Research article

Investigating parametric homogenization models for natural frequency of FGM nano beams

  • Received: 24 July 2023 Revised: 11 September 2023 Accepted: 19 September 2023 Published: 12 October 2023
  • This research focuses on exploring the free vibration behavior of functionally graded (FG) nano-beams. To calculate the effective properties of the FG nano-beam, which varies solely in the thickness direction, the four homogenization schemes Mori-Tanaka, Tamura, Reuss and Voigt are employed. This study employs high-order shear deformation nano-beam theory and derives the governing equations of motion using nonlocal differential constitutive relations of Eringen. Hamilton's principle is utilized in conjunction with the refined three variables beam theory. The consideration of a length scale parameter accounts for small-scale effects. Analytical solutions are obtained for a simply supported FG nano-beam and compared with existing literature solutions. The research also investigates the influence of different homogenization schemes, the nonlocal parameter, beam aspect ratio and various material compositions on the dynamic response of the FG nano-beam.

    Citation: Abdelhak Berkia, Billel Rebai, Bilal Litouche, Soufiane Abbas, Khelifa Mansouri. Investigating parametric homogenization models for natural frequency of FGM nano beams[J]. AIMS Materials Science, 2023, 10(5): 891-908. doi: 10.3934/matersci.2023048

    Related Papers:

  • This research focuses on exploring the free vibration behavior of functionally graded (FG) nano-beams. To calculate the effective properties of the FG nano-beam, which varies solely in the thickness direction, the four homogenization schemes Mori-Tanaka, Tamura, Reuss and Voigt are employed. This study employs high-order shear deformation nano-beam theory and derives the governing equations of motion using nonlocal differential constitutive relations of Eringen. Hamilton's principle is utilized in conjunction with the refined three variables beam theory. The consideration of a length scale parameter accounts for small-scale effects. Analytical solutions are obtained for a simply supported FG nano-beam and compared with existing literature solutions. The research also investigates the influence of different homogenization schemes, the nonlocal parameter, beam aspect ratio and various material compositions on the dynamic response of the FG nano-beam.



