Due to their environmentally benign elemental components, suitable bandgap and high absorption coefficient in the visible-light range, Cu-based multinary sulfides exhibit excellent photocatalytic properties. Moreover, the adjustable atomic structure and unique electronic state of Cu-based multinary sulfide semiconductors can boost their ability to absorb visible light. In this review, we provide a summary of recent progress in photocatalytic applications of Cu-based multinary sulfide nanomaterials, including Cu-based ternary sulfides (CuInS2, CuIn5S8, Cu3SnS4, CuFeS2, etc.) and Cu-based quaternary sulfides (CuZnInS, Cu2ZnSnS4, CuZnGaS, CuInGaS, etc.). We start with a review of the bandgap alignments of Cu-based ternary sulfides and Cu-based quaternary sulfides, which are the key factors for the photocatalytic activity of semiconductor photocatalysts. Then, we discuss the advancements in photocatalytic applications of Cu-based multinary sulfide photocatalysts, including photocatalytic H2 production, CO2 reduction, organic synthesis and degradation of pollutants and photoelectrochemical H2 production. Finally, we end this review with a summary of the current challenges and opportunities of Cu-based multinary sulfides in future studies.
Citation: Liang Wu. Cu-based mutlinary sulfide nanomaterials for photocatalytic applications[J]. AIMS Materials Science, 2023, 10(5): 909-933. doi: 10.3934/matersci.2023049
Due to their environmentally benign elemental components, suitable bandgap and high absorption coefficient in the visible-light range, Cu-based multinary sulfides exhibit excellent photocatalytic properties. Moreover, the adjustable atomic structure and unique electronic state of Cu-based multinary sulfide semiconductors can boost their ability to absorb visible light. In this review, we provide a summary of recent progress in photocatalytic applications of Cu-based multinary sulfide nanomaterials, including Cu-based ternary sulfides (CuInS2, CuIn5S8, Cu3SnS4, CuFeS2, etc.) and Cu-based quaternary sulfides (CuZnInS, Cu2ZnSnS4, CuZnGaS, CuInGaS, etc.). We start with a review of the bandgap alignments of Cu-based ternary sulfides and Cu-based quaternary sulfides, which are the key factors for the photocatalytic activity of semiconductor photocatalysts. Then, we discuss the advancements in photocatalytic applications of Cu-based multinary sulfide photocatalysts, including photocatalytic H2 production, CO2 reduction, organic synthesis and degradation of pollutants and photoelectrochemical H2 production. Finally, we end this review with a summary of the current challenges and opportunities of Cu-based multinary sulfides in future studies.
[1] | Parvulescu VI, Epron F, Garcia H, et al. (2021) Recent progress and prospects in catalytic water treatment. Chem Rev 122: 2981–3121. https://doi.org/10.1021/acs.chemrev.1c00527 doi: 10.1021/acs.chemrev.1c00527 |
[2] | Wang Q, Domen K (2020) Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem Rev 120: 919–985. https://doi.org/10.1021/acs.chemrev.9b00201 doi: 10.1021/acs.chemrev.9b00201 |
[3] | Rahman MZ, Edvinsson T, Gascon J (2022) Hole utilization in solar hydrogen production. Nat Rev Chem 6: 243–258. https://doi.org/10.1038/s41570-022-00366-w doi: 10.1038/s41570-022-00366-w |
[4] | Zhou P, Luo M, Guo S (2022) Optimizing the semiconductor-metal-single-atom interaction for photocatalytic reactivity. Nat Rev Chem 6: 823–838. https://doi.org/10.1038/s41570-022-00434-1 doi: 10.1038/s41570-022-00434-1 |
[5] | Sokol KP, Andrei V (2022) Automated synthesis and characterization techniques for solar fuel production. Nat Rev Mater 7: 251–253. https://doi.org/10.1038/s41578-022-00432-1 doi: 10.1038/s41578-022-00432-1 |
[6] | Chen S, Takata T, Domen K (2017) Particulate photocatalysts for overall water splitting. Nat Rev Mater 2: 17050. http://doi.org/10.1038/natrevmats.2017.50 doi: 10.1038/natrevmats.2017.50 |
[7] | Chang K, Hai X, Ye JH (2016) Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production. Adv Energy Mater 6: 1502555. https://doi.org/10.1002/aenm.201502555 doi: 10.1002/aenm.201502555 |
[8] | Wang F, Li Q, Xu D (2017) Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Adv Energy Mater 7: 1700529. https://doi.org/10.1002/aenm.201700529 doi: 10.1002/aenm.201700529 |
[9] | Fu CF, Wu X, Yang J (2018) Material design for photocatalytic water splitting from a theoretical perspective. Adv Mater 30: e1802106. https://doi.org/10.1002/adma.201802106 doi: 10.1002/adma.201802106 |
[10] | Li H, Zhou Y, Tu W, et al. (2015) State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv Funct Mater 25: 998–1013. http://doi.org/10.1002/adfm.201401636 doi: 10.1002/adfm.201401636 |
[11] | Sun X, Zhang X, Xie Y (2020) Surface defects in two-dimensional photocatalysts for efficient organic synthesis. Matter 2: 842–861. https://doi.org/10.1016/j.matt.2020.02.006 doi: 10.1016/j.matt.2020.02.006 |
[12] | Fan W, Zhang Q, Wang Y (2014) Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys Chem Chem Phys 15: 2632–2649. http://doi.org/10.1039/C2CP43524A doi: 10.1039/C2CP43524A |
[13] | Zhang N, Gao C, Xiong Y (2019) Defect engineering: A versatile tool for tuning the activation of key molecules in photocatalytic reactions. J Energy Chem 37: 43–57. https://doi.org/10.1016/j.jechem.2018.09.010 doi: 10.1016/j.jechem.2018.09.010 |
