydrated salts/silica composite as shape-stabilized phase change material via sol-gel process. Thermochim Acta 591: 10–15. https://doi.org/10.1016/j.tca.2014.07.012 doi: 10.1016/j.tca.2014.07.012
![]() |
[14] |
Zhang N, Yuan Y, Cao X, et al. (2018) Latent heat thermal energy storage systems with solid-liquid phase change materials: A review. Adv Eng Mater 20: 753. https://doi.org/10.1002/adem.201700753 doi: 10.1002/adem.201700753
![]() |
[15] |
Shamberger PJ, Bruno NM (2020) Review of metallic phase change materials for high heat flux transient thermal management applications. Appl Energy 258: 113955. https://doi.org/10.1016/j.apenergy.2019.113955 doi: 10.1016/j.apenergy.2019.113955
![]() |
[16] |
Fernandes D, Pitié F, Cáceres G, et al. (2012) Thermal energy storage: "How previous findings determine current research priorities". Energy 39: 246–257. https://doi.org/10.1016/j.energy.2012.01.024 doi: 10.1016/j.energy.2012.01.024
![]() |
[17] |
Fukahori R, Nomura T, Zhu C, et al. (2016) Thermal analysis of Al-Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials. Appl Energy 163: 1–8. https://doi.org/10.1016/j.apenergy.2015.10.164 doi: 10.1016/j.apenergy.2015.10.164
![]() |
[18] |
Sharar DJ, Leff AC, Wilson A, et al. (2021) High-capacity high-power thermal energy storage using solid-solid martensitic transformations. Appl Therm Eng 187: 116490. https://doi.org/10.1016/j.applthermaleng.2020.116490 doi: 10.1016/j.applthermaleng.2020.116490
![]() |
[19] |
Kato H (2021) Latent heat storage capacity of NiTi shape memory alloy. J Mater Sci 56: 8243–8250. https://doi.org/10.1007/s10853-021-05777-6 doi: 10.1007/s10853-021-05777-6
![]() |
[20] |
Li G, Bao J, Yu T, et al. (2024) An atomistic study of effects of temperature and Ni element on the phase transition and wear behavior of NiTi shape memory alloy. Tribol Int 192: 109309. https://doi.org/10.1016/j.triboint.2024.109309 doi: 10.1016/j.triboint.2024.109309
![]() |
[21] |
Frenzel J, George EP, Dlouhy A, et al. (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58: 3444–3458. https://doi.org/10.1016/j.actamat.2010.02.019 doi: 10.1016/j.actamat.2010.02.019
![]() |
[22] |
Li S, He L, Lu H, et al. (2023) Ultrahigh-performance solid-solid phase change material for efficient, high-temperature thermal energy storage. Acta Mater 249: 118852. https://doi.org/10.1016/j.actamat.2023.118852 doi: 10.1016/j.actamat.2023.118852
![]() |
[23] |
Hite N, Sharar DJ, Trehern W, et al. (2021) NiTiHf shape memory alloys as phase change thermal storage materials. Acta Mater 218: 117175. https://doi.org/10.1016/j.actamat.2021.117175 doi: 10.1016/j.actamat.2021.117175
![]() |
[24] |
Li J, Yi X, Sun K, et al. (2018) The effect of Zr on the transformation behaviors, microstructure and the mechanical properties of Ti-Ni-Cu shape memory alloys. J Alloys Compd 747: 348–353. https://doi.org/10.1016/j.jallcom.2018.03.053 doi: 10.1016/j.jallcom.2018.03.053
![]() |
[25] |
Evirgen A, Karaman I, Santamarta R, et al. (2016) Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater 121: 374–383. https://doi.org/10.1016/j.actamat.2016.08.065 doi: 10.1016/j.actamat.2016.08.065
![]() |
[26] |
