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Abstract: Due to their environmentally benign elemental components, suitable bandgap and high 

absorption coefficient in the visible-light range, Cu-based multinary sulfides exhibit excellent 

photocatalytic properties. Moreover, the adjustable atomic structure and unique electronic state of  

Cu-based multinary sulfide semiconductors can boost their ability to absorb visible light. In this review, 

we provide a summary of recent progress in photocatalytic applications of Cu-based multinary sulfide 

nanomaterials, including Cu-based ternary sulfides (CuInS2, CuIn5S8, Cu3SnS4, CuFeS2, etc.) and  

Cu-based quaternary sulfides (CuZnInS, Cu2ZnSnS4, CuZnGaS, CuInGaS, etc.). We start with a 

review of the bandgap alignments of Cu-based ternary sulfides and Cu-based quaternary sulfides, 

which are the key factors for the photocatalytic activity of semiconductor photocatalysts. Then, we 

discuss the advancements in photocatalytic applications of Cu-based multinary sulfide photocatalysts, 

including photocatalytic H2 production, CO2 reduction, organic synthesis and degradation of pollutants 

and photoelectrochemical H2 production. Finally, we end this review with a summary of the current 

challenges and opportunities of Cu-based multinary sulfides in future studies. 
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1. Introduction 

The demand for energy is increasing with the development of industrialization and information 

technology. Otherwise, the use of fossil fuels will emit a large amount of carbon dioxide and give rise 

to environmental pollution. Therefore, how to use new technology and materials to solve the increasingly  
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tense energy crisis and severe environmental problems has become a hot spot in material and chemistry 

research fields. Solar energy is the most abundant and clean green energy. 

Photocatalysis using solar energy is an appealing technology to address the energy crisis and 

environmental problems [1–5]. The photocatalytic reaction is generally divided into three steps. (I) 

Photocatalysts absorb light to produce both excited holes and electrons. (II) The holes and electrons 

transfer to the surface of the photocatalyst. (III) The surface carriers participate in the redox reaction [6]. 

Specifically, semiconductor photocatalysts stir up the electrons in the valance band (VB) to the 

conduction band (CB) to produce hole-electron pairs [7–9]. Subsequently, the photogenerated carriers 

are separated and diffused from the bulk to the surface of the photocatalyst. Obviously, the light 

absorption efficiency, the charge separation and diffusion efficiency and the redox reaction efficiency 

are the three key parameters for determining the conversion efficiency of the photocatalytic     

reaction [10–13]. Therefore, the most important issue in photocatalysis is designing photocatalysts 

from the above three aspects to achieve high conversion efficiency. 

Semiconductor nanomaterials have attracted extensive attentions due to the special properties 

stemming from the quantum effect [14–16]. As the size is less than the exciton Bohr radius, the electron 

density of the semiconductor nanomaterials will be discontinuous, and the carrier will have a spatial 

limiting effect and cause a change in the band structure [17–19]. On the other hand, the huge surface 

area of semiconductor nanomaterials will bring ignored surface effects. The tunable bandgaps and 

special surface effect of semiconductor nanomaterials will bring novel optical and electronic properties, 

rendering them as promising candidates for photocatalytic applications [20–22]. 

To date, a series of semiconductor nanomaterials have been developed as photocatalysts, such as 

metal oxides (TiO2, ZnO, WO3, etc.), metal chalcogenides (CdS, CdSe, etc.) and polymers [23–29]. 

Among the most widely investigated semiconductor photocatalysts, Cu-based multinary sulfide (CMS) 

nanomaterials have attracted wide interest in various photocatalytic applications due to their suitable 

and tunable bandgap, high absorption coefficient, environmental benign elemental components, unique 

electronic state and adjustable atomic structure [30–34]. CMSs are inorganic compounds consisting of 

at least two metal elements. The band structure of these CMSs can be conveniently adjusted through 

metal element alloying, then optimizing their photocatalytic performances [35–38]. The diversity of 

metal elements in CMSs will bring different crystal structures and allow precise control of the reactive 

atomic arrangement on the surface to construct specific active sites for diversified photocatalytic 

reactions [39–42]. At the same time, the differential charge distribution of diverse elements will result 

in microcosmic polarization and lead to a built-in electric field, which is beneficial for the effective 

separation of photogenerated holes and electrons [43,44]. Due to these specialties, CMS nanomaterials 

exhibit excellent performance in photocatalytic H2 production, CO2 reduction, organic synthesis, 

photoelectrochemical (PEC) H2 production, and so on [45–49]. 