[14] | Talapin DV, Lee JS, Kovalenko MV, et al. (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110: 389–458. https://doi.org/10.1021/cr900137k doi: 10.1021/cr900137k |
[15] | Savage KJ, Hawkeye MM, Esteban R, et al. (2012) Revealing the quantum regime in tunnelling plasmonics. Nature 491: 574–577. https://doi.org/10.1038/nature11653 doi: 10.1038/nature11653 |
[16] | Meinardi F, Ehrenberg S, Dhamo L, et al. (2017) Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nature Photon 11: 177–185. https://doi.org/10.1038/nphoton.2017.5 doi: 10.1038/nphoton.2017.5 |
[17] | Smith AM, Mohs AM, Nie S (2019) Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nature Nanotech 4: 56–63. https://doi.org/10.1038/nnano.2008.360 doi: 10.1038/nnano.2008.360 |
[18] | Oh N, Kim BH, Cho SY, et al. (2017) Double-heterojunction nanorod light-responsive LEDs for display applications. Science 355: 616–619. https://doi.org/10.1126/science.aal2038 doi: 10.1126/science.aal2038 |
[19] | Du J, Singh R, Fedin I, et al. (2020) Spectroscopic insights into high defect tolerance of Zn: CuInSe2 quantum-dot-sensitized solar cells. Nat Energy 5: 409–417. https://doi.org/10.1038/s41560-020-0617-6 doi: 10.1038/s41560-020-0617-6 |
[20] | Chen R, Ren Z, Liang Y, et al. (2022) Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 610: 296–301. https://doi.org/10.1038/s41586-022-05183-1 doi: 10.1038/s41586-022-05183-1 |
[21] | Zhou P, Navid IA, Ma Y, et al. (2023) Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613: 66–70. https://doi.org/10.1038/s41586-022-05399-1 doi: 10.1038/s41586-022-05399-1 |
[22] | Chen X, Liu L, Yu PY, et al. (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331: 746–750. https://doi.org/10.1126/science.1200448 doi: 10.1126/science.1200448 |
[23] | Lotfi S, Fischer K, Schulze A, et al. (2022) Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process. Nature Nanotech 17: 417–423. https://doi.org/10.1038/s41565-022-01074-8 doi: 10.1038/s41565-022-01074-8 |
[24] | Song S, Song H, Li L, et al. (2021) A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nat Catal 4: 1032–1042. https://doi.org/10.1038/s41929-021-00708-9 doi: 10.1038/s41929-021-00708-9 |
[25] | Lin R, Wan J, Xiong Y, et al. (2018) Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: Insight into the crystal facet effect in photocatalysis. J Am Chem Soc 140: 9078–9082. https://doi.org/10.1021/jacs.8b05293 doi: 10.1021/jacs.8b05293 |
[26] | Simon T, Bouchonville N, Berr MJ, et al. (2014) Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat Mater 13: 1013–1018. https://doi.org/10.1038/nmat4049 doi: 10.1038/nmat4049 |
[27] | Han Z, Qiu F, Eisenberg R, et al. (2012) Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338: 1321–1324. https://doi.org/10.1126/science.1227775 doi: 10.1126/science.1227775 |
[28] | Lin L, Lin Z, Zhang J, et al. (2020) Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat Catal 3: 649–655. https://doi.org/10.1038/s41929-020-0476-3 doi: 10.1038/s41929-020-0476-3 |
[29] | Takata T, Jiang J, Sakata Y, et al. (2020) Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581: 411–414. https://doi.org/10.1038/s41586-020-2278-9 doi: 10.1038/s41586-020-2278-9 |
[30] | Regulacio MD, Han MY (2016) Multinary Ⅰ-Ⅲ-Ⅵ2 and Ⅰ2-Ⅱ-Ⅳ-Ⅵ4 semiconductor nanostructures for photocatalytic applications. Acc Chem Res 49: 511–519. https://doi.org/10.1021/acs.accounts.5b00535 doi: 10.1021/acs.accounts.5b00535 |
[31] | Ha E, Lee LY, Wang J, et al. (2014) Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2ZnSnS4 nanostructure. Adv Mater 26: 3496–3500. https://doi.org/10.1002/adma.201400243 doi: 10.1002/adma.201400243 |
[32] | Ye C, Regulacio MD, Lim SH, et al. (2012) Alloyed (ZnS)x(CuInS2)(1−x) semiconductor nanorods: Synthesis, bandgap tuning and photocatalytic properties. Chem Eur J 18: 11258–11263. https://doi.org/10.1002/chem.201201626 doi: 10.1002/chem.201201626 |
[33] | Li H, Li WJ, Li W, et al. (2020) Engineering crystal phase of polytypic CuInS2 nanosheets for enhanced photocatalytic and photoelectrochemical performance. Nano Res 13: 583–590. https://doi.org/10.1007/s12274-020-2665-4 doi: 10.1007/s12274-020-2665-4 |
[34] | Kageshima Y, Shiga S, Ode T, et al. (2021) Photocatalytic and photoelectrochemical hydrogen evolution from water over Cu2SnxGe1–xS3 particles. J Am Chem Soc 143: 5698–5708. https://doi.org/10.1021/jacs.0c12140 doi: 10.1021/jacs.0c12140 |
[35] | Fan FJ, Wu L, Yu SH (2013) Energetic Ⅰ–Ⅲ–Ⅵ2 and Ⅰ2–Ⅱ–Ⅳ–Ⅵ4 nanocrystals: Synthesis, photovoltaic and thermoelectric applications. Energy Environ Sci 7: 190–208. https://doi.org/10.1039/C3EE41437J doi: 10.1039/C3EE41437J |
[36] | Chang ZX, Zhou WH, Kou DX, et al. (2014) Phase-dependent photocatalytic H2 evolution of copper zinc tin sulfide under visible light. Chem Commun 50: 12726–12729. https://doi.org/10.1039/c4cc05654j doi: 10.1039/c4cc05654j |
[37] | Liu Q, Zhao Z, Lin Y, et al. (2011) Alloyed (ZnS)x(Cu2SnS3)1−x and (CuInS2)x(Cu2SnS3)1−x nanocrystals with arbitrary composition and broad tunable band gaps. Chem Commun 47: 964–966. http://doi.org/10.1039/C0CC03560B doi: 10.1039/C0CC03560B |