    加载中


    [1] Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10: 1–16. https://doi.org/10.1016/0020–7225(72)90070–5 doi: 10.1016/0020–7225(72)90070–5
    [2] Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54: 4703–4710. https://doi.org/10.1063/1.332803 doi: 10.1063/1.332803
    [3] Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10: 233–248. https://doi.org/10.1016/0020–7225(72)90039–0 doi: 10.1016/0020–7225(72)90039–0
    [4] Van VP, Tounsi A (2022) Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters. Thin Wall Struct 174: 109084. https://doi.org/10.1016/j.tws.2022.109084 doi: 10.1016/j.tws.2022.109084
    [5] Van VP, Van CN, Tounsi A (2022) Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM. Eur J Mech A-Solid 96: 104743. https://doi.org/10.1016/j.euromechsol.2022.104743 doi: 10.1016/j.euromechsol.2022.104743
    [6] Cuong LT, Nguyen KD, Le MH, et al. (2022) Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory. Adv Nano Res 12: 441–455. https://doi.org/10.12989/anr.2022.12.5.441 doi: 10.12989/anr.2022.12.5.441
    [7] Liu G, Wu S, Shahsavari D, et al. (2022) Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation. Eur J Mech A-Solid 95: 104649. https://doi.org/10.1016/j.euromechsol.2022.104649 doi: 10.1016/j.euromechsol.2022.104649
    [8] Faghidian SA, Tounsi A (2022) Dynamic characteristics of mixture unified gradient elastic nanobeams. FU Mech Eng 20: 539–552. https://doi.org/10.22190/FUME220703035F doi: 10.22190/FUME220703035F
    [9] Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. In J Eng Sci 41: 305–312. https://doi.org/10.1016/S0020–7225(02)00210–0 doi: 10.1016/S0020–7225(02)00210–0
    [10] Xu M (2006) Free transverse vibrations of nano-to-micron scale beams. P Roy Soc A-Math Phy 462: 2977–2995. https://doi.org/10.1098/rspa.2006.1712 doi: 10.1098/rspa.2006.1712
    [11] Billel R (2023) Contribution to study the effect of (Reuss, LRVE, Tamura) models on the axial and shear stress of sandwich FGM plate (Ti-6A1-4V/ZrO2) subjected on linear and nonlinear thermal loads. AIMS Mater Sci 10: 26–39. https://doi.org/10.3934/matersci.2023002 doi: 10.3934/matersci.2023002
    [12] Billel R (2022) Effect of the idealization models and thermal loads on deflection behavior of sandwich FGM plate. 2022 International Conference on Electrical Engineering and Photonics, 260–264. https://doi.org/0.1109/EExPolytech56308.2022.9950823
    [13] Rebai B, Mansouri K, Chitour M, et al. (2023) Effect of idealization models on deflection of functionally graded material (FGM) plate. J Nano-Electron Phys 15: 01022. https://doi.org/10.21272/jnep.15(1).01022 doi: 10.21272/jnep.15(1).01022
    [14] Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45: 288–307. https://doi.org/10.1016/j.ijengsci.2007.04.004 doi: 10.1016/j.ijengsci.2007.04.004
    [15] Reddy JN, Pang SD (2008) Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys 103: 023511. https://doi.org/10.1063/1.2833431 doi: 10.1063/1.2833431
    [16] Zhang P, Schiavone P, Qing H (2023) Hygro-thermal vibration study of nanobeams on size-dependent visco-pasternak foundation via stress-driven nonlocal theory in conjunction with two-variable shear deformation assumption. Compos Struct 312: 116870. https://doi.org/10.1016/j.compstruct.2023.116870 doi: 10.1016/j.compstruct.2023.116870
    [17] Zhang P, Schiavone P, Qing H (2022) Two-phase local/nonlocal mixture models for buckling analysis of higher-order refined shear deformation beams under thermal effect. Mech Adv Mater Struc 29: 7605–7622. https://doi.org/10.1080/15376494.2021.2003489 doi: 10.1080/15376494.2021.2003489
    [18] Zhang P, Qing H (2022) Well-posed two-phase nonlocal integral models for free vibration of nanobeams in context with higher-order refined shear deformation theory. J Vib Control 28: 3808–3822. https://doi.org/10.1177/10775463211039902 doi: 10.1177/10775463211039902
    [19] Ebrahimi F, Barati MR, Zenkour AM (2017) Vibration analysis of smart embedded shear deformable nonhomogeneous piezoelectric nanoscale beams based on nonlocal elasticity theory. Int J Aeronaut Space 18: 255–269. https://doi.org/10.5139/IJASS.2017.18.2.255 doi: 10.5139/IJASS.2017.18.2.255
    [20] Eltaher MA, Emam SA, Mahmoud FF (2012) Free vibration analysis of functionally graded size-dependent nanobeams. App Math Comput 218: 7406–7420. https://doi.org/10.1016/j.amc.2011.12.090 doi: 10.1016/j.amc.2011.12.090
    [21] Nazemnezhad R, Hosseini-Hashemi S (2014) Nonlocal nonlinear free vibration of functionally graded nano-beams. Compos Struct 110: 192–199. https://doi.org/10.1016/j.compsruct.2013.12.006 doi: 10.1016/j.compsruct.2013.12.006