In this review, we provide a comprehensive overview on recent research of CMS nanomaterials 

in photocatalytic applications. We focus on the most researched CMSs, namely Cu-based ternary and 

quaternary sulfide nanomaterials. We first introduce the bandgap alignments of Cu-based ternary 

sulfides (CuInS2, CuIn5S8, Cu3SnS4, etc.) and Cu-based quaternary sulfides (CuZnInS, Cu2ZnSnS4, 

CuInGaS, etc.), which are the key factors for the photocatalytic activity of semiconductor 

photocatalysts. Subsequently, we provide a summary of recent progress in the photocatalytic 

applications of Cu-based ternary sulfides and Cu-based quaternary sulfide nanomaterials, focusing on 

photocatalytic H2 production, CO2 reduction, organic synthesis, degradation of pollutants and PEC H2  
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production. Finally, we also summarize the current challenges and opportunities of Cu-based multinary 

sulfides in future studies. 

2. Cu-based multinary sulfide nanomaterials 

To date, the developed CMS nanomaterials mainly focused on Cu-based ternary and quaternary 

sulfides (Figure 1). This section will introduce the bandgap alignments of Cu-based ternary (CuInS2, 

CuIn5S8, Cu3SnS4, CuFeS2, etc.) and quaternary sulfides (CuZnInS, Cu2ZnSnS4, CuZnGaS, CuInGaS, 

etc.) in detail. 

 

Figure 1. Schematic illustration of the photocatalytic applications of Cu-based ternary and 

quaternary sulfide nanomaterials. 

2.1. Cu-based ternary sulfide nanomaterials 

Cu-based ternary sulfides are ZnS-derived compounds produced by replacing Zn atoms with Cu 

cations and trivalent/tetravalent cations (e.g., In, Ga, Sn, Ge, Fe, etc.) [50,51]. Cu-III-S     

compounds (III = In, Ga) preferentially crystallize in a diamond-like structure inherited from ZnS. For 

example, the stoichiometric formula CuInS2 (CIS) exhibits a stable chalcopyrite structure at room 

temperature and a metastable wurtzite structure at high temperature [52]. The tolerance of cation   

off-stoichiometry allows Cu-III-S chalcopyrite compounds to introduce different cation ratios, 

producing nonstoichiometric ternary sulfides, such as CuIn3S5, CuIn5S8, and CuIn11S17 [53,54]. 

Moreover, the off-stoichiometry effect usually has great influences on the band structures, optical 

properties and crystal structures of Cu-III-S compounds. The bandgaps of CuInS2 and CuIn5S8 are 1.5 

and 2.06 eV, respectively [55,56]. In addition, the VB and CB positions of CuInS2 are also different 

from these of CuIn5S8 (Figure 2). The bandgap will change from 1.5 to 2.35 eV when the In cation is 

replaced by a Ga cation (Figure 2) [57]. 
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Figure 2. Band position of representative Cu-based ternary and quaternary sulfide semiconductors. 

The most reported Cu-IV-S compounds are stoichiometry Cu2SnS3 (CTS) and Cu2GeS3, which 

generally crystallize in zinc-blende, orthorhombic and wurtzite structures [58,59]. Similar to Cu-In-S 

compounds, tolerating cation off-stoichiometry usually leads to nonstoichiometric ternary sulfides, 

such as, Cu3SnS4, Cu4SnS4, and Cu2Sn3S7 [60,61]. The different cation ratios will lead to different 

bandgap alignments of Cu-Sn-S compounds. For example, the bandgaps of Cu2SnS3 and Cu3SnS4   

are 0.91 and 1.67 eV, respectively, and possess different VB and CB positions (Figure 2) [62,63]. 

Cu2GeS3 with a monoclinic structure has a bandgap of 1.49 eV (Figure 2) [34]. In addition to the above 

Cu-IV-S compounds, CuFeS2 (CFS), obtained by replacing Zn atoms with Cu cations and Fe cations, 

is another well-studied ternary sulfide [64–66]. The special band structures and high visible-light 

absorption efficiency favor the utilization of Cu-based ternary sulfides in photocatalytic H2 production, 

CO2 reduction, organic synthesis and pollutant removal. 

2.2. Cu-based quaternary sulfide nanomaterials 

Cu-based quaternary sulfides have attracted extensive research interests in photocatalytic 

applications as fascinating and promising nanomaterials. Many types of Cu-based quaternary sulfides 

have been designed and synthesized via regulation of metal types and ratios, such as Cu-II-VI-S 

compounds obtained via successive replacement of the In atoms in CuInS2 with II and VI atoms 

obeying the octet rule [44], and Cu-II-V-S compounds obtained via partially replacing of the In atoms 

in CuInS2 with II atoms [35,67]. As far back as 1950, scientists designed quaternary chalcogenide via 

cation substitution [68]. A series of Cu-based quaternary sulfides have been synthesized for 

photocatalytic applications in recent decades, such as Cu2ZnSnS4 (CZTS), CuZnInS (CZIS), 

Cu2CdSnS4 (CCTS), Cu2ZnGeS4 (CZGS), and CuGaInS (CGIS) [69–73]. As the most researched 

quaternary chalcogenide, CZTS is an n-type semiconductor with a bandgap of 1.5 eV [31], which can 

absorb all visible light for photocatalytic applications. In addition, the other Cu-based quaternary sulfides 

also have suitable bandgaps for visible-light absorption, namely CuZn4InS6 with a bandgap of 2.23 eV, 

CZGS with a bandgap of 2.11 eV and CGIS with a bandgap of 1.82 eV (Figure 2) [39,40,74,75]. Due to 

their special band structures, high visible-light absorption efficiency and tunable surface atomic 
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arrangements, Cu-based quaternary sulfides are widely used for photocatalytic H2 production, organic 

synthesis, degradation of pollutants and PEC H2 evolution. 

 

Figure 3. (a, b) Transmission electron microscope (TEM) image and photocatalytic H2 

evolution properties of 0D CZIS nanocrystals (Reproduced from Ref. [76] with 

permission). (c, d) TEM image and photocatalytic H2 evolution properties of 1D CZIS 

nanorods (Reproduced from Ref. [77] with permission). (e, f) TEM image and 

photocatalytic H2 evolution properties of 2D CZIS nanobelts [40]. (g, h) Scanning electron 

microscope (SEM) image and photocatalytic H2 evolution properties of 3D Cu3SnS4 

flower-like microspheres (Reproduced from Ref. [78] with permission). 
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3. Photocatalytic applications of Cu-based multinary sulfide nanomaterials 

3.1. Photocatalytic H2 production 

Hydrogen energy is a kind of secondary energy with abundant sources and wide applications. 

However, almost no elementary hydrogen exists on Earth. Hydrogen can be produced by the 

decomposition of hydrogen-containing materials. Water is the most abundant hydrogen-containing 

compound on Earth, so water splitting is an efficient and sustainable method for hydrogen production. 

Photocatalytic hydrogen production is a green and sustainable hydrogen production program. In 

photocatalytic overall water splitting, water molecules are split into hydrogen and oxygen on the 

surface of photocatalysts under irradiation [8,79,80]. 

To date, various kinds of CMSs have been used for solar-to-hydrogen production. Kudo and 

coauthors first used CZIS powder for photocatalytic H2 evolution from aqueous solutions containing 

K2SO3 and K2S under visible-light irradiation [67]. With the development of nanotechnology, CMS 

nanomaterials have been designed and synthesized for solar-driven hydrogen production [81–84]. For 

example, Wu and coauthors reported the synthesis of CIS quantum dots (QDs) via an aqueous synthetic 

approach, which exhibited excellent photocatalytic hydrogen evolution performances [84]. Ning and 

coauthors successfully prepared water soluble CZIS QDs for photocatalytic hydrogen      

production (Figure 3). The CIZS QDs passivated by glutathione ligands are highly stable in aqueous 

conditions (Figure 3a) and show significant energy conversion efficiency in the visible and near-infrared 

regions with an external quantum efficiency (EQE) of ~1.5% at 650 nm (Figure 3b), which is the 

highest EQE reported in the near-infrared region [76]. In addition, many strategies have been used to 

improve the photocatalytic hydrogen production performances of CMS QDs. For instant, Pt and Au 

co-catalysts have been loaded on the surface of CZTS nanocrystals to significantly improve the 

photocatalytic H2 evolution performances [31,82,85,86]. Heterojunctions and homojunctions are 

designed in CZTS to promote the separation of photogenerated charges and then optimize their 

photocatalytic performances [43,87–89]. 