Hsieh SF, Hsue AWJ, Chen SL, et al. (2013) EDM surface characteristics and shape recovery ability of Ti35.5Ni48.5Zr16 and Ni60Al24.5Fe15.5 ternary shape memory alloys. J Alloys Compd 571: 63–68. https://doi.org/10.1016/j.jallcom.2013.03.111 doi: 10.1016/j.jallcom.2013.03.111
![]() |
[27] |
Kornegay SM, Kapoor M, Hornbuckle BC, et al. (2021) Influence of H-phase precipitation on the microstructure and functional and mechanical properties in a Ni-rich NiTiZr shape memory alloy. Mater Sci Eng A 801: 140401. https://doi.org/10.1016/j.msea.2020.140401 doi: 10.1016/j.msea.2020.140401
![]() |
[28] |
Karakoc O, Atli KC, Evirgen A, et al. (2020) Effects of training on the thermomechanical behavior of NiTiHf and NiTiZr high temperature shape memory alloys. Mater Sci Eng A 794: 139857. https://doi.org/10.1016/j.msea.2020.139857 doi: 10.1016/j.msea.2020.139857
![]() |
[29] |
Zhu J, Wu H, Wu Y, et al. (2021) Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation. Acta Mater 207: 116665. https://doi.org/10.1016/j.actamat.2021.116665 doi: 10.1016/j.actamat.2021.116665
![]() |
[30] |
Cheng F, Hu L, Reddy JN, et al. (2014) Temperature-dependent thermal properties of a shape memory alloy/MAX phase composite: Experiments and modeling. Acta Mater 68: 267–278. https://doi.org/10.1016/j.actamat.2013.12.014 doi: 10.1016/j.actamat.2013.12.014
![]() |
[31] |
Zheng Q, Zhu G, Diao Z, et al. (2019) High contrast thermal conductivity change in Ni-Mn-In heusler alloys near room temperature. Adv Eng Mater 21: 1342. https://doi.org/10.1002/adem.201801342 doi: 10.1002/adem.201801342
![]() |
[32] |
Trehern W, Hite N, Ortiz-Ayala R, et al. (2023) NiTiCu shape memory alloys with ultra-low phase transformation range as solid-state phase change materials. Acta Mater 260: 119310. https://doi.org/10.1016/j.actamat.2023.119310 doi: 10.1016/j.actamat.2023.119310
![]() |
[33] |
Liu G, Li S, Song C, et al. (2024) High-entropy Ti-Zr-Hf-Ni-Cu alloys as solid-solid phase change materials for high-temperature thermal energy storage. Intermetallics 166: 108177. https://doi.org/10.1016/j.intermet.2023.108177 doi: 10.1016/j.intermet.2023.108177
![]() |
[34] |
Long Z, Tao P, Kong L, et al. (2023) Effect of cryogenic thermal cycling on the microstructure and mechanical properties of Zr-based bulk metallic glasses. Mater Sci Eng A 863: 144513. https://doi.org/10.1016/j.msea.2022.144513 doi: 10.1016/j.msea.2022.144513
![]() |
[35] |
Wu SK, Chang YC (2019) Thermal cycling effect on transformation temperatures of different transformation sequences in TiNi-based shape memory alloys. Materials 12: 12–16. https://doi.org/10.3390/ma12162512 doi: 10.3390/ma12162512
![]() |
[36] |
Swaminathan G, Sampath V, Santosh S (2024) Effect of cobalt addition on thermal cycling behaviour of Ti50Ni(50−x)cox shape memory alloys. Phys Scr 99: 23–28. https://doi.org/10.1088/1402-4896/ad23b5 doi: 10.1088/1402-4896/ad23b5
![]() |
1. | Hui Wu, Xiaohui Zhang, On the BiHom-Type Nonlinear Equations, 2022, 10, 2227-7390, 4360, 10.3390/math10224360 | |
2. | Shengxiang Wang, Xiaohui Zhang, Shuangjian Guo, Hom-Yang-Baxter equations and Hom-Yang-Baxter systems, 2023, 51, 0092-7872, 1462, 10.1080/00927872.2022.2137518 |