    [22] Ebrahimi F, Barati MR, Civalek O (2020) Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng Comput-Germany 36: 953–964. https://doi.org/10.1007/s00366–019–00742–z doi: 10.1007/s00366–019–00742–z
    [23] Hadji L, Avcar M (2021) Nonlocal free vibration analysis of porous FG nano-beams using hyperbolic shear deformation beam theory. Adv Nano Res 10: 281–293. https://doi.org/10.12989/anr.2021.10.3.281 doi: 10.12989/anr.2021.10.3.281
    [24] Youcef G, Ahmed H, Abdelillah B, et al. (2020) Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle. Adv Nano Res 8: 37–47. https://doi.org/10.12989/anr.2020.8.1.037 doi: 10.12989/anr.2020.8.1.037
    [25] Shariati A, Jung DW, Sedighi HM, et al. (2020). On the vibrations and stability of moving viscoelastic axiallyfunctionally graded nano-beams. Materials 13: 1707. https://doi.org/10.3390/ma13071707 doi: 10.3390/ma13071707
    [26] Cornacchia F, Fabbrocino F, Fantuzzi N, et al. (2021) Analytical solution of cross-and angle-ply nano plates with strain gradient theory for linear vibrations and buckling. Mech Adv Mater Struc 28: 1201–1215. https://doi.org/10.1080/15376494.2019.1655613 doi: 10.1080/15376494.2019.1655613
    [27] Tocci MG, Fantuzzi N, Fabbrocino F, et al. (2021) Critical temperatures for vibrations and buckling of magneto-electro-elastic nonlocal strain gradient plates. Nanomaterials 11: 87. https://doi.org/10.3390/nano11010087 doi: 10.3390/nano11010087
    [28] Luciano R, Darban H, Bartolomeo C, et al. (2020) Free flexural vibrations of nanobeams with non-classical boundary conditions using stress-driven nonlocal model. Mech Res Commun 107: 103536. https://doi.org/10.1016/j.mechrescom.2020.103536 doi: 10.1016/j.mechrescom.2020.103536
    [29] Fabbrocino F, Funari MF, Greco F, et al. (2019) Dynamic crack growth based on moving mesh method. Compos Part B-Eng 174: 107053. https://doi.org/10.1016/j.compositesb.2019.107053 doi: 10.1016/j.compositesb.2019.107053
    [30] Fan F, Xu Y, Sahmani S, et al. (2020) Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Comput Method Appl M 372: 113400. https://doi.org/10.1016/j.cma.2020.113400 doi: 10.1016/j.cma.2020.113400
    [31] Hou F, Wu S, Moradi Z, et al. (2022) The computational modeling for the static analysis of axially functionally micro cylindrical imperfect beam applying the computer simulation. Eng Comput-Germany 38: 3217–3235. https://doi.org/10.1007/s00366–021–01456–x doi: 10.1007/s00366–021–01456–x
    [32] Li L, Li XB, Hu YJ (2018) Nonlinear bending of a two-dimensionally functionally graded beam. Compos Struct 184: 1049–1061. https://doi.org/10.1016/j.compstruct.2017.10.087 doi: 10.1016/j.compstruct.2017.10.087
    [33] Ye T, Qian D (2019) Nonlinear vibration analysis of a bi-directional functionally beam under hygro-thermal loads. Compos Struct 225: 111076. https://doi.org/10.1016/j.compstruct.2019.111076 doi: 10.1016/j.compstruct.2019.111076
    [34] Dehrouyeh-Semnani AM (2018) On the thermally induced non-linear response of functionally beams. Int J Eng Sci 125: 53–74. https://doi.org/10.1016/j.ijengsci.2017.12.001 doi: 10.1016/j.ijengsci.2017.12.001
    [35] Krysko AV, Awrejcewicz J, Pavlov SP, et al. (2017) Chaotic dynamics of the size-dependent non-linear micro-beam model. Commun Nonlinear Sci 50: 16–28. https://doi.org/10.1016/j.cnsns.2017.02.015 doi: 10.1016/j.cnsns.2017.02.015
    [36] Eltaher MA, Fouda N, El-midany T, et al. (2018) Modified porosity model in analysis of functionally graded porous nano-beams. J Braz Soc Mech Sci Eng 40: 1–10. https://doi.org/10.1007/s40430–018–1065–0 doi: 10.1007/s40430–018–1065–0
    [37] Mirjavadi SS, Mohasel AB, Khezel M, et al. (2018) Nonlinear vibration and buckling of functionally graded porous nanoscaled beams. J Braz Soc Mech Sci Eng 40: 1–12. https://doi.org/10.1007/s40430–018–1272–8 doi: 10.1007/s40430–018–1272–8
    [38] Shafiei N, Mirjavadi SS, Afshari BM, et al. (2017) Vibration of two-dimensional imperfect functionally (2D-FG) porous nano-/micro-beams. Comput Method Appl M 322: 615–632. https://doi.org/10.1016/j.cma.2017.05.007 doi: 10.1016/j.cma.2017.05.007
    [39] She GL, Yuan FG, Ren YR (2017) Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory. Appl Math Model 47: 340–357. https://doi.org/10.1016/j.apm.2017.03.014 doi: 10.1016/j.apm.2017.03.014
    [40] Belarbi M, Houari M, Daikh AA, et al. (2021) Nonlocal finite element model for the bending and buckling analysis of functionally graded nano-beams using a novel shear deformation theory. Composite Struct 264: 113712. https://doi.org/10.1016/j.compstruct.2019.02.089 doi: 10.1016/j.compstruct.2019.02.089