[38] | Tan L, Liu Y, Mao B, et al. (2018) Effective bandgap narrowing of Cu-In-Zn-S quantum dots for photocatalytic H2 production via cocatalyst-alleviated charge recombination. Inorg Chem Front 5: 258–265. http://doi.org/10.1039/C7QI00607A doi: 10.1039/C7QI00607A |
[39] | Wu L, Su F, Liu T, et al. (2022) Phosphorus-doped single-crystalline quaternary sulfide nanobelts enable efficient visible-light photocatalytic hydrogen evolution. J Am Chem Soc 144: 20620–20629. https://doi.org/10.1021/jacs.2c07313 doi: 10.1021/jacs.2c07313 |
[40] | Wu L, Wang Q, Zhuang TT, et al. (2020) Single crystalline quaternary sulfide nanobelts for efficient solar-to-hydrogen conversion. Nat Commun 11: 5194. https://doi.org/10.1038/s41467-020-18679-z doi: 10.1038/s41467-020-18679-z |
[41] | Li Y, Wang Y, Pattengale B, et al. (2017) High-index faceted CuFeS2 nanosheets with enhanced behavior for boosting hydrogen evolution reaction. Nanoscale 9: 9230–9237. https://doi.org/10.1039/C7NR03182C doi: 10.1039/C7NR03182C |
[42] | Zhang X, Xu Y, Zhang J, et al. (2018) Synthesis of wurtzite Cu2ZnSnS4 nanosheets with exposed high-energy (002) facets for fabrication of efficient Pt-free solar cell counter electrodes. Sci Rep 8: 248. https://doi.org/10.1038/s41598-017-18631-0 doi: 10.1038/s41598-017-18631-0 |
[43] | Wu L, Wang Q, Zhuang TT, et al. (2022) A library of polytypic copper-based quaternary sulfide nanocrystals enables efficient solar-to-hydrogen conversion. Nat Commun 13: 5414. https://doi.org/10.1038/s41467-022-33065-7 doi: 10.1038/s41467-022-33065-7 |
[44] | Chen SY, Gong XG, Walsh A, et al. (2009) Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of Ⅱ-Ⅵ and Ⅰ-Ⅲ-Ⅵ2 compounds. Phys Rev B 79: 165211. https://doi.org/10.1103/PhysRevB.79.165211 doi: 10.1103/PhysRevB.79.165211 |
[45] | Ozel F, Aslan E, Istanbullu B, et al. (2016) Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2NiSnS4 and Cu2CoSnS4 nanocrystals. Appl Catal B-Environ 198: 67–73. https://doi.org/10.1016/j.apcatb.2016.05.053 doi: 10.1016/j.apcatb.2016.05.053 |
[46] | Arcudi F, Đorđević L, Nagasing B, et al. (2021) Quantum dot-sensitized photoreduction of CO2 in water with turnover number > 80,000. J Am Chem Soc 143: 18131–18138. https://doi.org/10.1021/jacs.1c06961 doi: 10.1021/jacs.1c06961 |
[47] | Wang P, Minegishi T, Ma G, et al. (2012) Photoelectrochemical conversion of toluene to methylcyclohexane as an organic hydride by Cu2ZnSnS4-based photoelectrode assemblies. J Am Chem Soc 134: 2469–2472. https://doi.org/10.1021/ja209869k doi: 10.1021/ja209869k |
[48] | Huang DW, Wang K, Yu L, et al. (2018) Over 1% efficient unbiased stable solar water splitting based on a sprayed Cu2ZnSnS4 photocathode protected by a HfO2 photocorrosion-resistant film. Acs Energy Lett 3: 1875–1881. https://doi.org/10.1021/acsenergylett.8b01005 doi: 10.1021/acsenergylett.8b01005 |
[49] | Semalti P, Sharma V, Sharma SN (2021) A novel method of water remediation of organic pollutants and industrial wastes by solution-route processed CZTS nanocrystals. J Materiomics 7: 904–919. https://doi.org/10.1016/j.jmat.2021.04.005 doi: 10.1016/j.jmat.2021.04.005 |
[50] | Akkerman QA, Genovese A, George C, et al. (2015) From binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange. ACS Nano 9: 521–531. https://doi.org/10.1021/nn505786d doi: 10.1021/nn505786d |
[51] | De Trizio L, Li H, Casu A, et al. (2014) Sn cation valency dependence in cation exchange reactions involving Cu2−xSe nanocrystals. J Am Chem Soc 136: 16277–16284. https://doi.org/10.1021/ja508161c doi: 10.1021/ja508161c |
[52] | Pan D, An L, Sun Z, et al. (2018) Synthesis of Cu−In−S ternary nanocrystals with tunable structure and composition. J Am Chem Soc 130: 5620–5621. https://doi.org/10.1021/ja711027j doi: 10.1021/ja711027j |
[53] | Akkari FC, Abdelkader D, Gallas B, et al. (2017) Ellipsometric characterization and optical anisotropy of nanostructured CuIn3S5 and CuIn5S8 thin films. Mat Sci Semicon Proc 71: 156–160. https://doi.org/10.1016/j.mssp.2017.07.023 doi: 10.1016/j.mssp.2017.07.023 |
[54] | Khemiri N, Kanzari M (2010) Comparative study of structural and morphological properties of CuIn3S5 and CuIn7S11 materials. Nucl Instrum Meth B 268: 268–272. https://doi.org/10.1016/j.nimb.2009.10.175 doi: 10.1016/j.nimb.2009.10.175 |
[55] | Li XD, Sun YF, Xu JQ, et al. (2019) Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat Energy 4: 690–699. https://doi.org/10.1038/s41560-019-0431-1 doi: 10.1038/s41560-019-0431-1 |
[56] | Ng C, Yun JH, Tan HL, et al. (2018) A dual-electrolyte system for photoelectrochemical hydrogen generation using CuInS2-In2O3-TiO2 nanotube array thin film. Sci China Mater 61: 895–904. https://doi.org/10.1007/s40843-017-9237-2 doi: 10.1007/s40843-017-9237-2 |
[57] | Xu W, Xie ZZ, Han WJ, et al. (2022) Rational design of interfacial energy level matching for CuGaS2 based photocatalysts over hydrogen evolution reaction. Int J Hydrogen Energy 47: 11853–11862. https://doi.org/10.1016/j.ijhydene.2022.01.209 doi: 10.1016/j.ijhydene.2022.01.209 |
[58] | Ghorpade UV, Suryawanshi MP, Shin SW, et al. (2016) Colloidal wurtzite Cu2SnS3 (CTS) nanocrystals and their applications in solar cells. Chem Mater 28: 3308–3317. https://doi.org/10.1021/acs.chemmater.6b00176 doi: 10.1021/acs.chemmater.6b00176 |
[59] | Jathar SB, Rondiya SR, Jadhav YA, et al. (2021) Ternary Cu2SnS3: Synthesis, structure, photoelectrochemical activity, and heterojunction band offset and alignment. Chem Mater 33: 1983–1993. https://doi.org/10.1021/acs.chemmater.0c03223 doi: 10.1021/acs.chemmater.0c03223 |
[60] | Yi LX, Wang D, Gao MY (2012) Synthesis of Cu3SnS4 nanocrystals and nanosheets by using Cu31S16 as seeds. CrystEngComm 14: 401–404. https://doi.org/10.1039/C1ce06153d doi: 10.1039/C1ce06153d |
[61] | Lin J, Lim JM, Youn DH, et al. (2019) Cu4SnS4-rich nanomaterials for thin-film lithium batteries with enhanced conversion reaction. ACS Nano 13: 10671–10681. https://doi.org/10.1021/acsnano.9b05029 doi: 10.1021/acsnano.9b05029 |
[62] | Wang J, Bo T, Shao B, et al. (2021) Effect of S vacancy in Cu3SnS4 on high selectivity and activity of photocatalytic CO2 reduction. Appl Catal B-Environ 297: 120498. https://doi.org/10.1016/j.apcatb.2021.120498 doi: 10.1016/j.apcatb.2021.120498 |
[63] | Kamemoto S, Matsuda Y, Takahashi M, et al. (2022) Photocatalytic water splitting on Cu2SnS3 photoelectrode: Effects of Cu/Sn composite ratio on the photoelectrochemical performance. Catal Today 411–412: 113820. https://doi.org/10.1016/j.cattod.2022.06.035 doi: 10.1016/j.cattod.2022.06.035 |
[64] | An X, Kays JC, Lightcap IV, et al. (2022) Wavelength-dependent bifunctional plasmonic photocatalysis in Au/chalcopyrite hybrid nanostructures. ACS Nano 16: 6813–6824. https://doi.org/10.1021/acsnano.2c01706 doi: 10.1021/acsnano.2c01706 |
[65] | Sugathan A, Bhattacharyya B, Kishore VVR, et al. (2018) Why does CuFeS2 resemble gold? J Phys Chem Lett 9: 696–701. https://doi.org/10.1021/acs.jpclett.7b03190 doi: 10.1021/acs.jpclett.7b03190 |
[66] | Bhattacharyya B, Pandey A (2016) CuFeS2 quantum dots and highly luminescent CuFeS2 based core/shell structures: Synthesis, tunability, and photophysics. J Am Chem Soc 138: 10207–10213. https://doi.org/10.1021/jacs.6b04981 doi: 10.1021/jacs.6b04981 |
[67] | Tsuji I, Kato H, Kobayashi H, et al. (2005) Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)xZn2(1−x)S2 solid solutions. J Phys Chem B 109: 7323–7329. https://doi.org/10.1021/jp044722e doi: 10.1021/jp044722e |
[68] | Goodman CHL (1958) The prediction of semiconducting properties in inorganic compounds. J Phys Chem Solids 6: 305–314. https://doi.org/10.1016/0022-3697(58)90050-7 doi: 10.1016/0022-3697(58)90050-7 |
[69] | Yan C, Huang J, Sun K, et al. (2018) Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat Energy 3: 764–772. https://doi.org/10.1038/s41560-018-0206-0 doi: 10.1038/s41560-018-0206-0 |
[70] | De Trizio L, Prato M, Genovese A, et al. (2012) Strongly fluorescent quaternary Cu–In–Zn–S nanocrystals prepared from Cu1−xInS2 nanocrystals by partial cation exchange. Chem Mater 24: 2400–2406. https://doi.org/10.1021/cm301211e doi: 10.1021/cm301211e |
[71] | Cui Y, Wang G, Pan D (2012) Synthesis and photoresponse of novel Cu2CdSnS4 semiconductor nanorods. J Mater Chem 22: 12471. https://doi.org/10.1039/c2jm32034g doi: 10.1039/c2jm32034g |
[72] | Ikeda S, Fujikawa S, Harada T, et al. (2019) Photocathode characteristics of a spray-deposited Cu2ZnGeS4 thin film for CO2 reduction in a CO2-saturated aqueous solution. ACS Appl Energy Mater 2: 6911–6918. https://doi.org/10.1021/acsaem.9b01418 doi: 10.1021/acsaem.9b01418 |
[73] | Singh A, Singh A, Ciston J, et al. (2015) Synergistic role of dopants on the morphology of alloyed copper chalcogenide nanocrystals. J Am Chem Soc 137: 6464–6467. https://doi.org/10.1021/jacs.5b02880 doi: 10.1021/jacs.5b02880 |
[74] | Huang S, He Q, Zai J, et al. (2015) The role of Mott–Schottky heterojunctions in PtCo–Cu2ZnGeS4 as counter electrodes in dye-sensitized solar cells. Chem Commun 51: 8950–8953. http://doi.org/10.1039/C5CC02584B doi: 10.1039/C5CC02584B |
[75] | Septina W, Gunawan, Ikeda S, et al. (2015) Photosplitting of water from wide-gap Cu(In, Ga)S2 thin films modified with a CdS layer and Pt nanoparticles for a high-onset-potential photocathode. J Phys Chem C 119: 8576–8583. http://doi.org/10.1021/acs.jpcc.5b02068 doi: 10.1021/acs.jpcc.5b02068 |
[76] | Liu XY, Zhang G, Chen H, et al. (2017) Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots. Nano Res 11: 1379–1388. https://doi.org/10.1007/s12274-017-1752-7 doi: 10.1007/s12274-017-1752-7 |
[77] | Ye C, Regulacio MD, Lim SH, et al. (2015) Alloyed ZnS-CuInS2 semiconductor nanorods and their nanoscale heterostructures for visible-light-driven photocatalytic hydrogen generation. Chem Eur J 21: 9514–9519. https://doi.org/10.1002/chem.201500781 doi: 10.1002/chem.201500781 |
[78] | Chen FK, Zai JT, Xu M, et al. (2013) 3D-hierarchical Cu3SnS4 flowerlike microspheres: Controlled synthesis, formation mechanism and photocatalytic activity for H2 evolution from water. J Mater Chem A 1: 4316–4323. https://doi.org/10.1039/C3ta01491f doi: 10.1039/C3ta01491f |
[79] | Zhang P, Wang T, Chang X, et al. (2016) Effective charge carrier utilization in photocatalytic conversions. Acc Chem Res 49: 911–921. http://doi.org/10.1021/acs.accounts.6b00036 doi: 10.1021/acs.accounts.6b00036 |
[80] | Wei Y, Yang N, Huang K, et al. (2020) Steering hollow multishelled structures in photocatalysis: Optimizing surface and mass transport. Adv Mater 32: e2002556. http://doi.org/10.1002/adma.202002556 doi: 10.1002/adma.202002556 |
[81] | Chen Q, Liu Y, Gu X, et al. (2022) Carbon dots mediated charge sinking effect for boosting hydrogen evolution in Cu-In-Zn-S QDs/MoS2 photocatalysts. Appl Catal B-Environ 301: 120755. http://doi.org/10.1016/j.apcatb.2021.120755 doi: 10.1016/j.apcatb.2021.120755 |
[82] | Yu X, Shavel A, An X, et al. (2014) Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J Am Chem Soc 136: 9236–9239. http://doi.org/10.1021/ja502076b doi: 10.1021/ja502076b |
[83] | Ali N, Tsega TT, Cao Y, et al. (2021) Copper vacancy activated plasmonic Cu3−xSnS4 for highly efficient photocatalytic hydrogen generation: Broad solar absorption, efficient charge separation and decreased HER overpotential. Nano Res 14: 3358–3364. https://doi.org/10.1007/s12274-021-3604-8 doi: 10.1007/s12274-021-3604-8 |
[84] | Fan XB, Yu S, Zhan F, et al. (2017) Nonstoichiometric CuxInyS quantum dots for efficient photocatalytic hydrogen evolution. ChemSusChem 10: 4833–4838. https://doi.org/10.1002/cssc.201701950 doi: 10.1002/cssc.201701950 |
[85] | Yu X, An X, Genç A, et al. (2015) Cu2ZnSnS4–PtM (M = Co, Ni) nanoheterostructures for photocatalytic hydrogen evolution. J Phys Chem C 119: 21882–21888. http://doi.org/10.1021/acs.jpcc.5b06199 doi: 10.1021/acs.jpcc.5b06199 |
[86] | Lin T, Yang T, Cai Y, et al. (2023) Transformation-optics-designed plasmonic singularities for efficient photocatalytic hydrogen evolution at metal/semiconductor interfaces. Nano Lett 23: 5288–5296. http://doi.org/10.1021/acs.nanolett.3c01287 doi: 10.1021/acs.nanolett.3c01287 |
[87] | Jiang F, Pan B, You D, et al. (2016) Visible light photocatalytic H2-production activity of epitaxial Cu2ZnSnS4/ZnS heterojunction. Catal Commun 85: 39–43. http://doi.org/10.1016/j.catcom.2016.07.017 doi: 10.1016/j.catcom.2016.07.017 |
[88] | Yuan M, Wang JL, Zhou WH, et al. (2017) Cu2ZnSnS4-CdS heterostructured nanocrystals for enhanced photocatalytic hydrogen production. Catal Sci Technol 7: 3980–3984. http://doi.org/10.1039/c7cy01360d doi: 10.1039/c7cy01360d |
[89] | Yuan M, Zhou WH, Kou DX, et al. (2018) Cu2ZnSnS4 decorated CdS nanorods for enhanced visible-light-driven photocatalytic hydrogen production. Int J Hydrogen Energy 43: 20408–20416. https://doi.org/10.1016/j.ijhydene.2018.09.161 doi: 10.1016/j.ijhydene.2018.09.161 |
[90] | Zhuang TT, Yu P, Fan FJ, et al. (2014) Controlled synthesis of kinked ultrathin ZnS nanorods/nanowires triggered by chloride ions: A case study. Small 10: 1394–1402. https://doi.org/10.1002/smll.201302656 doi: 10.1002/smll.201302656 |
[91] | Li Y, Zhuang TT, Fan F, et al. (2018) Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation. Nat Commun 9: 4947. https://doi.org/10.1038/s41467-018-07422-4 doi: 10.1038/s41467-018-07422-4 |
[92] | Li M, Zhao Z, Cheng T, et al. (2016) Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354: 1414–1419. https://doi.org/10.1126/science.aaf9050 doi: 10.1126/science.aaf9050 |
[93] | Chen D, Zhang H, Li Y, et al. (2018) Spontaneous formation of noble- and heavy-metal-free alloyed semiconductor quantum rods for efficient photocatalysis. Adv Mater 30: e1803351. https://doi.org/10.1002/adma.201803351 doi: 10.1002/adma.201803351 |
[94] | Zhang Z, Wu Q, Johnson G, et al. (2019) Generalized synthetic strategy for transition-metal-doped brookite-phase TiO2 nanorods. J Am Chem Soc 141: 16548–16552. https://doi.org/10.1021/jacs.9b06389 doi: 10.1021/jacs.9b06389 |
[95] | Gonce MK, Aslan E, Ozel F, et al. (2016) Dye-sensitized Cu2XSnS4 (X = Zn, Ni, Fe, Co, and Mn) nanofibers for efficient photocatalytic hydrogen evolution. ChemSusChem 9: 600–605. http://doi.org/10.1002/cssc.201501661 doi: 10.1002/cssc.201501661 |
[96] | Zhou Y, Zhang Y, Lin M, et al. (2015) Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat Commun 6: 8340. http://doi.org/10.1038/ncomms9340 doi: 10.1038/ncomms9340 |
[97] | Tian B, Tian B, Smith B, et al. (2018) Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc Natl Acad Sci 115: 4345–4350. http://doi.org/10.1073/pnas.1800069115 doi: 10.1073/pnas.1800069115 |
[98] | Nishioka S, Hojo K, Xiao L, et al. (2022) Surface-modified, dye-sensitized niobate nanosheets enabling an efficient solar-driven Z-scheme for overall water splitting. Sci Adv 8: eadc9115. https://doi.org/10.1126/sciadv.adc9115 doi: 10.1126/sciadv.adc9115 |
[99] | Ganguly P, Harb M, Cao Z, et al. (2019) 2D Nanomaterials for photocatalytic hydrogen production. ACS Energy Lett 4: 1687–1709. https://doi.org/10.1021/acsenergylett.9b00940 doi: 10.1021/acsenergylett.9b00940 |
[100] | Wang L, Wang W, Sun S (2012) A simple template-free synthesis of ultrathin Cu2ZnSnS4 nanosheets for highly stable photocatalytic H2 evolution. J Mater Chem 22: 6553–6555. https://doi.org/10.1039/c2jm16515e doi: 10.1039/c2jm16515e |
[101] | Zheng L, Xu Y, Song Y, et al. (2009) Nearly monodisperse CuInS2 hierarchical microarchitectures for photocatalytic H2 evolution under visible light. Inorg Chem 48: 4003–4009. https://doi.org/10.1021/ic802399f doi: 10.1021/ic802399f |
[102] | Huang Y, Chen J, Zou W, et al. (2015) Enhanced photocatalytic hydrogen evolution efficiency using hollow microspheres of (CuIn)xZn2(1−x)S2 solid solutions. Dalton Trans 44: 10991–10996. https://doi.org/10.1039/c5dt01269d doi: 10.1039/c5dt01269d |
[103] | Chen Y, Qin Z, Guo X, et al. (2016) One-step hydrothermal synthesis of (CuIn)0.2Zn1.6S2 hollow sub-microspheres for efficient visible-light-driven photocatalytic hydrogen generation. Int J Hydrogen Energy 41: 1524–1534. https://doi.org/10.1016/j.ijhydene.2015.11.087 doi: 10.1016/j.ijhydene.2015.11.087 |
[104] | Li M, Zhao RJ, Su YJ, et al. (2016) Hierarchically CuInS2 nanosheet-constructed nanowire arrays for photoelectrochemical water splitting. Adv Mater Interfaces 3: 1600494. https://doi.org/10.1002/admi.201600494 doi: 10.1002/admi.201600494 |
[105] | Xu J, Hu Z, Zhang J, et al. (2017) Cu2ZnSnS4 and Cu2ZnSn(S1−xSex)4 nanocrystals: Room-temperature synthesis and efficient photoelectrochemical water splitting. J Mater Chem A 5: 25230–25236. http://doi.org/10.1039/C7TA06628G doi: 10.1039/C7TA06628G |
[106] | Han Z, Eisenberg R (2014) Fuel from water: The photochemical generation of hydrogen from water. Acc Chem Res 47: 2537–2544. http://doi.org/10.1021/ar5001605 doi: 10.1021/ar5001605 |
[107] | Teitsworth TS, Hill DJ, Litvin SR, et al. (2023) Water splitting with silicon p–i–n superlattices suspended in solution. Nature 614: 270–274. https://doi.org/10.1038/s41586-022-05549-5 doi: 10.1038/s41586-022-05549-5 |
[108] | Li Z, Li R, Jing H, et al. (2023) Blocking the reverse reactions of overall water splitting on a Rh/GaN–ZnO photocatalyst modified with Al2O3. Nat Catal 6: 80–88. https://doi.org/10.1038/s41929-022-00907-y doi: 10.1038/s41929-022-00907-y |
[109] | Zhang JH, Zhang M, Dong YY, et al. (2022) CdTe/CdSe-sensitized photocathode coupling with Ni-substituted polyoxometalate catalyst for photoelectrochemical generation of hydrogen. Nano Res 15: 1347–1354. https://doi.org/10.1007/s12274-021-3663-x doi: 10.1007/s12274-021-3663-x |
[110] | Lee S, Ji L, De Palma AC, et al. (2021) Scalable, highly stable Si-based metal-insulator-semiconductor photoanodes for water oxidation fabricated using thin-film reactions and electrodeposition. Nat Commun 12: 3982. https://doi.org/10.1038/s41467-021-24229-y doi: 10.1038/s41467-021-24229-y |
[111] | Cheng F, Lin G, Hu X, et al. (2019) Porous single-crystalline titanium dioxide at 2 cm scale delivering enhanced photoelectrochemical performance. Nat Commun 10: 3618. https://doi.org/10.1038/s41467-019-11623-w doi: 10.1038/s41467-019-11623-w |
[112] | Liu Z, Lu X, Chen D (2018) Photoelectrochemical water splitting of CuInS2 photocathode collaborative modified with separated catalysts based on efficient photogenerated electron–hole separation. ACS Sustainable Chem Eng 6: 10289–10294. https://doi.org/10.1021/acssuschemeng.8b01607 doi: 10.1021/acssuschemeng.8b01607 |
[113] | Kaneko H, Minegishi T, Nakabayashi M, et al. (2016) Enhanced hydrogen evolution under simulated sunlight from neutral electrolytes on (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 photocathodes prepared by a bilayer method. Angew Chem Int Ed 55: 15329–15333. https://doi.org/10.1002/anie.201609202 doi: 10.1002/anie.201609202 |
[114] | Tay YF, Kaneko H, Chiam SY, et al. (2018) Solution-processed Cd-substituted CZTS photocathode for efficient solar hydrogen evolution from neutral water. Joule 2: 537–548. http://doi.org/10.1016/j.joule.2018.01.012 doi: 10.1016/j.joule.2018.01.012 |
[115] | Guo P, Xiao Y, Mo R, et al. (2023) Coherent-twinning-enhanced solar water splitting in thin-film Cu2ZnSnS4 photocathodes. ACS Energy Lett 8: 494–501. https://doi.org/10.1021/acsenergylett.2c02626 doi: 10.1021/acsenergylett.2c02626 |
[116] | Yan C, Sun K, Huang J, et al. (2017) Beyond 11% efficient sulfide kesterite Cu2ZnxCd1–xSnS4 solar cell: Effects of cadmium alloying. ACS Energy Lett 2: 930–936. http://doi.org/10.1021/acsenergylett.7b00129 doi: 10.1021/acsenergylett.7b00129 |
[117] | Yang W, Oh Y, Kim J, et al. (2016) Molecular chemistry-controlled hybrid ink-derived efficient Cu2ZnSnS4 photocathodes for photoelectrochemical water splitting. ACS Energy Lett 1: 1127–1136. https://doi.org/10.1021/acsenergylett.6b00453 doi: 10.1021/acsenergylett.6b00453 |
[118] | Mali MG, Yoon H, Joshi BN, et al. (2015) Enhanced photoelectrochemical solar water splitting using a platinum-decorated CIGS/CdS/ZnO photocathode. ACS Appl Mater Interfaces 7: 21619–21625. https://doi.org/10.1021/acsami.5b07267 doi: 10.1021/acsami.5b07267 |
[119] | Sun W, Ye Y, You Y, et al. (2018) A top-down synthesis of wurtzite Cu2SnS3 nanocrystals for efficient photoelectrochemical performance. J Mater Chem A 6: 8221–8226. http://doi.org/10.1039/C8TA00851E doi: 10.1039/C8TA00851E |
[120] | Li M, Zhao R, Su Y, et al. (2017) Synthesis of CuInS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance. Appl Catal B-Environ 203: 715–724. https://doi.org/10.1016/j.apcatb.2016.10.051 doi: 10.1016/j.apcatb.2016.10.051 |
[121] | Nishi H, Kuwabata S, Torimoto T (2013) Composition-dependent photoelectrochemical properties of nonstoichiometric Cu2ZnSnS4 nanoparticles. J Phys Chem C 117: 21055–21063. https://doi.org/10.1021/jp405008m doi: 10.1021/jp405008m |
[122] | Chen Y, Chuang CH, Lin KC, et al. (2014) Synthesis and photoelectrochemical properties of (Cu2Sn)xZn3(1–x)S3 nanocrystal films. J Phys Chem C 118: 11954–11963. http://doi.org/10.1021/jp500270d doi: 10.1021/jp500270d |
[123] | Yokoyama D, Minegishi T, Jimbo K, et al. (2010) H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light. Appl Phy Express 3: 101202. https://doi.org/10.1143/APEX.3.101202 doi: 10.1143/APEX.3.101202 |
[124] | Wu XJ, Huang X, Qi X, et al. (2014) Copper-based ternary and quaternary semiconductor nanoplates: Templated synthesis, characterization, and photoelectrochemical properties. Angew Chem Int Ed 53: 8929–8933. https://doi.org/10.1002/anie.201403655 doi: 10.1002/anie.201403655 |
[125] | Yang W, Oh Y, Kim J, et al. Photoelectrochemical properties of vertically aligned CuInS2 nanorod arrays prepared via template-assisted growth and transfer. ACS Appl Mater Interfaces 8: 425–431. https://doi.org/10.1021/acsami.5b09241 doi: 10.1021/acsami.5b09241 |
[126] | Guijarro N, Prevot MS, Sivula K (2014) Enhancing the charge separation in nanocrystalline Cu2ZnSnS4 photocathodes for photoelectrochemical application: The role of surface modifications. J Phys Chem Lett 5: 3902–3908. https://doi.org/10.1021/jz501996s doi: 10.1021/jz501996s |
[127] | Patra BK, Khilari S, Pradhan D, et al. (2016) Hybrid dot–disk Au-CuInS2 nanostructures as active photocathode for efficient evolution of hydrogen from water. Chem Mater 28: 4358–4366. http://doi.org/10.1021/acs.chemmater.6b01357 doi: 10.1021/acs.chemmater.6b01357 |
[128] | Hu Y, Pan Y, Wang Z, et al. Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer. Nat Commun 11: 2129. https://doi.org/10.1038/s41467-020-15993-4 doi: 10.1038/s41467-020-15993-4 |
[129] | Kang Z, Si H, Zhang S, et al. (2019) Interface engineering for modulation of charge carrier behavior in ZnO photoelectrochemical water splitting. Adv Funct Mater 29: 1808032. https://doi.org/10.1002/adfm.201808032 doi: 10.1002/adfm.201808032 |
[130] | You YM, Tong X, Channa AI, et al. (2022) Tailoring the optoelectronic properties of eco-friendly CuGaS2/ZnSe core/shell quantum dots for boosted photoelectrochemical solar hydrogen production. Ecomat 4: e12206. https://doi.org/10.1002/eom2.12206 doi: 10.1002/eom2.12206 |
[131] | Channa AI, Tong X, Xu JY, et al. (2019) Tailored near-infrared-emitting colloidal heterostructured quantum dots with enhanced visible light absorption for high performance photoelectrochemical cells. J Mater Chem A 7: 10225–10230. http://doi.org/10.1039/C9TA01052A doi: 10.1039/C9TA01052A |
[132] | Wang R, Xu X, Zhang Y, et al. (2015) Functionalized ZnO@TiO2 nanorod array film loaded with ZnIn0.25Cu0.02S1.395 solid-solution: Synthesis, characterization and enhanced visible light driven water splitting. Nanoscale 7: 11082–11092. http://doi.org/10.1039/C5NR02127H doi: 10.1039/C5NR02127H |
[133] | Wu HL, Li XB, Tung CH, et al. (2018) Recent advances in sensitized photocathodes: From molecular dyes to semiconducting quantum dots. Adv Sci 5: 1700684. http://doi.org/10.1002/advs.201700684 doi: 10.1002/advs.201700684 |
[134] | Li TL, Teng H (2010) Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes. J Mater Chem 20: 3656–3664. https://doi.org/10.1039/b927279h doi: 10.1039/b927279h |
[135] | Liu C, Tong X, Channa AI, et al. (2021) Tuning the composition of heavy metal-free quaternary quantum dots for improved photoelectrochemical performance. J Mater Chem A 9: 5825–5832. http://doi.org/10.1039/D0TA11481B doi: 10.1039/D0TA11481B |
[136] | Liu Q, Cao F, Wu F, et al. (2016) Partial ion exchange derived 2D Cu–Zn–In–S nanosheets as sensitizers of 1D TiO2 nanorods for boosting solar water splitting. ACS Appl Mater Interfaces 8: 26235–26243. http://doi.org/10.1021/acsami.6b08648 doi: 10.1021/acsami.6b08648 |
[137] | Jiang Z, Xu X, Ma Y, et al. (2020) Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 586: 549–554. http://doi.org/10.1038/s41586-020-2738-2 doi: 10.1038/s41586-020-2738-2 |
[138] | Loh JYY, Kherani NP, Ozin GA (2021) Persistent CO2 photocatalysis for solar fuels in the dark. Nat Sustain 4: 466–473. https://doi.org/10.1038/s41893-021-00681-y doi: 10.1038/s41893-021-00681-y |
[139] | Gao W, Li S, He H, et al. (2021) Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nat Commun 12: 4747. https://doi.org/10.1038/s41467-021-25068-7 doi: 10.1038/s41467-021-25068-7 |
[140] | Li K, Peng B, Peng T (2016) Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal 6: 7485–7527. http://doi.org/10.1021/acscatal.6b02089 doi: 10.1021/acscatal.6b02089 |
[141] | Zhou M, Wang S, Yang P, et al. (2018) Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal 8: 4928–4936. https://doi.org/10.1021/acscatal.8b00104 doi: 10.1021/acscatal.8b00104 |
[142] | Pang H, Meng X, Li P, et al. (2019) Cation vacancy-initiated CO2 photoreduction over ZnS for efficient formate production. ACS Energy Lett 4: 1387–1393. https://doi.org/10.1021/acsenergylett.9b00711 doi: 10.1021/acsenergylett.9b00711 |
[143] | Yang Z, Yang J, Ji H, et al. (2022) Construction of S–Co–S internal electron transport bridges in Co-doped CuInS2 for enhancing photocatalytic CO2 reduction. Mater Today Chem 26: 101078. https://doi.org/10.1016/j.mtchem.2022.101078 doi: 10.1016/j.mtchem.2022.101078 |
[144] | Kong Y, Li Y, Zhang Y, et al. (2021) Unveiling the selectivity of CO2 reduction on Cu2ZnSnS4: The effect of exposed termination. J Phys Chem C 125: 24967–24973. https://doi.org/10.1021/acs.jpcc.1c08013 doi: 10.1021/acs.jpcc.1c08013 |
[145] | Yoshida T, Yamaguchi A, Umezawa N, et al. (2018) Photocatalytic CO2 reduction using a pristine Cu2ZnSnS4 film electrode under visible light irradiation. J Phys Chem C 122: 21695–21702. https://doi.org/10.1021/acs.jpcc.8b04241 doi: 10.1021/acs.jpcc.8b04241 |
[146] | Zhou S, Sun K, Huang J, et al. (2021) Accelerating electron-transfer and tuning product selectivity through surficial vacancy engineering on CZTS/CdS for photoelectrochemical CO2 reduction. Small 17: e2100496. https://doi.org/10.1002/smll.202100496 doi: 10.1002/smll.202100496 |
[147] | Sharma N, Das T, Kumar S, et al. (2019) Photocatalytic activation and reduction of CO2 to CH4 over single phase nano Cu3SnS4: Acombined experimental and theoretical study. ACS Appl Energy Mater 2: 5677–5685. https://doi.org/10.1021/acsaem.9b00813 doi: 10.1021/acsaem.9b00813 |
[148] | Zhao H, Duan J, Zhang Z, et al. (2022) S‐scheme heterojunction and defect site engineering on CuxIn5S8−Cu2−ySe for highly efficient photoreduction of CO2 to methanol. ChemCatChem 14: e202101733. https://doi.org/10.1002/cctc.202101733 doi: 10.1002/cctc.202101733 |
[149] | Lian S, Kodaimati MS, Dolzhnikov DS, et al. (2017) Powering a CO2 reduction catalyst with visible light through multiple sub-picosecond electron transfers from a quantum dot. J Am Chem Soc 139: 8931–8938. http://doi.org/10.1021/jacs.7b03134 doi: 10.1021/jacs.7b03134 |
[150] | Wang L, Zhang Z, Guan R, et al. (2022) Synergistic CO2 reduction and tetracycline degradation by CuInZnS-Ti3C2Tx in one photoredox cycle. Nano Res 15: 8010–8018. https://doi.org/10.1007/s12274-022-4661-3 doi: 10.1007/s12274-022-4661-3 |
[151] | Cheruvathoor Poulose A, Zoppellaro G, Konidakis I, et al. (2022) Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst. Nat Nanotechnol 17: 485–492. https://doi.org/10.1038/s41565-022-01087-3 doi: 10.1038/s41565-022-01087-3 |
[152] | Zhou S, Sun K, Toe CY, et al. (2022) Engineering a kesterite-based photocathode for photoelectrochemical ammonia synthesis from NOx reduction. Adv Mater 34: e2201670. https://doi.org/10.1002/adma.202201670 doi: 10.1002/adma.202201670 |
[153] | Xu X, Tang D, Cai J, et al. (2019) Heterogeneous activation of peroxymonocarbonate by chalcopyrite (CuFeS2) for efficient degradation of 2, 4-dichlorophenol in simulated groundwater. Appl Catal B-Environ 251: 273–282. https://doi.org/10.1016/j.apcatb.2019.03.080 doi: 10.1016/j.apcatb.2019.03.080 |
[154] | Liu K, Cui R, Liu Z, et al. (2023) Fractional thermal reduction of CuInS2 quantum dot-sensitized Bi2MoO6 hierarchical flowers on S-doped biochar for dual Z-scheme/Mott–Schottky heterojunction construction: A strategy for efficient photocatalytic biorefineries. ACS Sustainable Chem Eng 11: 5400–5407. https://doi.org/10.1021/acssuschemeng.2c06572 doi: 10.1021/acssuschemeng.2c06572 |
[155] | Zhang Y, Chen X, Ye Y, et al. (2023) Photocatalytic oxygen reduction reaction over copper-indium-sulfide modified polymeric carbon nitride S-scheme heterojunction photocatalyst. J Catal 419: 9–18. https://doi.org/10.1016/j.jcat.2023.01.021 doi: 10.1016/j.jcat.2023.01.021 |
[156] | Delekar SD, Dhodamani AG, More KV, et al. (2018) Structural and optical properties of nanocrystalline TiO2 with multiwalled carbon nanotubes and its photovoltaic studies using Ru(Ⅱ) sensitizers. ACS Omega 3:2743–2756. https://doi.org/10.1021/acsomega.7b01316 doi: 10.1021/acsomega.7b01316 |
[157] | Patil MS, Deshmukh PS, Dhodamani GA, et al. (2017) Different strategies for modification of titanium dioxide as heterogeneous catalyst in chemical transformations. Curr Org Chem 21: 821–833. http://doi.org/10.2174/1385272820666161013151816 doi: 10.2174/1385272820666161013151816 |
[158] | Hunge YM, Yadav AA, Kulkarni SB, et al. (2018) A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications. Sens Actuators B Chem 274: 1–9. https://doi.org/10.1016/j.snb.2018.07.117 doi: 10.1016/j.snb.2018.07.117 |
[159] | Wei Z, Liang F, Liu Y, et al. (2017) Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film. Appl Catal B-Environ 201: 600–606. https://doi.org/10.1016/j.apcatb.2016.09.003 doi: 10.1016/j.apcatb.2016.09.003 |
[160] | Semalti P, Sharma V, Sharma SN (2022) A solution-route processed multicomponent Cu2ZnSn(S1−xSex)4 nanocrystals: A potential low-cost photocatalyst. J Clean Prod 365: 132750. https://doi.org/10.1016/j.jclepro.2022.132750 doi: 10.1016/j.jclepro.2022.132750 |
[161] | Zheng XL, Yang YJ, Liu YH, et al. (2022) Fundamentals and photocatalytic hydrogen evolution applications of quaternary chalcogenide semiconductor: Cu2ZnSnS4. Rare Met 41: 2153–2168. https://doi.org/10.1007/s12598-021-01955-2 doi: 10.1007/s12598-021-01955-2 |
[162] | Hunge YM, Yadav AA, Liu S, et al. (2019) Sonochemical synthesis of CZTS photocatalyst for photocatalytic degradation of phthalic acid. Ultrason Sonochem 56: 284–289. https://doi.org/10.1016/j.ultsonch.2019.04.003 doi: 10.1016/j.ultsonch.2019.04.003 |
[163] | Tan Y, Lin ZQ, Ren WH, et al. (2012) Facile solvothermal synthesis of Cu2SnS3 architectures and their visible-light-driven photocatalytic properties. Mater Lett 89: 240–242. https://doi.org/10.1016/j.matlet.2012.08.117 doi: 10.1016/j.matlet.2012.08.117 |
[164] | Kush P, Deori K, Kumar A, et al. (2015) Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr(vi) by surfactant free hydrophilic Cu2ZnSnS4 nanoparticles. J Mater Chem A 3: 8098–8106. http://doi.org/10.1039/C4TA06551D doi: 10.1039/C4TA06551D |