One-dimensional (1D) nanostructures exhibit novel physicochemical properties brought about by 

changes in dimension, size and composition [90–92]. In particular, the continuity of charge transport 

brings out the unique advantages of 1D materials in photocatalytic and photoelectronic applications. 

Various types of 1D semiconductor nanomaterials have been developed for photocatalytic hydrogen 

production [26,93,94]. Han and coauthors have successfully synthesized wurtzite CZIS nanorods using 

a one-pot non-injection method for solar-to-hydrogen production (Figure 3c) [32,77]. Subsequently, 

Pt and Pd4S nanoparticles were decorated on the tips of CZIS nanorods to improve their photocatalytic 

performances. The Pt and Pd4S cocatalysts can accelerate charge separation and act as active sites for 

hydrogen production, resulting in remarkably improved photocatalytic performance (Figure 3d). Low-cost 

and noble-metal-free 1D CZTS nanofibers also exhibit excellent photocatalytic hydrogen production 

performance under visible-light irradiation [95]. 

Due to the solo ability of confinement of electrons in their layer, two-dimensional (2D) 

nanomaterials possess special optical and electronic properties. In addition, 2D semiconductor 

nanomaterials can reduce the recombination rate and shorten the migration distance of photogenerated 

carriers. The layered structure facilitates the light absorption process even at low flux density, and the 

photogenerated carriers are only required to transfer a very small distance. Moreover, the large surface 

area of 2D nanomaterials favors surface reactions. Thus, 2D semiconductor nanomaterials are widely 
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used for solar-to-hydrogen production [96–99]. Wang and coauthor first reported the synthesis of 

graphene-like CZTS nanosheets using a facile template-free approach [100]. The synthesized CZTS 

nanosheets with a thickness of ca. 2–3 nm exhibited high activity and stability for solar-to-hydrogen 

production without loading cocatalysts. Note that the 2D structure can expose the highest active facet. 

We first used first-principle-density functional theory calculations to explore the reaction Gibbs  

energy (ΔGH) of the (0001), (1010) and (1011) facets of wurtzite CZIS, finding that the (0001) facet 

has the smallest binding strength to atomic hydrogen. We then designed a simple colloidal method to 

synthesize single crystalline wurtzite CZIS nanobelts (NBs) exposing the (0001) facet assisted with 

oleylamine and 1-dodecanethiol (Figure 3e). The synthesized CZIS nanobelt photocatalysts show 

excellent photocatalytic performances under visible-light irradiation without cocatalyst (Figure 3f) [40]. 

Furthermore, we doped phosphorus into 2D single crystalline CZIS sulfide nanobelts to reduce the 

recombination rate and increase the electric conductivity of photogenerated carriers, enabling 

significantly improved photocatalytic H2 evolution performance [39]. 

In addition, three-dimensional (3D) CMSs have also been developed as photocatalysts for solar-

to-hydrogen production. Xie and coauthors have constructed monodisperse CIS hierarchical 

microarchitectures for photocatalytic hydrogen production [101]. The obtained monodisperse CIS 

hierarchical photocatalyst showed an average hydrogen production rate of 59.4 µmol h−1 g−1 under 

visible light irradiation. Qian and coauthors successfully synthesized 3D-hierarchical Cu3SnS4 flower-

like microspheres via a solvothermal process (Figure 3g) [78]. The bandgap of the obtained Cu3SnS4 

microspheres is 1.38 eV, which is suitable for UV and near-IR light absorption. The 3D Cu3SnS4 

photocatalysts without cocatalyst show good photocatalytic activity with a H2 evolution rate        

of 1.1 mmol h−1 g−1 (Figure 3h). 3D Cu-based quaternary sulfides also exhibit excellent photocatalytic 

hydrogen production performances, such as CZIS hollow microspheres and hollow               

sub-microspheres [102,103].  
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3.2. Photoelectrochemical H2 evolution 

 

Figure 4. (a) TEM, selected area electron diffraction (SAED) and high-resolution    

TEM (HRTEM) images of CIS nanosheet-constructed nanowires. (b) Linear sweep 

voltammetry (LSV) curves and intensity-time (I-t) curves (at 0 V versus reversible hydrogen 

electrode (RHE)) of the pristine Cu2S nanowire arrays and CIS nanosheet-constructed 

nanowire arrays under simulated solar illumination (Reproduced from Ref. [104] with 

permission). (c) A schematic and SEM images of the ZnO/CZTS photoanode. (d) LSV, 

ABPE, chopped LSV and I-t (at 1.23 V versus RHE) curves of the three photoanodes of 

ZnO/CZTSSe, ZnO/CZTS and ZnO (Reproduced from Ref. [105] with permission). 

Photoelectrochemical water splitting provides a promising strategy to convert solar energy into 

hydrogen [106–108]. Previously, many common photovoltaic materials such as CdTe, TiO2 and Si 

were successfully used to fabricate photoelectrodes for PEC solar water splitting and obtained 

significant results [109–111]. However, the toxicity of Cd in CdTe, the narrow light absorption range 

and the high energy fabrication process of Si limited their large-scale applications in PEC water 

splitting. Thus, scientists are searching for high-efficiency, low-cost and wide light absorption materials 

for PEC applications. Copper-based multinary chalcogenides such as CIS, Cu(InGa)Se2 (CIGSe), and 

CZTS have been used as potential photocathode materials due to their excellent photovoltaic 

performances and suitable conduction band positions for water reduction [48,112–117]. For example, 

the CIGSe/CdS/ZnO photocathode exhibited excellent PEC performance with a current upping     

to 32.5 mA cm−2 at 0 VRHE [118]. Then, CMS nanomaterials were also used to fabricate photoelectrodes 

for PEC applications with the development of nanotechnology [119–121]. 

Guo and coauthors fabricated CZTS photoelectrode using colloidal CZTS nanocrystals via 

electrophoretic deposition. The obtained CZTS photoelectrode exhibited composition-dependent PEC 

hydrogen production performances [122]. The (Cu2Sn)0.45Zn1.65S3 photocathode has the highest 

photocurrent with an incident photon to current conversion efficiency (IPCE) of 3.9% at 600 nm, which 
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is higher than previously reported results of CZTS photocathodes [123]. Similarly, the CZIS 

photoelectrode fabricated by 2D CZIS nanoplates also showed a cathodic photocurrent [124]. Moon 

and coauthors synthesized chalcopyrite CIS nanorod arrays as photoelectrodes for PEC hydrogen 

production via anodic aluminum oxide template-assisted growth. The CIS nanorod arrays showed an 

obvious cathodic photocurrent response without co-catalyst loading [125]. Zhang and coauthors 

reported the synthesis of chalcopyrite CIS nanosheet-constructed nanowire arrays (NCNAs) (Figure 4a). 

The PEC properties of these NCNAs were investigated using a three-electrode system with a reference 

electrode of Ag/AgCl and counter electrode of a Pt mesh in a 1.0 M KCl aqueous solution. The CIS 

NCNA photocathode exhibited not only enhanced PEC performance, but also improved PEC  

stability (Figure 4b) [104]. Many strategies have been developed to improve the PEC performances of 

CMS photoelectrodes. For example, Sivula and coauthors used CdS, ZnSe and CdSe buffer layers to 

modify the surface of CZTS nanocrystal photocathodes to enhance the PEC performance [126]. 

Pradhan and coauthors integrated Au on CIS nanocrystals to improve the PEC performance of CIS 

nanoplates [127]. The exciton−plasmon coupling in the 0D−2D dot−disk Au-CIS heterostructures leads 

to a higher photocurrent with efficient production of H2. 

Among the widely used PEC materials, some wide-bandgap metal oxides (such as ZnO and TiO2) 

are promising stable, efficient and inexpensive anode materials for efficient PEC hydrogen  

production [128,129]. However, the large bandgaps of metal oxides limit the absorption of visible light, 

thus reducing the solar-to-hydrogen conversion efficiency. Sensitization using QDs, especially CMS 

CDs, is one of the most promising strategies to expand the light absorption range of metal oxides, 

mainly due to the suitable bandgap of CMS QDs [130–133]. Teng and coauthors used colloidal CIS 

CDs as sensitizers for TiO2 photoelectrodes [134]. The CIS-sensitized TiO2 photoelectrodes exhibited 

a maximum conversion efficiency of 1.9% at +0.23 V bias. Wang and coauthors used CZIS CDs to 

sensitize TiO2 photoelectrodes. The obtained CZIS/TiO2 photoelectrodes showed composition-dependent 

performances with a maximum photocurrent density of 3.7 mA cm−2 [135]. In addition, 2D CZIS 

nanosheet-sensitized TiO2 nanorods can also boost their solar water splitting performance [136]. Xu 

and coauthors studied the PEC performance of CZTS-sensitized ZnO nanorod photoanodes in detail. 

CZTS/ZnO photoanodes are fabricated by spin-coating CZTS nanocrystals on ZnO arrays (Figure 4c). 

The ZnO/CZTSSe photoelectrode showed excellent PEC performances with a photocurrent density  

of 6.38 mA cm−2 at 1.23 VRHE and an optimal applied bias photon-to-current efficiency (ABPE) of 2.8% 

at a bias of 0.60 V (Figure 4d) [105]. 

3.3. Photocatalytic CO2 reduction 

Excessive CO2 emissions have led to greenhouse effects and several serious environmental 

problems. Converting CO2 into hydrocarbon fuels is a promising approach to lower the CO2 

concentration in the atmosphere and can also reduce the dependence on fossil fuels. Inspired by the 

photosynthesis of plants, photocatalytic CO2 reduction to hydrocarbon fuels using solar energy is an 

attractive method for CO2 conversion and can mitigate greenhouse gas emissions. A series of 

photocatalysts have been explored for photocatalytic CO2 reduction, such as metal oxides, metal 

nitrides, and metal sulfides [137–140]. Among them, metal sulfides are excellent catalysts for 

photocatalytic or PEC CO2 reduction because the S 3p orbital occupies the less positive VB, which 

promote metal sulfides with a wider photoresponse range and higher carrier concentration, and sulfur  
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has light-effective mass carriers [141,142]. CMS semiconductors with a narrow bandgap and excellent 

light absorption abilities have been widely studied for photocatalytic and PEC CO2 reduction [143–146]. 

 

Figure 5. (a) Bandgap alignments of CuIn5S8 and Vs-CuIn5S8 single-unit-cell layers. (b) 

Photocatalytic CO2 reduction performances of CuIn5S8 (blue bars) and Vs-CuIn5S8 (red 

bars) single-unit-cell layers. (c, d) Free energy diagrams of CO2 photoreduction to CH4 for 

the Vs-CuIn5S8 and pristine CuIn5S8 single-unit-cell layers (Reproduced from Ref. [55] 

with permission). 

Furthermore, the large specific surface area of CMS nanomaterials could bring a huge number of 

reactive sites, thus leading to excellent photocatalytic performance. For example, single-phase 

Cu3SnS4 with a bandgap of 1.76 eV is a robust photocatalyst that can selectively reduce CO2 into CH4 

via a photocatalytic reaction [147]. The Cu3SnS4 photocatalyst exhibited a remarkable CH4 production 

rate of 14 μmol g−1 h−1 with 80% selectivity without a cocatalyst or scavenger. To improve the activity 

and selectivity of the Cu3SnS4 photocatalyst, Yu and coauthors constructed S vacancies in Cu3SnS4 

nanocrystals to introduce Cu(I) and Sn(II), which can effectively suppress the recombination of 

electrons and holes and improve their selectivity and reactivity [62]. The as-prepared S-vacancy 

Cu3SnS4 nanocrystals exhibited a CH4 evolution rate of 22.65 μmol g−1 h−1 with a selectivity of 83.1%, 

without any cocatalyst or scavenger. Similarly, Xie and coauthors engineered S vacancies in Cu5InS8 

single-unit-cells to improve the selectivity of photocatalytic CO2 reduction (Figure 5a–d) [55]. The 

existence of S vacancies not only reduce the overall activation energy barrier (Figure 5a), but also 

transform the endoergic protonation process to an exoergic reaction step (Figure 5c–d), which can change 

the reaction pathway to improve the selectivity of CH4. The obtained S-vacancy CuIn5S8 (Vs-CuIn5S8) 

single-unit-cell layers exhibited a CH4 evolution rate of 8.7 μmol g−1 h−1 with a near 100% selectivity 

in the photocatalytic CO2 reduction reaction (Figure 5b). Wang and coauthors constructed CuxInS5-

CuySe S-scheme heterostructures to enhance the reactivity of photocatalytic CO2 reduction [148]. The 

obtained S-scheme heterostructures showed a near 100% selectivity for photocatalytic CO2 reduction 

to methanol, with a rate of 5.250 μmol g−1 h−1. In addition, Cu-based ternary and quaternary sulfide 
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QDs are usually used as photosensitizers for photocatalytic CO2 reduction assisted by molecular 

catalysts [46,149,150]. For example, Weiss and coauthors used CIS colloidal QDs as photosensitizers 

for the photocatalytic reduction of CO2 to CO in pure water [46]. The photocatalysts exhibited 

excellent photoreduction performances with a turnover number of 72484−84101, a quantum yield   

of 0.96%–3.39%, and a CO selectivity of 99%. 

3.4. Photocatalytic organic synthesis 

 

Figure 6. (a) Photocatalytic reduction of nitrobenzene (NB) using CFS nanocrystals. (b) 

Photocatalytic reduction of NB for different reaction times. (c) Photocatalytic reduction of 

NB with different amounts of NB and catalysts. (d, e) Photocatalytic aniline yield at 

controlled temperature or light [151]. 

Photocatalytic organic synthesis is not only an attractive strategy enabling direct solar energy to 

chemical energy conversion, but it also provides a promising alternative to traditional high-energy 

chemical synthesis. Photocatalysts can absorb solar light to produce electrons and holes, thereby 

promoting chemical reactions on the surface of photocatalysts. A series of classic reactions, such as 

alcohol oxidation, hydrogenation, aerobic coupling and epoxidation have been achieved via 
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photocatalytic reactions. Note that, the photocatalyst is essential for the photocatalytic reaction. CMSs 

are widely used for photocatalytic organic synthesis, such as PEC methylcyclohexane synthesis and 

PEC ammonia synthesis [47,152]. 

The development of nanotechnology promotes the preferable use of CMS nanomaterials for 

photocatalytic organic synthesis. For example, chalcopyrite CFS nanocrystals with a tetragonal 

structure show obvious localized surface plasmon resonance at 2.4 eV, which relaxes through 

nonradiative damping, thus generating hot holes or electrons and heat. In addition, due to their strong 

coordination preference of Fe–S units for organics and hydrogen atoms, CFS nanocrystals could be 

used as an attractive plasmonic photocatalyst for photocatalytic synthesis [151,153]. Zbořil and 

coauthors used CFS nanocrystals as plasmonic photocatalysts for the selective hydrogenation of 

nitroaromatics (Figure 6a–e) [151]. Under solar light irradiation, the CFS nanocrystals work through 

the synthetic action of photothermal effects and hot holes. The CFS nanocrystal catalysts exhibited a 

higher production rate than other top-rated photo and thermal catalysts. Importantly, these plasmonic 

catalysts can be reused many times. Sun and coauthors used S-doped biochar-supported CIS QD-sensitized 

Bi2MoO6 hierarchical flowers as photocatalysts for efficient photocatalytic biorefineries [154]. The 

obtained photocatalyst exhibited a xylonic acid yield of 86.59% under visible light irradiation. Chen 

and coauthors constructed a CIS modified polymeric carbon nitride S-scheme photocatalyst for H2O2 

synthesis [155]. The optimized S-scheme photocatalyst showed a H2O2 yield of 1247.6 μmol L−1 h−1 with 

an apparent quantum yield (AQY) of 16.0% at 420 nm. 

3.5. Photocatalytic pollutant removal 

A pollutant-free environment is a fundamental need of human beings. A variety of pollutants 

effect living organisms. To solve these problems, the exploration of catalysts for the photocatalytic 

degradation of these pollutants using solar energy is necessary [156,157]. Semiconductor photocatalysis 

is an economical and effective strategy to remove pollutants. Metal oxide semiconductors are the most 

commonly used photocatalysts for photocatalytic pollutant removal [158,159]. Meanwhile, the 

greatest disadvantage of these photocatalysts is their wide bandgap which limits the absorption of 

visible light. CMS is a promising candidate for metal oxide due to its wide light absorption       

range [49,160–162]. 

Under visible light irradiation, CMS photocatalysts absorb light to produce hole-electron pairs. 

Then, the electrons and holes migrate to the surface of the photocatalysts. Finally, the hole-electron 

pairs format different reactive oxygen species via a series of redox reactions, which are the dominant 

active species in the photooxidation of pollutants (Figure 7a). CTS flower-like architectures show 

obvious photocatalytic activity for photodegradation of methylene blue [163]. CZTS nanoparticles 

with a size of 2–5 nm was used for the photocatalytic degradation of industrial waste and organic 

pollutants in water [49]. The efficiency of CZTS nanoparticles was 75% for industrial waste and 98.4% 

for organic pollutants under sunlight (Figure 7b,c). Deka and coauthors also used surfactant-free 

hydrophilic CZTS nanoparticles as photocatalysts for the photoreduction of Cr(IV) into nontoxic  

Cr(III) [164]. The high catalytic performance of the as-prepared CZTS NPs under visible light 

irradiation is attributed to the size, surface charge and electronic effect of the CZTS nanoparticles. 
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Figure 7. (a) Photocatalytic pollutant removal mechanism of CZTS. (b, c) Absorption 

spectra for CZTS (organic pollutants) in sunlight and with lens [49]. 

4. Conclusions 

Due to their suitable bandgap, adjustable atomic structure, unique electronic state, and outstanding 

optoelectronic properties, CMS nanomaterials are widely used in the field of photocatalysis and show 

exciting photocatalytic performances. This review provides a summary of recent progress on the 

photocatalytic applications of Cu-based ternary and quaternary sulfide nanomaterials, such as 

photocatalytic H2 production, CO2 reduction, organic synthesis, pollutant removal and PEC H2 production. 

Although remarkable progress has been made in the photocatalytic applications of Cu-based 

ternary and quaternary sulfide nanomaterials, there is a series of challenges that merit further 

investigation. First, the photocatalytic performances of current CMS nanomaterials are deficient for 

feasible scale applications. It is necessary to develop other CMS nanomaterials with novel structural 

features and electronic properties for photocatalytic applications. Additionally, engineering strategies 

should be developed to improve the photocatalytic performances of CMS nanomaterials, such as 

surface and defect engineering, element doping, cocatalyst loading, crystal structure engineering, and 

homojunction and heterojunction construction. Second, it is necessary to study the detailed 

photocatalytic mechanisms of how the CMS photocatalysts work using in situ methods, such as X-ray 

photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, X-ray absorption fine 
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structure (XAFS), Raman spectroscopy, and HRTEM. Deep exploration of the intrinsic mechanism of 

CMS photocatalysts will be beneficial for rational photocatalyst design to obtain higher photocatalytic 

activity. Third, the theoretical study of the CMS photocatalysis process is insufficient. Due to the 

surface atomic reconstruction and dynamic exciton behavior during the photocatalytic reaction, it is 

significant to use time-dependent density functional theory calculations to explore the excited-state 

chemistry. Furthermore, in situ characterizations assisted by calculations will provide deep insights 

into the relationship between atomic arrangements and photocatalytic properties. Fourth, the main 

products are CH4 and CO for the photocatalytic CO2 reduction of CMS nanomaterials. However, it is 

difficult to obtain high value-added C2+ products. Finally, hole-generated photocorrosion is a general 

problem for the metal sulfide photocatalysts. Further efforts should be made to develop other means 

of addressing the stability problems coming from photocorrosion. 
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