    [41] Akbaş ŞD, Dastjerdi S, Akgöz B, et al. (2021) Dynamic analysis of functionally graded porous microbeams under moving load. Transp Porous Med 142: 209–227. https://doi.org/10.1007/s11242–021–01686–z doi: 10.1007/s11242–021–01686–z
    [42] Dang VH, Do QC (2021) Nonlinear vibration and stability of functionally graded porous microbeam under electrostatic actuation. Arch Appl Mech 91: 2301–2329. https://doi.org/10.1007/s00419–021–01884–7 doi: 10.1007/s00419–021–01884–7
    [43] Pham QH, Tran VK, Tran TT, et al. (2022) Dynamic instability of mag-netically embedded functionally porous nano-beams using the strain gradient theory. Alex Eng J 61: 10025–10044. https://doi.org/10.1016/j.aej.2022.03.007 doi: 10.1016/j.aej.2022.03.007
    [44] Hosseini SA, Hamidi BA, Behrouzinia A (2022) A new model for non-linear vibration of functionally graded porous nano-beam based on non-local curvature and strain gradient tensors. J Vib Control 29: 4290–4301. https://doi.org/10.1177/10775463221114945 doi: 10.1177/10775463221114945
    [45] Nguyen DK, Nguyen KV, Dinh V, et al. (2018) Nonlinear bending of elasto-plastic functionally ceramic-metal beams subjected to nonuniform distributed loads. Appl Math Comput 333: 443–459. https://doi.org/10.1016/j.amc.2018.03.100 doi: 10.1016/j.amc.2018.03.100
    [46] Wu Q, Qi G (2021) Quantum dynamics for Al-doped graphene composite sheet under hydrogen atom impact. Appl Math Model 90: 1120–1129. https://doi.org/10.1016/j.apm.2020.10.025 doi: 10.1016/j.apm.2020.10.025
    [47] Wu Q, Yao M, Li M, et al. (2020) Nonlinear coupling vibrations of graphene composite laminated sheets impacted by particles. Appl Math Model 93: 75–88. https://doi.org/10.1016/j.apm.2020.12.008 doi: 10.1016/j.apm.2020.12.008
    [48] Wu Q, Yao M, Niu Y (2022) Nonplanar free and forced vibrations of an imperfect nanobeam employing nonlocal strain gradient theory. Commun Nonlinear Sci 114: 106692. https://doi.org/10.1016/j.cnsns.2022.106692 doi: 10.1016/j.cnsns.2022.106692
    [49] Karami B, Shahsavari D, Janghorban M, et al. (2019) Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Int J Mech Sci 156: 94–105. https://doi.org/10.1016/j.ijmecsci.2019.03.036 doi: 10.1016/j.ijmecsci.2019.03.036
    [50] Voigt W (1889) Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann Phys-Berlin 274: 573–587. https://doi.org/10.1002/andp.18892741206 doi: 10.1002/andp.18892741206
    [51] Reuß A (1929) Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. Z Angew Math Mech 9: 49–58. https://doi.org/10.1002/zamm.19290090104 doi: 10.1002/zamm.19290090104
    [52] Gasik MM, Lilius RR (1994) Evaluation of properties of W/Cu functional gradient materials by micromechanical model. Comp Mater Sci 3: 41–49. https://doi.org/10.1016/0927–0256(94)90151–1 doi: 10.1016/0927–0256(94)90151–1
    [53] Zuiker JR (1995) Functionally graded materials: Choice of micromechanics model and limitations in property variation. Compos Eng 5: 807–819. https://doi.org/10.1016/0961–9526(95)00031–H doi: 10.1016/0961–9526(95)00031–H
    [54] Tamura I, Tomota Y, Ozawa M (1973) Strength and ductility of Fe-Ni-C alloys composed of austenite and martensite with various strength. Proc Third Int Conf Strength Met Alloy 3: 611–615.
    [55] Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21: 571–574. https://doi.org/10.1016/0001–6160(73)90064–3 doi: 10.1016/0001–6160(73)90064–3
    [56] Belabed Z, Houari MSA, Tounsi A, et al. (2014) An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos Part B-Eng 60: 274–283. https://doi.org/10.1016/j.compositesb.2013.12.057 doi: 10.1016/j.compositesb.2013.12.057
    [57] Valizadeh N, Natarajan S, Gonzalez-Estrada OA, et al. (2013) NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter. Compos Struct 99: 309–326. https://doi.org/10.1016/j.compstruct.2012.11.008 doi: 10.1016/j.compstruct.2012.11.008
    [58] Cheng ZQ, Batra RC (2000) Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Compos Eng 31: 97–106. https://doi.org/10.1016/S1359–8368(99)00069–4 doi: 10.1016/S1359–8368(99)00069–4
    [59] Zemri A, Houari MSA, Bousahla AA, et al. (2015) A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory. Struct Eng Mech 54: 693–710. https://doi.org/10.12989/SEM.2015.54.4.693 doi: 10.12989/SEM.2015.54.4.693
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(638) PDF downloads(65) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog