Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Geomatics, soft computing, and innovative simulator: prediction of susceptibility to landslide risk

  • Received: 31 December 2023 Revised: 07 April 2024 Accepted: 17 April 2024 Published: 20 May 2024
  • Landslides represent a growing threat among the various morphological processes that cause damage to territories. To address this problem and prevent the associated risks, it is essential to quickly find adequate methodologies capable of predicting these phenomena in advance. The following study focuses on the implementation of an experimental WebGIS infrastructure designed and built to predict the susceptibility index of a specific presumably at-risk area in real time (using specific input data) and in response to extreme weather events (such as heavy rain). The climate data values are calculated through an innovative and experimental atmospheric simulator developed by the authors, which is capable of providing data on meteorological variables with high spatial precision. To this end, the terrain is represented through cellular automata, implementing a suitable neural network useful for producing the desired output. The effectiveness of this methodology was tested on two debris flow events that occurred in the Calabria region, specifically in the province of Reggio Calabria, in 2001 and 2005, which caused extensive damage. The (forecast) results obtained with the proposed methodology were compared with the (known) historical data, confirming the effectiveness of the method in predicting (and therefore signaling the possibility of an imminent landslide event) a higher susceptibility index than the known one and one provided (to date) by the Higher Institute for Environmental Protection and Research (ISPRA), validating the result obtained through the actual subsequent occurrence of a landslide event in the area under investigation. Therefore, the method proposed today is not aimed at predicting the local movement of a small landslide area, but is primarily aimed at predicting the change or improving the variation of the landslide susceptibility index to compare the predicted value with the current one provided by the relevant bodies (ISPRA), thus signaling an alert for the entire area under investigation.

    Citation: Vincenzo Barrile, Emanuela Genovese, Francesco Cotroneo. Geomatics, soft computing, and innovative simulator: prediction of susceptibility to landslide risk[J]. AIMS Geosciences, 2024, 10(2): 399-418. doi: 10.3934/geosci.2024021

    Related Papers:

    [1] Rou Lin, Min Zhao, Jinlu Zhang . Random uniform exponential attractors for non-autonomous stochastic Schrödinger lattice systems in weighted space. AIMS Mathematics, 2023, 8(2): 2871-2890. doi: 10.3934/math.2023150
    [2] Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040
    [3] Xin Liu . Stability of random attractors for non-autonomous stochastic p-Laplacian lattice equations with random viscosity. AIMS Mathematics, 2025, 10(3): 7396-7413. doi: 10.3934/math.2025339
    [4] Xintao Li, Yunlong Gao . Random uniform attractors for fractional stochastic FitzHugh-Nagumo lattice systems. AIMS Mathematics, 2024, 9(8): 22251-22270. doi: 10.3934/math.20241083
    [5] Chunting Ji, Hui Liu, Jie Xin . Random attractors of the stochastic extended Brusselator system with a multiplicative noise. AIMS Mathematics, 2020, 5(4): 3584-3611. doi: 10.3934/math.2020233
    [6] Xintao Li, Lianbing She, Rongrui Lin . Invariant measures for stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions in weighted space. AIMS Mathematics, 2024, 9(7): 18860-18896. doi: 10.3934/math.2024918
    [7] Hamood Ur Rehman, Aziz Ullah Awan, Sayed M. Eldin, Ifrah Iqbal . Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise. AIMS Mathematics, 2023, 8(9): 21606-21621. doi: 10.3934/math.20231101
    [8] Xiaobin Yao . Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping. AIMS Mathematics, 2020, 5(3): 2577-2607. doi: 10.3934/math.2020169
    [9] Xiao Bin Yao, Chan Yue . Asymptotic behavior of plate equations with memory driven by colored noise on unbounded domains. AIMS Mathematics, 2022, 7(10): 18497-18531. doi: 10.3934/math.20221017
    [10] Li Yang . Pullback random attractors of stochastic strongly damped wave equations with variable delays on unbounded domains. AIMS Mathematics, 2021, 6(12): 13634-13664. doi: 10.3934/math.2021793
  • Landslides represent a growing threat among the various morphological processes that cause damage to territories. To address this problem and prevent the associated risks, it is essential to quickly find adequate methodologies capable of predicting these phenomena in advance. The following study focuses on the implementation of an experimental WebGIS infrastructure designed and built to predict the susceptibility index of a specific presumably at-risk area in real time (using specific input data) and in response to extreme weather events (such as heavy rain). The climate data values are calculated through an innovative and experimental atmospheric simulator developed by the authors, which is capable of providing data on meteorological variables with high spatial precision. To this end, the terrain is represented through cellular automata, implementing a suitable neural network useful for producing the desired output. The effectiveness of this methodology was tested on two debris flow events that occurred in the Calabria region, specifically in the province of Reggio Calabria, in 2001 and 2005, which caused extensive damage. The (forecast) results obtained with the proposed methodology were compared with the (known) historical data, confirming the effectiveness of the method in predicting (and therefore signaling the possibility of an imminent landslide event) a higher susceptibility index than the known one and one provided (to date) by the Higher Institute for Environmental Protection and Research (ISPRA), validating the result obtained through the actual subsequent occurrence of a landslide event in the area under investigation. Therefore, the method proposed today is not aimed at predicting the local movement of a small landslide area, but is primarily aimed at predicting the change or improving the variation of the landslide susceptibility index to compare the predicted value with the current one provided by the relevant bodies (ISPRA), thus signaling an alert for the entire area under investigation.



    Lattice dynamical systems arise from a variety of applications in electrical engineering, biology, chemical reaction, pattern formation and so on, see, e.g., [4,7,14,19,33]. Many researchers have discussed broadly the deterministic models in [6,12,34,39], etc. Stochastic lattice equations, driven by additive independent white noise, was discussed for the first time in [2], followed by extensions in [8,13,15,16,21,23,27,32,35,36,37,38,40].

    In this paper, we will study the long term behavior of the following second order non-autonomous stochastic lattice system driven by additive white noise: for given τR, t>τ and iZ,

    {¨u+νA˙u+h(˙u)+Au+λu+f(u)=g(t)+a˙ω(t),u(τ)=(uτi)iZ=uτ,˙u(τ)=(u1τi)iZ=u1τ, (1.1)

    where u=(ui)iZ is a sequence in l2, ν and λ are positive constants, ˙u=(˙ui)iZ and ¨u=(¨ui)iZ denote the fist and the second order time derivatives respectively, Au=((Au)i)iZ, A˙u=((A˙u)i)iZ, A is a linear operators defined in (2.2), a=(ai)iZl2, f(u)=(fi(ui))iZ and h(˙u)=(hi(˙ui))iZ satisfy certain conditions, g(t)=(gi(t))iZL2loc(R,l2) is a given time dependent sequence, and ω(t)=W(t,ω) is a two-sided real-valued Wiener process on a probability space.

    The approximation we use in the paper was first proposed in [18,22] where the authors investigated the chaotic behavior of random equations driven by Gδ(θtω). Since then, their work was extended by many scholars. To the best of my knowledge, there are three forms of Wong-Zakai approximations Gδ(θtω) used recenly, Euler approximation of Brownian [3,10,17,20,25,28,29,30], Colored noise [5,11,26,31] and Smoothed approximation of Brownian motion by mollifiers [9]. In this paper, we will focus on Euler approximation of Brownian and compare the long term behavior of system (1.1) with pathwise deterministic system given by

    {¨uδ+νA˙uδ+h(˙uδ)+Auδ+λuδ+f(uδ)=g(t)+aGδ(θtω),uδ(τ)=(uδτi)iZ=uδτ,˙uδ(τ)=(uδ,1τi)iZ=uδ,1τ, (1.2)

    for δR with δ0, τR, t>τ and iZ, where Gδ(θtω) is defined in (3.2). Note that the solution of system (1.2) is written as uδ to show its dependence on δ.

    This paper is organized as follows. In Section 2, we prove the existence and uniqueness of random attractors of system (1.1). Section 3 is devoted to consider the the Wong-Zakai approximations associated with system (1.1). In Section 4, we establish the convergence of solutions and attractors for approximate system (1.2) when δ0.

    Throughout this paper, the letter c and ci(i=1,2,) are generic positive constants which may change their values from line to line.

    In this section, we will define a continuous cocycle for second order non-autonomous stochastic lattice system (1.1), and then prove the existence and uniqueness of pullback attractors.

    A standard Brownian motion or Wiener process (Wt)tR (i.e., with two-sided time) in R is a process with W0=0 and stationary independent increments satisfying WtWsN(0,|ts|I). F is the Borel σ-algebra induced by the compact-open topology of Ω, and P is the corresponding Wiener measure on (Ω,F), where

    Ω={ωC(R,R):ω(0)=0},

    the probability space (Ω,F,P) is called Wiener space. Define the time shift by

    θtω()=ω(+t)ω(t),ωΩ, tR.

    Then (Ω,F,P,{θt}tR) is a metric dynamical system (see [1]) and there exists a {θt}tR-invariant subset ˜ΩΩ of full measure such that for each ωΩ,

    ω(t)t0ast±. (2.1)

    For the sake of convenience, we will abuse the notation slightly and write the space ˜Ω as Ω.

    We denote by

    lp={u|u=(ui)iZ,uiR, iZ|ui|p<+},

    with the norm as

    upp=iZ|ui|p.

    In particular, l2 is a Hilbert space with the inner product (,) and norm given by

    (u,v)=iZuivi,u2=iZ|ui|2,

    for any u=(ui)iZ, v=(vi)iZl2.

    Define linear operators B, B, and A acting on l2 in the following way: for any u=(ui)iZl2,

    (Bu)i=ui+1ui,(Bu)i=ui1ui,

    and

    (Au)i=2uiui+1ui1. (2.2)

    Then we find that A=BB=BB and (Bu,v)=(u,Bv) for all u,vl2.

    Also, we let Fi(s)=s0fi(r)dr, h(˙u)=(hi(˙ui))iZ, f(u)=(fi(ui))iZ with fi,hiC1(R,R) satisfy the following assumptions:

    |fi(s)|α1(|s|p+|s|), (2.3)
    sfi(s)α2Fi(s)α3|s|p+1, (2.4)

    and

    hi(0)=0,0<h1hi(s)h2,sR, (2.5)

    where p>1, αi and hj are positive constants for i=1,2,3 and j=1,2.

    In addition, we let

    β=h1λ4λ+h22,β<1ν, (2.6)

    and

    σ=h1λ4λ+h22(h2+4λ+h22). (2.7)

    For any u,vl2, we define a new inner product and norm on l2 by

    (u,v)λ=(1νβ)(Bu,Bv)+λ(u,v),u2λ=(u,u)λ=(1νβ)Bu2+λu2.

    Denote

    l2=(l2,(,),),l2λ=(l2,(,)λ,λ).

    Then the norms and λ are equivalent to each other.

    Let E=l2λ×l2 endowed with the inner product and norm

    (ψ1,ψ2)E=(u(1),u(2))λ+(v(1),v(2)),ψ2E=u2λ+v2,

    for ψj=(u(j),v(j))T=((u(j)i),(v(j)i))TiZE, j=1,2,ψ=(u,v)T=((ui),(vi))TiZE.

    A family D={D(τ,ω):τR,ωΩ} of bounded nonempty subsets of E is called tempered (or subexponentially growing) if for every ϵ>0, the following holds:

    lim

    where \|D\| = \mathop{\sup}\limits_{x\in D}\|x\|_{E} . In the sequel, we denote by \mathcal{D} the collection of all families of tempered nonempty subsets of E , i.e.,

    \begin{equation} \nonumber \mathcal{D} = \{D = \{D(\tau,\omega):\tau\in\mathbb{R},\omega\in\Omega\}:D\; \text{is tempered in}\; E\}. \end{equation}

    The following conditions will be needed for g when deriving uniform estimates of solutions, for every \tau\in\mathbb{R} ,

    \begin{equation} \int_{-\infty}^{\tau}e^{\gamma s}\|g(s)\|^{2}ds < \infty, \end{equation} (2.8)

    and for any \varsigma > 0

    \begin{equation} \lim\limits_{t\rightarrow -\infty}e^{\varsigma t}\int_{-\infty}^{0}e^{ \gamma s}\|g(s+t)\|^{2}ds = 0, \end{equation} (2.9)

    where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} .

    Let \bar{v} = \dot{u}+\beta u and \bar{\varphi} = (u, \bar{v})^{T} , then system (1.1) can be rewritten as

    \begin{eqnarray} \dot{\bar{\varphi}}+L_{1}(\bar{\varphi}) = H_{1}(\bar{\varphi})+G_{1}(\omega), \end{eqnarray} (2.10)

    with initial conditions

    \bar{\varphi}_{\tau} = (u_{\tau},\bar{v}_{\tau})^{T} = (u_{\tau},u_{\tau}^{1}+\beta u_{\tau})^{T},

    where

    L_{1}(\bar{\varphi}) = \left( \begin{array}{ccc} \beta u-\bar{v} \\ (1-\nu\beta)Au+\nu A\bar{v}+\lambda u +\beta^{2} u-\beta\bar{v} \end{array} \right) + \left( \begin{array}{ccc} 0 \\ h(\bar{v}-\beta u) \end{array} \right) ,
    H_{1}(\bar{\varphi}) = \left( \begin{array}{ccc} 0 \\ -f(u)+g(t) \end{array} \right),\; \; \; \; G_{1}(\omega) = \left( \begin{array}{ccc} 0 \\ a\dot\omega(t) \end{array} \right) .

    Denote

    v(t) = \bar{v}(t)-a\omega(t) \; \; \text{and}\; \; \varphi = (u,v)^{T}.

    By (2.10) we have

    \begin{eqnarray} \dot{\varphi}+L(\varphi) = H(\varphi)+G(\omega), \end{eqnarray} (2.11)

    with initial conditions

    \varphi_{\tau} = (u_{\tau},v_{\tau})^{T} = (u_{\tau},u_{\tau}^{1}+\beta u_{\tau}-a\omega(\tau))^{T},

    where

    L(\varphi) = \left( \begin{array}{ccc} \beta u-v \\ (1-\nu\beta) Au+\nu Av+\lambda u+\beta^{2} u-\beta v \end{array} \right) + \left( \begin{array}{ccc} 0 \\ h(v-\beta u+a\omega(t)) \end{array} \right) ,
    H(\varphi) = \left( \begin{array}{ccc} 0 \\ -f(u)+g(t) \end{array} \right),\; \; \; \; G(\omega) = \left( \begin{array}{ccc} a\omega(t)\\ \beta a\omega(t)-\nu Aa\omega(t) \end{array} \right) .

    Note that system (2.11) is a deterministic functional equation and the nonlinearity in (2.11) is locally Lipschitz continuous from E to E . Therefore, by the standard theory of functional differential equations, system (2.11) is well-posed. Thus, we can define a continuous cocycle \Phi_{0}:\mathbb{R}^{+}\times\mathbb{R}\times \Omega\times E\rightarrow E associated with system (2.10), where for \tau\in\mathbb{R} , t\in\mathbb{R}^{+} and \omega\in\Omega

    \begin{equation} \begin{split}\nonumber \Phi_{0}(t,\tau,\omega,\bar{\varphi}_{\tau})& = \bar{\varphi}(t+\tau,\tau,\theta_{-\tau}\omega,\bar{\varphi}_{\tau})\\ & = (u(t+\tau,\tau,\theta_{-\tau}\omega,u_{\tau}),\bar{v}(t+\tau,\tau,\theta_{-\tau}\omega,\bar{v}_{\tau}))^{T}\\ & = (u(t+\tau,\tau,\theta_{-\tau}\omega,u_{\tau}),v(t+\tau,\tau,\theta_{-\tau}\omega,v_{\tau})+a(\omega(t)-\omega(-\tau)))^{T}\\ & = \varphi(t+\tau,\tau,\theta_{-\tau}\omega,\varphi_{\tau})+(0,a(\omega(t)-\omega(-\tau)))^{T}, \end{split} \end{equation}

    where v_{\tau} = \bar{v}_{\tau}+a\omega(-\tau) .

    Lemma 2.1. Suppose that (2.3)–(2.8) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega , and T > 0 , there exists c = c(\tau, \omega, T) > 0 such that for all t\in[\tau, \tau+T] , the solution \varphi of system (2.11) satisfies

    \begin{equation} \begin{split}\nonumber \|\varphi(t,\tau,\omega,\varphi_{\tau})\|^{2}_{E} +\int_{\tau}^{t}\|\varphi(s,\tau,\omega,\varphi_{\tau})\|^{2}_{E}ds \leq& c\int^{t}_{\tau}\big(\|g(s)\|^{2}+|\omega(s)|^{2}+| \omega(s)|^{p+1}\big)ds\\ &+c\big(\|\varphi_{\tau}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau,i})\big). \end{split} \end{equation}

    Proof. Taking the inner product (\cdot, \cdot)_{E} on both side of the system (2.11) with \varphi , it follows that

    \begin{equation} \begin{split} &\frac{1}{2}\frac{d}{dt}\|\varphi\|^{2}_{E}+(L(\varphi),\varphi)_{E} = (H(\varphi),\varphi)_{E}+(G(\omega),\varphi)_{E}. \end{split} \end{equation} (2.12)

    For the second term on the left-hand side of (2.12), we have

    \begin{equation} \begin{split}\nonumber (L(\varphi),\varphi)_{E} = \beta\|u\|^{2}_{\lambda}+\beta^{2}(u,v)-\beta\|v\|^{2}+\nu(Av,v)+(h(v-\beta u+a\omega(t)),v). \end{split} \end{equation}

    By the mean value theorem and (2.5), there exists \xi_{i}\in(0, 1) such that

    \begin{equation} \begin{split}\nonumber &\beta^{2}(u,v)+(h(v-\beta u+a\omega(t)),v)\\ & = \beta^{2}(u,v) +\sum\limits_{i\in\mathbb{Z}}h'_{i}(\xi_{i}(v_{i}-\beta u_{i}+a_{i}\omega(t)))(v_{i}-\beta u_{i}+a_{i}\omega(t))v_{i}\\ &\geq (\beta^{2}-h_{2}\beta)\|u\|\|v\|+h_{1}\|v\|^{2}-h_{2}|(a\omega(t),v)|. \end{split} \end{equation}

    Then

    \begin{equation} \begin{split}\nonumber (L(\varphi),\varphi)_{E}-\sigma\|\varphi\|^{2}_{E}-\frac{h_{1}}{2}\|v\|^{2} \geq &(\beta-\sigma)\|u\|^{2}_{\lambda}+(\frac{h_{1}}{2}-\beta-\sigma)\|v\|^{2}\\&- \frac{\beta h_{2}}{\sqrt{\lambda}}\|u\|_{\lambda}\|v\|-h_{2}|(a\omega(t),v)|, \end{split} \end{equation}

    which along with (2.6) and (2.7) implies that

    \begin{equation} \begin{split} (L(\varphi),\varphi)_{E}\geq\sigma\|\varphi\|^{2}_{E}+\frac{h_{1}}{2}\|v\|^{2} -\frac{\sigma+h_{1}}{6}\|v\|^{2}-c|\omega(t)|^{2}\|a\|^{2}. \end{split} \end{equation} (2.13)

    As to the first term on the right-hand side of (2.12), by (2.3) and (2.4) we get

    \begin{equation} \begin{split} (H(\varphi),\varphi)_{E}& = (-f(u),\dot{u}+\beta u-a\omega(t))+(g(t),v)\\ &\leq-\frac{d}{dt}\big(\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i})\big)-\alpha_{2}\beta\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i}) +\alpha_{1}\sum\limits_{i\in\mathbb{Z}}(|u_{i}|^{p}+|u_{i}|)|a_{i}\omega(t)|+(g(t),v)\\ &\leq-\frac{d}{dt}\big(\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i})\big)-\frac{\alpha_{2}\beta}{p+1}\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i}) +c|\omega(t)|^{p+1}\|a\|^{p+1}\\ &\quad+\frac{\sigma\lambda}{4}\|u\|^{2}+c\|a\|^{2}|\omega(t)|^{2}+\frac{\sigma+h_{1}}{6}\|v\|^{2}+c\|g(t)\|^{2}. \end{split} \end{equation} (2.14)

    The last term of (2.12) is bounded by

    \begin{equation} \begin{split} (G(\omega),\varphi)_{E}& = \omega(t)(a,u)_{\lambda}+\beta \omega(t)(a,v)-\nu\omega(t)(Aa,v)\\ &\leq \frac{\sigma}{4}\|u\|^{2}_{\lambda}+\frac{1}{\sigma}\|a\|^{2}_{\lambda}|\omega(t)|^{2}+\frac{\sigma+h_{1}}{6}\|v\|^{2}+c|\omega(t)|^{2}\|a\|^{2}. \end{split} \end{equation} (2.15)

    It follows from (2.12)–(2.15) that

    \begin{equation} \begin{split} &\frac{d}{dt}\Big(\|\varphi\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{i})\Big) +\gamma\Big(\|\varphi\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{i})\Big)+\gamma\|\varphi\|_{E}^{2}\\ &\leq c\Big(\|g(t)\|^{2}+|\omega(t)|^{2}+|\omega(t)|^{p+1}\Big), \end{split} \end{equation} (2.16)

    where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} . Multiplying (2.16) by e^{\gamma t} and then integrating over (\tau, t) with t\geq\tau , we get for every \omega\in\Omega

    \begin{equation} \begin{split} &\|\varphi(t,\tau,\omega,\varphi_{\tau})\|_{E}^{2} +\gamma\int^{t}_{\tau}e^{\gamma(s-t)}\|\varphi(s,\tau,\omega,\varphi_{\tau})\|_{E}^{2}ds\\ &\leq e^{\gamma(\tau-t)}\Big(\|\varphi_{\tau}\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau,i})\Big)+c\int^{t}_{\tau}e^{\gamma(s-t)}\Big(\|g(s)\|^{2}+|\omega(s)|^{2}+|\omega(s)|^{p+1}\Big)ds, \end{split} \end{equation} (2.17)

    which implies desired result.

    Lemma 2.2. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle \Phi_{0} associated with system (2.10) has a closed measurable \mathcal{D} -pullback absorbing set K_{0} = \{K_{0}(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} , where for every \tau\in\mathbb{R} and \omega\in\Omega

    \begin{equation} \begin{split} K_{0}(\tau,\omega) = \{\bar{\varphi}\in E:\|\bar{\varphi}\|^{2}_{E}\leq R_{0}(\tau,\omega)\}, \end{split} \end{equation} (2.18)

    where \bar{\varphi}_{\tau-t}\in D(\tau-t, \theta_{-t}\omega) and R_{0}(\tau, \omega) is given by

    \begin{equation} \begin{split} R_{0}(\tau,\omega) = c+c|\omega(-\tau)|^{2}+c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\omega(s)-\omega(-\tau)|^{2}+| \omega(s)-\omega(-\tau)|^{p+1}\Big)ds, \end{split} \end{equation} (2.19)

    where c is a positive constant independent of \tau , \omega and \mathcal{D} .

    Proof. By (2.17), we get for every \tau\in\mathbb{R} , t\in\mathbb{R}^{+} and \omega\in\Omega

    \begin{equation} \begin{split} &\|\varphi(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E}+\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E}ds\\ &\leq e^{-\gamma t}\Big(\|\varphi_{\tau-t}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big)\\ &\quad +c\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\Big(\|g(s)\|^{2}+|\omega(s-\tau)-\omega(-\tau)|^{2}+|\omega(s-\tau)-\omega(-\tau)|^{p+1}\Big)ds\\ &\leq e^{-\gamma t}\Big(\|\varphi_{\tau-t}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big)\\ &\quad +c\int^{0}_{-t}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\omega(s)-\omega(-\tau)|^{2}+| \omega(s)-\omega(-\tau)|^{p+1}\Big)ds. \end{split} \end{equation} (2.20)

    By (2.1) and (2.8), the last integral on the right-hand side of (2.20) is well defined. For any s\geq \tau-t ,

    \begin{equation} \begin{split}\nonumber &\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t}) = \varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})+(0,a(\omega(s-\tau)-\omega(-\tau)))^{T}, \end{split} \end{equation}

    which along with (2.20) implies that

    \begin{equation} \begin{split} &\|\bar{\varphi}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E} +\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds\\ &\leq2\|\varphi(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E} +2\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E}ds\\ &\quad+2\|a\|^{2}\Big(|\omega(-\tau)|^{2}+\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}|\omega(s-\tau)-\omega(-\tau)|^{2}ds\Big)\\ &\leq 4e^{-\gamma t}\Big(\|\bar{\varphi}_{\tau-t}\|^{2}_{E}+\|a\|^{2}|\omega(-t)-\omega(-\tau)|^{2}+\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big)+c|\omega(-\tau)|^{2}\\ &\quad +c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\omega(s)-\omega(-\tau)|^{2}+| \omega(s)-\omega(-\tau)|^{p+1}\Big)ds.\\ \end{split} \end{equation} (2.21)

    By (2.3) and (2.4) we have

    \begin{equation} \begin{split} \sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\leq \frac{1}{\alpha_{2}}\sum\limits_{i\in\mathbb{Z}} f_{i}(u_{\tau-t,i})u_{\tau-t, i} \leq\frac{1}{\alpha_{2}}\max\limits_{-\|u_{\tau-t}\|\leq s\leq\|u_{\tau-t}\|}|f'_{i}(s)|\|u_{\tau-t}\|^{2}. \end{split} \end{equation} (2.22)

    Using \bar{\varphi}_{\tau-t}\in D(\tau-t, \theta_{-t}\omega) , (2.1) and (2.22), we find

    \begin{equation} \begin{split} \limsup\limits_{t\rightarrow +\infty}4e^{-\gamma t}\Big(\|\bar{\varphi}_{\tau-t}\|^{2}_{E}+\|a\|^{2}|\omega(-t)-\omega(-\tau)|^{2}+\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big) = 0, \end{split} \end{equation} (2.23)

    which along with (2.21) implies that there exists T = T(\tau, \omega, D) > 0 such that for all t\geq T ,

    \begin{equation} \begin{split} &\|\bar{\varphi}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E} +\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds\\ &\leq c+c|\omega(-\tau)|^{2}+c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\omega(s)-\omega(-\tau)|^{2}+| \omega(s)-\omega(-\tau)|^{p+1}\Big)ds, \end{split} \end{equation} (2.24)

    where c is a positive constant independent of \tau , \omega and D . Note that K_{0} given by (2.18) is closed measurable random set in E . Given \tau\in\mathbb{R} , \omega\in\Omega , and D\in\mathcal{D} , it follows from (2.24) that for all t\geq T ,

    \begin{equation} \begin{split} \Phi_{0}(t,\tau-t,\theta_{-t}\omega,D(\tau-t,\theta_{-t}\omega))\subseteq K_{0}(\tau,\omega), \end{split} \end{equation} (2.25)

    which implies that K_{0} pullback attracts all elements in \mathcal{D} . By (2.1) and (2.9), one can easily check that K_{0} is tempered, which along with (2.25) completes the proof.

    Next, we will get uniform estimates on the tails of solutions of system (2.10).

    Lemma 2.3. Suppose that (2.3)–(2.9) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega , D = \{D(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} and \varepsilon > 0 , there exist T = T(\tau, \omega, D, \varepsilon) > 0 and N = N(\tau, \omega, \varepsilon) > 0 such that for all t\geq T , the solution \bar{\varphi} of system (2.10) satisfies

    \begin{equation} \begin{split}\nonumber \sum\limits_{|i|\geq N}|\bar{\varphi}_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t,i})|_{E}^{2}\leq\varepsilon,\\ \end{split} \end{equation}

    where \bar{\varphi}_{\tau-t}\in D(\tau-t, \theta_{-t}\omega) and |\bar{\varphi}_{i}|_{E}^{2} = (1-\nu\beta)|Bu|_{i}^{2}+\lambda |u_{i}|^{2}+|\bar{v}_{i}|^{2} .

    Proof. Let \eta be a smooth function defined on \mathbb{R}^{+} such that 0\leq\eta(s)\leq1 for all s\in\mathbb{R}^{+} , and

    \begin{equation} \nonumber \eta(s) = \left\{\begin{array}{l} 0,\; \; 0\leq s\leq1;\\ 1,\; \; s\geq2. \end{array}\right. \end{equation}

    Then there exists a constant C_{0} such that |\eta'(s)|\leq C_{0} for s\in\mathbb{R}^{+} . Let k be a fixed positive integer which will be specified later, and set x = (x_{i})_{i\in\mathbb{Z}} , y = (y_{i})_{i\in\mathbb{Z}} with x_{i} = \eta(\frac{|i|}{k})u_{i} , y_{i} = \eta(\frac{|i|}{k})v_{i} . Note \psi = (x, y)^{T} = ((x_{i}), (y_{i}))^{T}_{i\in\mathbb{Z}} . Taking the inner product of system (2.11) with \psi , we have

    \begin{equation} \begin{split} (\dot{\varphi},\psi)_{E}+(L(\varphi),\psi)_{E} = (H(\varphi),\psi)_{E}+(G,\psi)_{E}. \end{split} \end{equation} (2.26)

    For the first term of (2.26), we have

    \begin{equation} \begin{split} (\dot{\varphi},\psi)_{E}& = (1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(B\dot{u})_{i}(Bx)_{i}+\lambda\sum\limits_{i\in\mathbb{Z}}\dot{u}_{i}x_{i} +\sum\limits_{i\in\mathbb{Z}}\dot{v}_{i}y_{i}\\ & = \frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E} +(1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(B\dot{u})_{i}\Big((Bx)_{i}-\eta(\frac{|i|}{k})(Bu)_{i}\Big)\\ &\geq\frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E} -\frac{(1-\nu\beta)C_{0}}{k}\sum\limits_{i\in\mathbb{Z}}|(B(v-\beta u+a\omega(t))_{i}||u_{i+1}|\\ &\geq\frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E} -\frac{c}{k}\|\varphi\|^{2}_{E}-\frac{c}{k}|\omega(t)|^{2}\|a\|^{2}, \end{split} \end{equation} (2.27)

    where |\varphi_{i}|_{E}^{2} = (1-\nu\beta)|Bu|_{i}^{2}+\lambda |u_{i}|^{2}+|v_{i}|^{2} . As to the second term on the left-hand side of (2.26), we get

    \begin{equation} \begin{split}\nonumber (L(\varphi),\psi)_{E} = &\beta(1-\nu\beta)(Au,x)+(1-\nu\beta)((Au,y)-(Av,x))+\nu(Av,y)+\lambda\beta(u,x)\\ &+\beta^{2}(u,y)-\beta(v,y)+(h(v-\beta u+a\omega(t)),y). \end{split} \end{equation}

    It is easy to check that

    \begin{equation} \begin{split}\nonumber (Au,x) = \sum\limits_{i\in\mathbb{Z}}(Bu)_{i}\Big(\eta(\frac{|i|}{k})(Bu)_{i}+(Bx)_{i}-\eta(\frac{|i|}{k})(Bu)_{i}\Big) \geq\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|Bu|_{i}^{2}-\frac{2C_{0}}{k}\|u\|^{2}, \end{split} \end{equation}
    \begin{equation} \begin{split}\nonumber (Av,y) = \sum\limits_{i\in\mathbb{Z}}(Bv)_{i}\Big(\eta(\frac{|i|}{k})(Bv)_{i}+(By)_{i}-\eta(\frac{|i|}{k})(Bv)_{i}\Big) \geq\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|Bv|_{i}^{2}-\frac{2C_{0}}{k}\|v\|^{2}, \end{split} \end{equation}

    and

    \begin{equation} \begin{split}\nonumber (Au,y)-(Av,x)\geq-\frac{C_{0}}{k}\sum\limits_{i\in\mathbb{Z}}|(Bu)_{i}||v_{i+1}|-\frac{C_{0}}{k}\sum\limits_{i\in\mathbb{Z}}|(Bv)_{i}||u_{i+1}| \geq-\frac{2 C_{0}}{k}(\|u\|^{2}+\|v\|^{2}). \end{split} \end{equation}

    By the mean value theorem and (2.5), there exists \xi_{i}\in(0, 1) such that

    \begin{equation} \begin{split}\nonumber &\beta^{2}(u,y)+(h(v-\beta u+a\omega(t)),y)\\ & = \beta^{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})u_{i}v_{i} +\sum\limits_{i\in\mathbb{Z}}h'_{i}(\xi_{i}(v_{i}-\beta u_{i}+a_{i}\omega(t)))(v_{i}-\beta u_{i}+a_{i}\omega(t))\eta(\frac{|i|}{k})v_{i}\\ &\geq \beta(\beta-h_{2})\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|u_{i}v_{i}|+h_{1}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2} -h_{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}a_{i}\omega(t)|. \end{split} \end{equation}

    Then

    \begin{equation} \begin{split}\nonumber &(L(\varphi),\varphi)_{E}-\sigma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E} -\frac{h_{1}}{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2}\\ &\geq (\beta-\sigma)\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big((1-\nu\beta)|Bu|_{i}^{2}+\lambda u_{i}^{2}\Big)+(\frac{h_{1}}{2}-\beta-\sigma)\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2}\\ &\quad-\frac{\beta h_{2}}{\sqrt{\lambda}}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|\Big((1-\nu\beta)(Bu)_{i}^{2}+\lambda| u_{i}|^{2}\Big)^{\frac{1}{2}}-h_{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}a_{i}\omega(t)|-\frac{c}{k}\|\varphi\|^{2}_{E}, \end{split} \end{equation}

    which along with (2.6) and (2.7) implies that

    \begin{equation} \begin{split} (L(\varphi),\varphi)_{E}&\geq\sigma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E}+ \frac{h_{1}}{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2}-\frac{c}{k}\|\varphi\|^{2}_{E}-h_{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}a_{i}\omega(t)|\\ &\geq\sigma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E}+ \frac{h_{1}}{6}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2}-\frac{c}{k}\|\varphi\|^{2}_{E} -c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}|\omega(t)|^{2}. \end{split} \end{equation} (2.28)

    As to the first term on the right-hand side of (2.26), by (2.3) and (2.4)we get

    \begin{equation} \begin{split} (H(\varphi),\psi)_{E}& = -\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})f_{i}(u_{i})(\dot{u_{i}}+\beta u_{i}-a_{i}\omega(t))+\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})g_{i}(t)v_{i}\\ &\leq-\frac{d}{dt}\big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})F_{i}(u_{i})\big) -\frac{\alpha_{2}\beta}{p+1}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})F_{i}(u_{i})\\ &\quad+c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\omega(t)|^{p+1}|a_{i}|^{p+1} +\frac{\sigma\lambda}{4}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|u_{i}|^{2}\\ &\quad+c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}|\omega(t)|^{2} +\frac{\sigma}{6} \sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2} +c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|g_{i}(t)|^{2}. \end{split} \end{equation} (2.29)

    For the last term of (2.26), we have

    \begin{equation} \begin{split} (G,\psi)_{E}& = \omega(t)(a,x)_{\lambda}+\beta \omega(t)(a,y)-\nu\omega(t)(Aa,y)\\ & = \omega(t)(1-\nu\beta)(Ba,Bx)-\nu\omega(t)(Ba,By)+\lambda\omega(t)(a,x)+\beta \omega(t)(a,y), \end{split} \end{equation} (2.30)

    As to the first two terms on the right-hand side of (2.30), we get

    \begin{equation} \begin{split} \omega(t)(1-\nu\beta)(Ba,Bx)& = \omega(t)(1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(a_{i+1}-a_{i})\Big(\eta(\frac{|i+1|}{k})u_{i+1}-\eta(\frac{|i|}{k})u_{i}\Big)\\ &\leq\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i+1|}{k})u_{i+1}^{2}\Big)^{\frac{1}{2}}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i+1|}{k})\big(\omega(t)(1-\nu\beta)(a_{i+1}-a_{i})\big)^{2}\Big)^{\frac{1}{2}}\\ &\quad+\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})u_{i}^{2}\Big)^{\frac{1}{2}}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(\omega(t)(1-\nu\beta)(a_{i+1}-a_{i})\big)^{2}\Big)^{\frac{1}{2}}\\ &\leq \frac{\sigma\lambda}{8}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})u_{i}^{2}+c|\omega(t)|^{2}\sum\limits_{|i|\geq k}a_{i}^{2}, \end{split} \end{equation} (2.31)

    and

    \begin{equation} \begin{split} -\nu\omega(t)(Ba,By)& = -\nu\omega(t)\sum\limits_{i\in\mathbb{Z}}(a_{i+1}-a_{i})\Big(\eta(\frac{|i+1|}{k})v_{i+1}-\eta(\frac{|i|}{k})v_{i}\Big)\\ &\leq \frac{\sigma}{6}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})v_{i}^{2}+c|\omega(t)|^{2}\sum\limits_{|i|\geq k}a_{i}^{2}. \end{split} \end{equation} (2.32)

    The last two terms of (2.30) is bounded by

    \begin{equation} \begin{split} \lambda\omega(t)(a,x)+\beta \omega(t)(a,y)\leq \frac{\sigma\lambda}{8}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})u_{i}^{2}+\frac{\sigma+h_{1}}{6}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})v_{i}^{2} +c|\omega(t)|^{2}\sum\limits_{|i|\geq k}a_{i}^{2}. \end{split} \end{equation} (2.33)

    It follows from (2.26)–(2.33) that

    \begin{equation} \begin{split} &\frac{d}{dt}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{i}|_{E}^{2} +2 F_{i}(u_{i})\big)\Big) +\gamma\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{i}|_{E}^{2} +2 F_{i}(u_{i})\big)\Big)+\gamma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi|_{E}^{2}\\ &\leq\frac{c}{k}\|\varphi\|^{2}_{E}+\frac{c}{k}|\omega(t)|^{2} +c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}|\omega(t)|^{p+1}+c\sum\limits_{|i|\geq k}|g_{i}(t)|^{2}+c\sum\limits_{|i|\geq k}|a_{i}|^{2}|\omega(t)|^{2}, \end{split} \end{equation} (2.34)

    where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} . Multiplying (2.34) by e^{\gamma t} , replacing \omega by \theta_{-\tau}\omega and integrating on (\tau-t, \tau) with t\in\mathbb{R}^{+} , we get for every \omega\in\Omega

    \begin{equation} \begin{split} &\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\varphi_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t,i})|^{2}_{E} +2F_{i}(u_{i}(\tau,\tau-t,\theta_{-\tau}\omega,u_{\tau-t,i}))\Big)\\ &\leq e^{-\gamma t}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{\tau-t,i}|^{2}_{E}+2 F_{i}(u_{\tau-t,i})\big)\Big) +\frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E}ds\\ &\quad+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds +c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{p+1}ds\\ &\quad+c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds+c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds. \end{split} \end{equation} (2.35)

    For any s\geq \tau-t ,

    \begin{equation} \begin{split}\nonumber &\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t}) = \varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})+(0,a(\omega(s-\tau)-\omega(-\tau)))^{T}, \end{split} \end{equation}

    which along with (2.35) implies that

    \begin{equation} \begin{split} &\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\bar{\varphi}_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t,i})|^{2}_{E} +2F_{i}(u_{i}(\tau,\tau-t,\theta_{-\tau}\omega,u_{\tau-t,i}))\Big)\\ &\leq 4e^{-\gamma t}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\bar{\varphi}_{\tau-t,i}|^{2}_{E}+|a_{i}|^{2}|\omega(-t)-\omega(-\tau)|^{2}+ F_{i}(u_{\tau-t,i})\big)\Big)\\ &\quad+\frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds\\ &\quad +c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{p+1}ds+c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds\\ &\quad+c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds+2\sum\limits_{|i|\geq k}|a_{i}|^{2}|\omega(-\tau)|^{2}. \end{split} \end{equation} (2.36)

    By (2.1) and (2.8), the last four integrals in (2.36) are well defined. By (2.3) and (2.4), we obtain

    \begin{equation} \begin{split}\nonumber \sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k}) F_{i}(u_{i,\tau-t})\leq \frac{1}{\alpha_{2}}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k}) f_{i}(u_{\tau-t,i})u_{\tau-t,i} \leq\frac{1}{\alpha_{2}}\max\limits_{-\|u_{\tau-t}\|\leq s\leq\|u_{\tau-t}\|}|f'_{i}(s)|\|u_{\tau-t}\|^{2}, \end{split} \end{equation}

    which along with \bar{\varphi}_{\tau-t}\in D(\tau-t, \theta_{-t}\omega) and (2.1) implies that

    \begin{equation} \begin{split} \label{127}\nonumber \limsup\limits_{t\rightarrow +\infty}4e^{-\gamma t}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\bar{\varphi}_{\tau-t,i}|^{2}_{E}+|a_{i}|^{2}|\omega(-t)-\omega(-\tau)|^{2}+ F_{i}(u_{\tau-t,i})\big)\Big) = 0. \end{split} \end{equation}

    Then there exists T_{1} = T_{1}(\tau, \omega, D, \varepsilon) > 0 such that for all t\geq T_{1} ,

    \begin{equation} \begin{split} 4e^{-\gamma t}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\bar{\varphi}_{\tau-t,i}|^{2}_{E}+|a_{i}|^{2}|\omega(-t)-\omega(-\tau)|^{2}+ F_{i}(u_{\tau-t,i})\big)\Big)\leq\frac{\varepsilon}{4}. \end{split} \end{equation} (2.37)

    By (2.1) and (2.24), there exist T_{2} = T_{2}(\tau, \omega, D, \varepsilon) > T_{1} and N_{1} = N_{1}(\tau, \omega, \varepsilon) > 0 such that for all t\geq T_{2} and k\geq N_{1}

    \begin{equation} \begin{split} \frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} (2.38)

    By (2.8), there exists N_{2} = N_{2}(\tau, \omega, \varepsilon) > N_{1} such that for all k\geq N_{2} ,

    \begin{equation} \begin{split} 2\sum\limits_{|i|\geq k}|a_{i}|^{2}|\omega(-\tau)|^{2}+c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} (2.39)

    By (2.1) again, we find that there exists N_{3} = N_{3}(\tau, \omega, \varepsilon) > N_{2} such that for all k\geq N_{3} ,

    \begin{equation} \begin{split} c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{p+1}ds +c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds \leq\frac{\varepsilon}{4}. \end{split} \end{equation} (2.40)

    Then it follows from (2.36)–(2.40) that for all t\geq T_{2} and k\geq N_{3}

    \begin{equation} \begin{split}\nonumber \sum\limits_{|i|\geq 2k}|\bar{\varphi}_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t,i})|^{2}_{E} \leq\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t,i})|^{2}_{E} \leq\varepsilon. \end{split} \end{equation}

    This concludes the proof.

    As a consequence of Lemma 2.2 and Lemma 2.3, we get the existence of \mathcal{D} -pullback attractors for \Phi_{0} immediately.

    Theorem 2.1. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle \Phi_{0} associated with system (2.10) has a unique \mathcal{D} -pullback attractors \mathcal{A}_{0} = \{\mathcal{A}_{0}(\tau, \omega):\tau\in\mathbb{R} , \omega\in\Omega\}\in \mathcal{D} in E .

    In this section, we will approximate the solutions of system (1.1) by the pathwise Wong-Zakai approximated system (1.2). Given \delta\neq0 , define a random variable \mathcal{G}_{\delta} by

    \begin{equation} \begin{split} \mathcal{G}_{\delta}(\omega) = \frac{\omega(\delta)}{\delta},\; \; \text{for all}\; \omega\in\Omega. \end{split} \end{equation} (3.1)

    From (3.1) we find

    \begin{equation} \begin{split} \mathcal{G}_{\delta}(\theta_{t}\omega) = \frac{\omega(t+\delta)-\omega(t)}{\delta}\; \; \text{and}\; \int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds = \int_{t}^{t+\delta}\frac{\omega(s)}{\delta}ds+\int_{\delta}^{0}\frac{\omega(s)}{\delta}ds. \end{split} \end{equation} (3.2)

    By (3.2) and the continuity of \omega we get for all t\in\mathbb{R} ,

    \begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds = \omega(t). \end{split} \end{equation} (3.3)

    Note that this convergence is uniform on a finite interval as stated below.

    Lemma 3.1. ([17]). Let \tau\in\mathbb{R} , \omega\in\Omega and T > 0 . Then for every \varepsilon > 0 , there exists \delta_{0} = \delta_{0}(\varepsilon, \tau, \omega, T) > 0 such that for all 0 < |\delta| < \delta_{0} and t\in[\tau, \tau+T] ,

    \Big|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)\Big| < \varepsilon.

    By Lemma 3.1, we find that there exist c = c(\tau, \omega, T) > 0 and \tilde{\delta}_{0} = \tilde{\delta}_{0}(\tau, \omega, T) > 0 such that for all 0 < |\delta| < \tilde{\delta}_{0} and t\in[\tau, \tau+T] ,

    \begin{equation} \begin{split} \Big|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\Big|\leq c. \end{split} \end{equation} (3.4)

    By (3.3) we find that \mathcal{G}_{\delta}(\theta_{t}\omega) is an approximation of the white noise in a sense. This leads us to consider system (1.2) as an approximation of system (1.1).

    Let \bar{v}^{\delta} = \dot{u}^{\delta}+\beta u^{\delta} and \bar{\varphi}_{\delta} = (u^{\delta}, \bar{v}^{\delta}) , the system (1.2) can be rewritten as

    \begin{eqnarray} \dot{\bar{\varphi}}_{\delta}+L_{\delta,1}(\bar{\varphi}_{\delta}) = H_{\delta,1}(\bar{\varphi}_{\delta})+G_{\delta,1}(\omega), \end{eqnarray} (3.5)

    with initial conditions

    \bar{\varphi}_{\delta,\tau} = (u^{\delta}_{\tau},\bar{v}^{\delta}_{\tau})^{T} = (u_{\tau}^{\delta},u_{\tau}^{\delta,1}+\beta u_{\tau}^{\delta})^{T},

    where

    L_{\delta,1}(\bar{\varphi}) = \left( \begin{array}{ccc} \beta u^{\delta}-\bar{v}^{\delta} \\ (1-\nu\beta)Au^{\delta}+\nu A\bar{v}^{\delta}+\lambda u^{\delta} +\beta^{2} u^{\delta}-\beta\bar{v}^{\delta} \end{array} \right) + \left( \begin{array}{ccc} 0 \\ h(\bar{v}^{\delta}-\beta u^{\delta}) \end{array} \right) ,
    H_{\delta,1}(\bar{\varphi_{\delta}}) = \left( \begin{array}{ccc} 0 \\ -f(u^{\delta})+g(t) \end{array} \right),\; \; \; \; G_{\delta,1}(\omega) = \left( \begin{array}{ccc} 0 \\ a\mathcal{G}_{\delta}(\theta_{t}\omega) \end{array} \right) .

    Denote

    v^{\delta}(t) = \bar{v}^{\delta}(t)-a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds \; \; \text{and}\; \; \varphi_{\delta} = (u^{\delta},v^{\delta})^{T}.

    By (3.5) we have

    \begin{eqnarray} \dot{\varphi}_{\delta}+L_{\delta}(\varphi_{\delta}) = H_{\delta}(\varphi_{\delta})+G_{\delta}(\omega), \end{eqnarray} (3.6)

    with initial conditions

    \varphi_{\delta,\tau} = (u^{\delta}_{\tau},v^{\delta}_{\tau})^{T} = (u^{\delta}_{\tau},u_{\tau}^{\delta,1}+\beta u^{\delta}_{\tau}-a\int_{0}^{\tau}\mathcal{G}_{\delta}(\theta_{s}\omega)ds)^{T},

    where

    L_{\delta}(\varphi_{\delta}) = \left( \begin{array}{ccc} \beta u^{\delta}-v^{\delta} \\ (1-\nu\beta) Au^{\delta}+\nu Av^{\delta}+\lambda u^{\delta}+\beta^{2} u^{\delta}-\beta v^{\delta} \end{array} \right) + \left( \begin{array}{ccc} 0 \\ h(v^{\delta}-\beta u^{\delta}+a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds) \end{array} \right) ,
    H_{\delta}(\varphi_{\delta}) = \left( \begin{array}{ccc} 0 \\ -f(u^{\delta})+g(t) \end{array} \right),\; \; \; \; G_{\delta}(\omega) = \left( \begin{array}{ccc} a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\\ \beta a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\nu Aa\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds \end{array} \right) .

    Note that system (3.6) is a deterministic functional equation and the nonlinearity in (3.6) is locally Lipschitz continuous from E to E . Therefore, by the standard theory of functional differential equations, system (3.6) is well-posed. Thus, we can define a continuous cocycle \Phi_{\delta}:\mathbb{R}^{+}\times\mathbb{R}\times \Omega\times E\rightarrow E associated with system (3.5), where for \tau\in\mathbb{R} , t\in\mathbb{R}^{+} and \omega\in\Omega

    \begin{equation} \begin{split}\nonumber \Phi_{\delta}(t,\tau,\omega,\bar{\varphi}_{\delta,\tau})& = \bar{\varphi}_{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau})\\ & = (u^{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,u^{\delta}_{\tau}),\bar{v}^{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,\bar{v}^{\delta}_{\tau}))^{T}\\ & = \Big(u^{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,u^{\delta}_{\tau}),v^{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,v^{\delta}_{\tau})+a\int_{-\tau}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\Big)^{T}\\ & = \varphi_{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,\varphi_{\delta,\tau})+\Big(0,a\int_{-\tau}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\Big)^{T}, \end{split} \end{equation}

    where v_{\tau}^{\delta} = \bar{v}_{\tau}^{\delta}-a\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{s}\omega)ds .

    For later purpose, we now show the estimates on the solutions of system (3.6) on a finite time interval.

    Lemma 3.2. Suppose that (2.3)–(2.8) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega , and T > 0 , there exist \delta_{0} = \delta_{0}(\tau, \omega, T) > 0 and c = c(\tau, \omega, T) > 0 such that for all 0 < |\delta| < \delta_{0} and t\in[\tau, \tau+T] , the solution \varphi_{\delta} of system (3.6) satisfies

    \begin{equation} \begin{split}\nonumber &\|\varphi_{\delta}(t,\tau,\omega,\varphi_{\delta,\tau})\|^{2}_{E} +\int_{\tau}^{t}\|\varphi_{\delta}(s,\tau,\omega,\varphi_{\delta,\tau})\|^{2}_{E}ds\leq c\Big(\|\varphi_{\delta,\tau}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}}F_{i}(u^{\delta}_{\tau,i})\Big)\\ &\quad+ c\int^{t}_{\tau}\Big(\|g(s)\|^{2}+|\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+|\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}|\Big)ds. \end{split} \end{equation}

    Proof. Taking the inner product (\cdot, \cdot)_{E} on both side of the system (3.6) with \varphi_{\delta} , it follows that

    \begin{equation} \begin{split} &\frac{1}{2}\frac{d}{dt}\|\varphi_{\delta}\|^{2}_{E}+(L_{\delta}(\varphi_{\delta}),\varphi_{\delta})_{E} = (H_{\delta}(\varphi_{\delta}),\varphi_{\delta})_{E}+(G_{\delta}(\omega),\varphi_{\delta})_{E}. \end{split} \end{equation} (3.7)

    By the similar calculations in (2.13)–(2.15), we get

    \begin{equation} \begin{split} (L_{\delta}(\varphi_{\delta}),\varphi_{\delta})_{E}\geq\sigma\|\varphi_{\delta}\|^{2}_{E}+\frac{h_{1}}{2}\|v^{\delta}\|^{2} -\frac{\sigma+h_{1}}{6}\|v^{\delta}\|^{2}-c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}\|a\|^{2}, \end{split} \end{equation} (3.8)
    \begin{equation} \begin{split} (H_{\delta}(\varphi_{\delta}),\varphi_{\delta})_{E} &\leq-\frac{d}{dt}(\sum\limits_{i\in\mathbb{Z}}F_{i}(u^{\delta}_{i}))-\frac{\alpha_{2}\beta}{p+1}\sum\limits_{i\in\mathbb{Z}}F_{i}(u^{\delta}_{i}) +c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{p+1}\|a\|^{p+1}\\ &\quad+\frac{\sigma\lambda}{4}\|u^{\delta}\|^{2}+c\|a\|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}+c\|g(t)\|^{2}+\frac{\sigma+h_{1}}{6}\|v^{\delta}\|^{2}, \end{split} \end{equation} (3.9)

    and

    \begin{equation} \begin{split} (G_{\delta}(\omega),\varphi_{\delta})_{E}\leq \frac{\sigma}{4}\|u^{\delta}\|^{2}_{\lambda} +c\|a\|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}+\frac{\sigma+h_{1}}{6}\|v^{\delta}\|^{2}. \end{split} \end{equation} (3.10)

    It follows from (3.7)–(3.10) that

    \begin{equation} \begin{split} &\frac{d}{dt}\Big(\|\varphi_{\delta}\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i}^{\delta})\Big) +\gamma\Big(\|\varphi_{\delta}\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i}^{\delta})\Big) +\gamma\|\varphi_{\delta}\|_{E}^{2}\\ &\leq c\Big(\|g(t)\|^{2}+|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}+|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{p+1}\Big), \end{split} \end{equation} (3.11)

    where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} . Multiplying (3.11) by e^{\gamma t} and integrating on (\tau, t) with t\geq\tau , we get for every \omega\in\Omega

    \begin{equation} \begin{split}\nonumber &\|\varphi_{\delta}(t,\tau,\omega,\varphi_{\delta,\tau})\|_{E}^{2} +\gamma\int^{t}_{\tau}e^{\gamma(s-t)}\|\varphi_{\delta}(s,\tau,\omega,\varphi_{\delta,\tau})\|_{E}^{2}ds\leq e^{\gamma(\tau-t)}\Big(\|\varphi_{\delta,\tau}\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{\tau,i}^{\delta})\Big)\\ &\quad+c\int_{\tau}^{t}e^{\gamma(s-t)}\Big(\|g(s)\|^{2}+|\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+|\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}\Big)ds, \end{split} \end{equation}

    which implies the desired result.

    In what follows, we derive uniform estimates on the solutions of system (3.5) when t is sufficiently large.

    Lemma 3.3. Suppose that (2.3)–(2.8) hold. Then for every \delta\neq0 , \tau\in\mathbb{R} , \omega\in\Omega , and D = \{D(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} , there exists T = T(\tau, \omega, D, \delta) > 0 such that for all t\geq T , the solution \bar{\varphi}_{\delta} of system (3.5) satisfies

    \begin{equation} \begin{split}\nonumber &\|\bar{\varphi}_{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E} +\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E}ds\leq R_{\delta}(\tau,\omega), \end{split} \end{equation}

    where \bar{\varphi}_{\delta, \tau-t}\in D(\tau-t, \theta_{-t}\omega) and R_{\delta}(\tau, \omega) is given by

    \begin{equation} \begin{split} R_{\delta}(\tau,\omega) = &c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2} +|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}\Big)ds\\ &+c+c|\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}, \end{split} \end{equation} (3.12)

    where c is a positive constant independent of \tau , \omega and \delta .

    Proof. Multiplying (3.11) by e^{\gamma t} , replacing \omega by \theta_{-\tau}\omega and integrating on (\tau-t, \tau) with t\in\mathbb{R}^{+} , we get for every \omega\in\Omega

    \begin{equation} \begin{split} &\|\varphi_{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{i}^{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,u^{\delta}_{\tau-t,i}))\\ &\quad+\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\varphi_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})\|^{2}_{E}ds\\ &\leq e^{-\gamma t}\Big(\|\varphi_{\delta,\tau-t}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i}^{\delta})\Big)\\ &\quad +c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}\Big)ds. \end{split} \end{equation} (3.13)

    By (2.1), (2.8) and (3.2), the last integral on the right-hand side of (3.13) is well defined. For any s\geq \tau-t ,

    \begin{equation} \begin{split}\nonumber &\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t}) = \varphi_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})+\Big(0,a\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l-\tau}\omega)dl\Big)^{T}, \end{split} \end{equation}

    which along with (3.13) shows that

    \begin{equation} \begin{split} &\|\bar{\varphi}_{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E} +\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds\\ &\leq 4e^{-\gamma t}\Big(\|\bar{\varphi}_{\delta,\tau-t}\|^{2}_{E}+\|a\|^{2}|\int_{-\tau}^{-t}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big)+c|\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}\\ &\quad+c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2} +| \int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}\Big)ds, \end{split} \end{equation} (3.14)

    Note that (2.3) and (2.4) implies that

    \begin{equation} \begin{split}\nonumber \sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i}^{\delta})\leq \frac{1}{\alpha_{2}}\sum\limits_{i\in\mathbb{Z}} f_{i}(u_{\tau-t,i}^{\delta})u_{\tau-t,i}^{\delta} \leq\frac{1}{\alpha_{2}}\max\limits_{-\|u_{\tau-t}^{\delta}\|\leq s\leq\|u_{\tau-t}^{\delta}\|}|f'_{i}(s)|\|u_{\tau-t}^{\delta}\|^{2}, \end{split} \end{equation}

    which along with \bar{\varphi}_{\delta, \tau-t}\in D(\tau-t, \theta_{-t}\omega) , (2.1) and (3.2) implies that

    \begin{equation} \begin{split} \limsup\limits_{t\rightarrow +\infty}4e^{-\gamma t}\Big(\|\bar{\varphi}_{\delta,\tau-t}\|^{2}_{E}+\|a\|^{2}|\int_{-\tau}^{-t}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big) = 0. \end{split} \end{equation} (3.15)

    Then (3.14) and (3.15) can imply the desired estimates.

    Next, we show that system (3.5) has a \mathcal{D} -pullback absorbing set.

    Lemma 3.4. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle \Phi_{\delta} associated with system (3.5) has a closed measurable \mathcal{D} -pullback absorbing set K_{\delta} = \{K_{\delta}(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} , where for every \tau\in\mathbb{R} and \omega\in\Omega

    \begin{equation} \begin{split} K_{\delta}(\tau,\omega) = \{\bar{\varphi}_{\delta}\in E:\|\bar{\varphi}_{\delta}\|^{2}_{E}\leq R_{\delta}(\tau,\omega)\}, \end{split} \end{equation} (3.16)

    where R_{\delta}(\tau, \omega) is given by (3.12).In addition, we have for every \tau\in\mathbb{R} and \omega\in\Omega

    \begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}R_{\delta}(\tau,\omega) = R_{0}(\tau,\omega), \end{split} \end{equation} (3.17)

    where R_{0}(\tau, \omega) is defined in (2.19).

    Proof. Note K_{\delta} given by (3.16) is closed measurable random set in E . Given \tau\in\mathbb{R} , \omega\in\Omega , and D\in\mathcal{D} , it follows from Lemma 3.3 that there exists T_{0} = T_{0}(\tau, \omega, D, \delta) such that for all t\geq T_{0} ,

    \begin{equation} \begin{split}\nonumber \Phi_{\delta}(t,\tau-t,\theta_{-t}\omega,D(\tau-t,\theta_{-t}\omega))\subseteq K_{\delta}(\tau,\omega), \end{split} \end{equation}

    which implies that K_{\delta} pullback attracts all elements in \mathcal{D} . By (2.1), (2.8) and (3.2), we can prove K_{\delta}(\tau, \omega) is tempered. The convergence (3.17) can be obtained by Lebesgue dominated convergence as in [17].

    We are now in a position to derive uniform estimates on the tail of solutions of system (3.5).

    Lemma 3.5. Suppose that (2.3)–(2.8) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega and \varepsilon > 0 , there exist \delta_{0} = \delta_{0}(\omega) > 0 , T = T(\tau, \omega, \varepsilon) > 0 and N = N(\tau, \omega, \varepsilon) > 0 such that for all t\geq T and 0 < |\delta| < \delta_{0} , the solution \bar{\varphi}_{\delta} of system (3.5) satisfies

    \begin{equation} \begin{split}\nonumber \sum\limits_{|i|\geq N}|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|_{E}^{2}\leq\varepsilon,\\ \end{split} \end{equation}

    where \bar{\varphi}_{\delta, \tau-t}\in K_{\delta}(\tau-t, \theta_{-t}\omega) and |\bar{\varphi}_{\delta, i}|_{E}^{2} = (1-\nu\beta)|Bu^{\delta}|_{i}^{2}+\lambda |u^{\delta}_{i}|^{2}+|\bar{v}^{\delta}_{i}|^{2} .

    Proof. Let \eta be a smooth function defined in Lemma 2.3, and set x = (x_{i})_{i\in\mathbb{Z}} , y = (y_{i})_{i\in\mathbb{Z}} with x_{i} = \eta(\frac{|i|}{k})u^{\delta}_{i} , y_{i} = \eta(\frac{|i|}{k})v^{\delta}_{i} . Note \psi = (x, y)^{T} = ((x_{i}), (y_{i}))^{T}_{i\in\mathbb{Z}} . Taking the inner product of system (3.6) with \psi , we have

    \begin{equation} \begin{split} (\dot{\varphi}_{\delta},\psi)_{E}+(L_{\delta}(\varphi_{\delta}),\psi)_{E} = (H_{\delta}(\varphi_{\delta}),\psi)_{E}+(G_{\delta},\psi)_{E}. \end{split} \end{equation} (3.18)

    For the first term of (3.18), we have

    \begin{equation} \begin{split} (\dot{\varphi}_{\delta},\psi)_{E}& = (1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(B\dot{u}^{\delta})_{i}(Bx)_{i}+\lambda\sum\limits_{i\in\mathbb{Z}}\dot{u}_{i}^{\delta}x_{i} +\sum\limits_{i\in\mathbb{Z}}\dot{v}_{i}^{\delta}y_{i}\\ & = \frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|^{2}_{E} +(1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(B\dot{u}^{\delta})_{i}\Big((Bx)_{i}-\eta(\frac{|i|}{k})(Bu^{\delta})_{i}\Big)\\ &\geq\frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|^{2}_{E} -\frac{(1-\nu\beta)C_{0}}{k}\sum\limits_{i\in\mathbb{Z}}|B(v^{\delta}-\beta u^{\delta}+a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds)|_{i}|u_{i+1}^{\delta}|\\ &\geq\frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|^{2}_{E} -\frac{c}{k}\|\varphi_{\delta}\|^{2}_{E}-\frac{c}{k}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}\|a\|^{2}, \end{split} \end{equation} (3.19)

    where |\varphi_{\delta, i}|_{E}^{2} = (1-\nu\beta)|Bu^{\delta}|_{i}^{2}+\lambda |u^{\delta}_{i}|^{2}+|v^{\delta}_{i}|^{2} . By the similar calculations in (2.28)–(2.33), we get

    \begin{equation} \begin{split} (L_{\delta}(\varphi_{\delta}),\psi)_{E} \geq&\sigma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|^{2}_{E}+ \frac{h_{1}}{6}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}^{\delta}|^{2}-\frac{c}{k}\|\varphi_{\delta}\|^{2}_{E}\\ &-c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}, \end{split} \end{equation} (3.20)
    \begin{equation} \begin{split} (H_{\delta}(\varphi_{\delta}),\psi)_{E} &\leq-\frac{d}{dt}(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})F_{i}(u^{\delta}_{i})) -\frac{\alpha_{2}\beta}{p+1}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})F_{i}(u^{\delta}_{i})\\ &\quad +\frac{\sigma\lambda}{4}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|u_{i}^{\delta}|^{2}+\frac{\sigma}{6} \sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v^{\delta}_{i}|^{2} +c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|g_{i}(t)|^{2}\\ &\quad +c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2} +c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{p+1}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{p+1}, \end{split} \end{equation} (3.21)

    and

    \begin{equation} \begin{split} (G_{\delta},\psi)_{E}& = (1-\nu\beta)\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds(Bx,Ba)_{\lambda}+\beta \int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds(y,a)\\ &\leq \frac{\sigma\lambda}{4}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|u^{\delta}_{i}|^{2} +\Big(\frac{h_{1}}{6}+\frac{\sigma}{3}\Big)\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v^{\delta}_{i}|^{2} +c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}. \end{split} \end{equation} (3.22)

    It follows from (3.18)–(3.22) that

    \begin{equation} \begin{split} &\frac{d}{dt}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{\delta,i}|_{E}^{2}+2 F_{i}(u_{i}^{\delta})\big)\Big) +\gamma\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{\delta,i}|_{E}^{2}+2 F_{i}(u_{i}^{\delta})\big)\Big)+\gamma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|_{E}^{2}\\ &\leq\frac{c}{k}\|\varphi_{\delta}\|^{2}_{E}+\frac{c}{k}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}+c\sum\limits_{|i|\geq k}|g_{i}(t)|^{2} +c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{p+1}\\ &\quad+ c\sum\limits_{|i|\geq k}|a_{i}|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}, \end{split} \end{equation} (3.23)

    where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} . Multiplying (3.23) by e^{\gamma t} , replacing \omega by \theta_{-\tau}\omega and integrating on (\tau-t, \tau) with t\in\mathbb{R}^{+} , we get for every \omega\in\Omega

    \begin{equation} \begin{split} &\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\varphi_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t,i})|^{2}_{E} +2F_{i}(u_{i}^{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,u^{\delta}_{\tau-t,i}))\Big)\\ &\leq e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\varphi_{\delta,\tau-t,i}|^{2}_{E}+2 F_{i}(u_{\tau-t,i}^{\delta})\Big) +\frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\varphi_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})\|^{2}_{E}ds\\ &\quad+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds +c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds\\ &\quad+c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds+c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}ds. \end{split} \end{equation} (3.24)

    For any s\geq\tau-t ,

    \begin{equation} \begin{split}\nonumber &\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t}) = \varphi_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})+\Big(0,a\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l-\tau}\omega)dl\Big)^{T}, \end{split} \end{equation}

    which along with (3.24) shows that

    \begin{equation} \begin{split} &\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E}\\ &\leq2\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t,i})|^{2}_{E} +2\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}\int_{0}^{\tau}\mathcal{G}_{\delta}(\theta_{l-\tau}\omega)dl|^{2}\\ &\leq 2\sum\limits_{|i|\geq k}|a_{i}\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2} +4e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\bar{\varphi}_{\delta,\tau-t,i}|^{2}_{E}+|a_{i}\int_{-\tau}^{-t}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+ F_{i}(u_{\tau-t,i}^{\delta})\Big)\\ &\quad+\frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E}ds +\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds\\ &\quad +c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds+c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds\\ &\quad+c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}ds. \end{split} \end{equation} (3.25)

    By (2.1) and (2.8), the last four integrals on the right-hand side of (3.24) are well defined. Note that (2.3) and (2.4) implies that

    \begin{equation} \begin{split}\nonumber \sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k}) F_{i}(u_{\tau-t,i}^{\delta})\leq \frac{1}{\alpha_{2}}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k}) f_{i}(u_{\tau-t,i}^{\delta})u_{\tau-t,i}^{\delta} \leq\frac{1}{\alpha_{2}}\max\limits_{-\|u_{\tau-t}^{\delta}\|\leq s\leq\|u_{\tau-t}^{\delta}\|}|f'_{i}(s)|\|u_{\tau-t}^{\delta}\|^{2}. \end{split} \end{equation}

    Since \bar{\varphi}_{\delta, \tau-t}\in K_{\delta}(\tau-t, \theta_{-t}\omega) , we find

    \begin{equation} \begin{split}\nonumber \limsup\limits_{t\rightarrow +\infty}e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{\delta,\tau-t,i}|^{2}_{E}\leq\limsup\limits_{t\rightarrow +\infty}e^{-\gamma t}\|K_{\delta}(\tau-t,\theta_{-t}\omega)\|^{2}_{E} = 0, \end{split} \end{equation}

    which along with (2.1) and (3.2) shows that there exist T_{1} = T_{1}(\tau, \omega, \varepsilon) > 0 and \delta_{0} > 0 such that for all t\geq T_{1} and 0 < |\delta| < \delta_{0} ,

    \begin{equation} \begin{split} 4e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\bar{\varphi}_{\delta,\tau-t,i}|^{2}_{E}+|a_{i}\int_{-\tau}^{-t}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+ F_{i}(u_{\tau-t,i}^{\delta})\Big)\leq\frac{\varepsilon}{4}. \end{split} \end{equation} (3.26)

    By Lemma 3.3, (2.1) and (3.2), there exist T_{2} = T_{2}(\tau, \omega, \varepsilon) > T_{1} and N_{1} = N_{1}(\tau, \varepsilon) > 0 such that for all t\geq T_{2} , k\geq N_{1} and 0 < |\delta| < \delta_{0}

    \begin{equation} \begin{split} \frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E}ds+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} (3.27)

    By (2.8), there exists N_{2} = N_{2}(\tau, \varepsilon) > N_{1} such that for all k\geq N_{2} ,

    \begin{equation} \begin{split} 2\sum\limits_{|i|\geq k}|a_{i}\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} (3.28)

    By (2.1) and (3.2) again, we find that there exists N_{3} = N_{3}(\tau, \varepsilon) > N_{2} such that for all k\geq N_{3} and 0 < |\delta| < \delta_{0} ,

    \begin{equation} \begin{split} c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}ds +c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds \leq\frac{\varepsilon}{4}. \end{split} \end{equation} (3.29)

    Then it follows from (3.25)–(3.29) that for all t\geq T_{2} , k\geq N_{3} and 0 < |\delta| < \delta_{0} ,

    \begin{equation} \begin{split}\nonumber \sum\limits_{|i|\geq 2k}|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E} \leq\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E} \leq\varepsilon. \end{split} \end{equation}

    This concludes the proof.

    By Lemma 3.4, \Phi_{\delta} has a closed \mathcal{D} -pullback absorbing set, and Lemma 3.5 shows that \Phi_{\delta} is asymptotically null in E with respect to \mathcal{D} . Therefore, we get the existence of \mathcal{D} -pullback attractors for \Phi_{\delta} .

    Lemma 3.6. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle \Phi_{\delta} associated with (3.5) has a unique \mathcal{D} -pullback attractors \mathcal{A}_{\delta} = \{\mathcal{A}_{\delta}(\tau, \omega):\tau\in\mathbb{R} , \omega\in\Omega\}\in \mathcal{D} in E .

    For the attractor \mathcal{A}_{\delta} of \Phi_{\delta} , we have the uniform compactness as showed below.

    Lemma 3.7. Suppose that (2.3)–(2.9) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega , there exists \delta_{0} = \delta_{0}(\omega) > 0 such that \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega) is precompact in E .

    Proof. Given \varepsilon > 0 , we will prove that \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega) has a finite covering of balls of radius less than \varepsilon . By (3.2) we have

    \begin{equation} \begin{split} \int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl = -\int^{s+\delta}_{s}\frac{\omega(l)}{\delta}dl+\int^{\delta}_{0}\frac{\omega(l)}{\delta}dl. \end{split} \end{equation} (3.30)

    By \lim_{\delta\rightarrow0}\int^{\delta}_{0}\frac{\omega(r)}{\delta}dr = 0 , there exists \delta_{1} = \delta_{1}(\omega) > 0 such that for all 0 < |\delta| < \delta_{1} ,

    \begin{equation} \begin{split} |\int^{\delta}_{0}\frac{\omega(l)}{\delta}dl|\leq1. \end{split} \end{equation} (3.31)

    Similarly, there exists l_{1} between s and s+\delta such that \int^{s+\delta}_{s}\frac{\omega(l)}{\delta}dl = \omega(l_{1}) , which along with (2.1) implies that there exists T_{1} = T_{1}(\omega) < 0 such that for all s\leq T_{1} and |\delta|\leq1 ,

    \begin{equation} \begin{split} |\int^{s+\delta}_{s}\frac{\omega(l)}{\delta}dl|\leq 1-s. \end{split} \end{equation} (3.32)

    Let \delta_{2} = \min\{\delta_{1}, 1\} . By (3.30)–(3.32) we get for all 0 < |\delta| < \delta_{2} and s\leq T_{1} ,

    \begin{equation} \begin{split} |\int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl| < 2-s. \end{split} \end{equation} (3.33)

    By (3.4), there exist \delta_{0} = \delta_{0}(\omega)\in(0, \delta_{2}) and c_{1}(\omega) > 0 such that for all 0 < |\delta|\leq\delta_{0} and T_{1}\leq s\leq0 ,

    \begin{equation} \begin{split}\nonumber |\int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|\leq c_{1}(\omega), \end{split} \end{equation}

    which along with (3.33) implies that for all 0 < |\delta| < \delta_{0} and s\leq0 ,

    \begin{equation} \begin{split} |\int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|\leq -s+c_{2}(\omega), \end{split} \end{equation} (3.34)

    where c_{2}(\omega) = 2+c_{1}(\omega) . Denote by

    \begin{equation} \begin{split}\nonumber B(\tau,\omega) = \{\bar{\varphi}_{\delta}\in E:\|\bar{\varphi}_{\delta}\|^{2}\leq R(\tau,\omega)\}, \end{split} \end{equation}

    and

    \begin{equation} \begin{split} R(\tau,\omega) = &c\int_{-\infty}^{0}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+2(c_{2}-s)^{2}+2(|\tau|+c_{2})^{2}+2^{p}(c_{2}-s)^{p+1}+2^{p}(|\tau|+c_{2})^{p+1}\Big)ds\\ &\quad+c+2c(|\tau|+c_{2})^{2}, \end{split} \end{equation} (3.35)

    with c and c_{2} being as in (3.12) and (3.34). By (3.12) and (3.35) we find that for all 0 < |\delta| < \delta_{0} ,

    \begin{equation} \begin{split} R_{\delta}(\tau,\omega)\leq R(\tau,\omega). \end{split} \end{equation} (3.36)

    By (3.35) and (3.36), we find that K_{\delta}(\tau, \omega)\subseteq B(\tau, \omega) for all 0 < |\delta| < \delta_{0} , \tau\in\mathbb{R} and \omega\in\Omega . Therefore, for every \tau\in\mathbb{R} , \omega\in\Omega ,

    \begin{equation} \begin{split} \bigcup\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau,\omega)\subseteq\bigcup\limits_{0 < |\delta| < \delta_{0}}K_{\delta}(\tau,\omega) \subseteq B(\tau,\omega). \end{split} \end{equation} (3.37)

    By Lemma 3.5, there exist T = T(\tau, \omega, \varepsilon) > 0 and N = N(\tau, \omega, \varepsilon) > 0 such that for all t\geq T and 0 < |\delta| < \delta_{0} ,

    \begin{equation} \begin{split} \sum\limits_{|i|\geq N}|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E}\leq\frac{\varepsilon}{4}, \end{split} \end{equation} (3.38)

    for any \bar{\varphi}_{\delta, \tau-t}\in K_{\delta}(\tau-t, \theta_{-t}\omega) . By (3.38) and the invariance of \mathcal{A}_{\delta} , we obtain

    \begin{equation} \begin{split} \sum\limits_{|i|\geq N}|\bar{\varphi}_{i}|^{2}_{E}\leq\frac{\varepsilon}{4},\; \; \text{for all}\; \bar{\varphi} = (\bar{\varphi}_{i})_{i\in\mathbb{Z}}\in\bigcup\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau,\omega). \end{split} \end{equation} (3.39)

    We find that (3.37) implies the set \{(\bar{\varphi}_{i})_{|i| < N}:\bar{\varphi}\in \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega)\} is bounded in a finite dimensional space and hence is precompact. This along with (3.39) implies \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega) has a finite covering of balls of radius less than \varepsilon in E . This completes the proof.

    In this section, we will study the limiting of solutions of (3.5) as \delta\rightarrow0 . Hereafter, we need an additional condition on f : For all i\in\mathbb{Z} and s\in\mathbb{R} ,

    \begin{equation} \begin{split} |f'_{i}(s)|\leq\alpha_{4}|s|^{p-1}+\kappa_{i}, \end{split} \end{equation} (4.1)

    where \alpha_{4} is a positive constant, \kappa = (\kappa_{i})_{i\in\mathbb{Z}}\in l^{2} and p > 1 .

    Lemma 4.1. Suppose that (2.3)–(2.7) and (4.1) hold. Let \bar{\varphi} and \bar{\varphi}_{\delta} are the solutions of (2.10) and (3.5), respectively. Then for every \tau\in\mathbb{R} , \omega\in\Omega , T > 0 and \varepsilon\in(0, 1) , there exist \delta_{0} = \delta_{0}(\tau, \omega, T, \varepsilon) > 0 and c = c(\tau, \omega, T) > 0 such that for all t\in[\tau, \tau+T] and 0 < |\delta| < \delta_{0} ,

    \begin{equation} \begin{split}\nonumber \|\bar{\varphi}_{\delta}(t,\tau,\omega,\bar{\varphi}_{\delta,\tau})-\bar{\varphi}(t,\tau,\omega,\bar{\varphi}_{\tau})\|^{2}_{E} \leq 2e^{c(t-\tau)}\|\bar{\varphi}_{\delta,\tau}-\bar{\varphi}_{\tau}\|^{2}_{E}+c\varepsilon. \end{split} \end{equation}

    Proof. Let \tilde{\varphi} = \varphi_{\delta}-\varphi and \tilde{\varphi} = (\tilde{u}, \tilde{v})^{T} , where \tilde{u} = u^{\delta}-u , \tilde{v} = v^{\delta}-v , \varphi and \varphi_{\delta} are the solutions of (2.11) and (3.6), respectively. By (2.11) and (3.6) we get

    \begin{equation} \begin{split} \dot{\tilde{\varphi}}+\tilde{L}(\tilde{\varphi}) = \tilde{H}(\tilde{\varphi})+\tilde{G}(\omega), \end{split} \end{equation} (4.2)

    where

    \begin{equation} \begin{aligned}\nonumber \tilde{L}(\tilde{\varphi})& = \left( \begin{array}{ccc} \beta \tilde{u}-\tilde{v}\\ (1-\nu\beta)A\tilde{u}+\nu A\tilde{v}+\lambda \tilde{u} +\beta^{2} \tilde{u}-\beta\tilde{v} \end{array} \right)\\ &\quad+ \left( \begin{array}{ccc} 0 \\ h\big(v^{\delta}-\beta u^{\delta}+a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\big)-h\big(v-\beta u+a\omega(t)\big) \end{array} \right), \end{aligned} \end{equation}
    \begin{equation} \begin{aligned}\nonumber \tilde{H}(\tilde{\varphi}) = \left( \begin{array}{ccc} 0 \\ -f(u^{\delta})+f(u) \end{array} \right),\; \; \; \; \tilde{G}(\omega) = \left( \begin{array}{ccc} a\big(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)\big)\\ (\beta a-\nu Aa)\big(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)\big) \end{array} \right). \end{aligned} \end{equation}

    Taking the inner product of (4.2) with \tilde{\varphi} in E , we have

    \begin{equation} \begin{split} \frac{1}{2}\frac{d}{dt}\|\tilde{\varphi}\|^{2}_{E}+(\tilde{L}(\tilde{\varphi}),\tilde{\varphi})_{E} = (\tilde{H}(\tilde{\varphi}),\tilde{\varphi})_{E}+(\tilde{G}(\omega),\tilde{\varphi})_{E}. \end{split} \end{equation} (4.3)

    For the second term on the left-hand side of (4.3), using the similar calculations in (2.13) we have

    \begin{equation} \begin{split} (\tilde{L}(\tilde{\varphi}),\tilde{\varphi})_{E}&\geq\sigma\|\tilde{\varphi}\|_{E}^{2}+\frac{h_{1}}{2}\|\tilde{v}\|^{2} -h_{2}|\big(a(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)),\tilde{v}\big)|\\ &\geq\sigma\|\tilde{\varphi}\|_{E}^{2}+\frac{h_{1}}{4}\|\tilde{v}\|^{2} -c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t))|^{2}\|a\|^{2}. \end{split} \end{equation} (4.4)

    For the first term on the right-hand side of (4.3), by (4.1) we get

    \begin{equation} \begin{split} (f(u)-f(u^{\delta}),\tilde{v})& = \sum\limits_{i\in\mathbb{Z}}(f_{i}(u_{i})-f_{i}(u^{\delta}_{i}))\tilde{v}_{i} = \frac{1}{h_{1}}\sum\limits_{i\in\mathbb{Z}}|f_{i}(u_{i})-f_{i}(u^{\delta}_{i})|^{2}+\frac{h_{1}}{4}\sum\limits_{i\in\mathbb{Z}}|\tilde{v}_{i}|^{2}\\ &\leq c(\|\varphi\|^{2p-2}_{E}+\|\varphi_{\delta}\|^{2p-2}_{E})\|\tilde{\varphi}\|^{2}_{E}+\frac{h_{1}}{4}\|\tilde{v}\|^{2}+\frac{2\|\kappa\|^{2}}{h_{1}\lambda}\|\tilde{\varphi}\|^{2}_{E}. \end{split} \end{equation} (4.5)

    As to the last term of (4.3), we have

    \begin{equation} \begin{split} &\big(a(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)),\tilde{u}\big)_{\lambda} +\big((\beta a-\nu Aa)(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)),\tilde{v}\big)\\ &\leq\sigma\|\tilde{u}\|^{2}_{\lambda}+\frac{1}{4\sigma}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}\|a\|^{2}_{\lambda} +\sigma\|\tilde{v}\|^{2}+c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}\|a\|^{2}. \end{split} \end{equation} (4.6)

    It follows from (4.3)–(4.6) that

    \begin{equation} \begin{split} \frac{d}{dt}\|\tilde{\varphi}\|^{2}_{E}\leq c(\|\varphi\|^{2p-2}_{E}+\|\varphi_{\delta}\|^{2p-2}_{E}+1)\|\tilde{\varphi}\|^{2}_{E}+c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}. \end{split} \end{equation} (4.7)

    By Lemma 2.1 and Lemma 3.2, there exists \delta_{1} = \delta_{1}(\tau, \omega, T) > 0 and c_{1} = c_{1}(\tau, \omega, T) > 0 such that for all 0 < |\delta| < \delta_{1} and t\in[\tau, \tau+T] ,

    \begin{equation} \begin{split}\nonumber \|\varphi_{\delta}(t,\tau,\omega,\varphi_{\delta,\tau})\|^{2}_{E}+\|\varphi(t,\tau,\omega,\varphi_{\tau})\|^{2}_{E}\leq c_{1}, \end{split} \end{equation}

    which along with (4.7) shows that for all 0 < |\delta| < \delta_{1} and t\in[\tau, \tau+T]

    \begin{equation} \begin{split} \frac{d}{dt}\|\tilde{\varphi}\|^{2}_{E}\leq c\|\tilde{\varphi}\|^{2}_{E}+c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}. \end{split} \end{equation} (4.8)

    Applying Gronwall's inequality and Lemma 3.1 to (4.8), we see that for every \varepsilon\in(0, 1) , there exists \delta_{0} = \delta_{0}(\tau, \omega, T, \varepsilon)\in(0, \delta_{1}) such that for all 0 < |\delta| < \delta_{0} and t\in[\tau, \tau+T]

    \begin{equation} \begin{split} \|\tilde{\varphi}(t,\tau,\omega,\tilde{\varphi}_{\tau})\|^{2}_{E}\leq e^{c(t-\tau)}\|\tilde{\varphi}_{\tau}\|^{2}_{E}+c\varepsilon. \end{split} \end{equation} (4.9)

    On the other hand, we have

    \begin{equation} \begin{split}\nonumber \bar{\varphi}_{\delta}(t,\tau,\omega,\bar{\varphi}_{\delta,\tau})-\bar{\varphi}(t,\tau,\omega,\bar{\varphi}_{\tau}) = \tilde{\varphi}+\big(0,a(\int^{t}_{0}\mathcal{G}_{\delta}(\theta_{s})ds-\omega(t))\big)^{T}, \end{split} \end{equation}

    which along with (4.9) implies the desired result.

    Finally, we establish the upper semicontinuity of random attractors as \delta\rightarrow0 .

    Theorem 4.1. Suppose that (2.3)–(2.9) and (4.1) hold. Then for every \tau\in\mathbb{R} and \omega\in\Omega ,

    \begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}d_{E}(\mathcal{A}_{\delta}(\tau,\omega),\mathcal{A}_{0}(\tau,\omega)) = 0, \end{split} \end{equation} (4.10)

    where d_{E}(\mathcal{A}_{\delta}(\tau, \omega), \mathcal{A}_{0}(\tau, \omega)) = \mathop{\sup}\limits_{x\in\mathcal{A}_{\delta}(\tau, \omega)}\mathop{\inf}\limits_{y\in\mathcal{A}_{0}(\tau, \omega)}\|x-y\|_{E} .

    Proof. Let \delta_{n}\rightarrow0 and \bar{\varphi}_{\delta_{n}, \tau}\rightarrow \bar{\varphi}_{\tau} in E . Then by Lemma 4.1, we find that for all \tau\in\mathbb{R} , t\geq0 and \omega\in\Omega ,

    \begin{equation} \begin{split} \Phi_{\delta_{n}}(t,\tau,\omega,\bar{\varphi}_{\delta_{n},\tau})\rightarrow \Phi_{0}(t,\tau,\omega,\bar{\varphi}_{\tau}) \; \; \text{in}\; \; E. \end{split} \end{equation} (4.11)

    By (3.16)–(3.17) we have, for all \tau\in\mathbb{R} and \omega\in\Omega ,

    \begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}\|K_{\delta}(\tau,\omega)\|_{E}^{2}\leq R_{0}(\tau,\omega). \end{split} \end{equation} (4.12)

    Then by (4.11), (4.12) and Lemma 3.7, (4.10) follows from Theorem 3.1 in [24] immediately.

    In this paper we use similar idea in [30] but apply to second order non-autonomous stochastic lattice dynamical systems with additive noise. we establish the convergence of solutions of Wong-zakai approximations and the upper semicontinuity of random attractors of the approximate random system as the step-length of the Wiener shift approaches zero. In addition, as to the second order non-autonomous stochastic lattice dynamical systems with multiplicative noise, we can use the similar method in [29] to get the corresponding results.

    The authors would like to thank anonymous referees and editors for their valuable comments and constructive suggestions.

    The authors declare no conflict of interest.



    [1] Gu T, Duan P, Wang M, et al. (2024) Effects of non-landslide sampling strategies on machine learning models in landslide susceptibility mapping. Sci Rep 14: 7201. https://doi.org/10.1038/s41598-024-57964-5 doi: 10.1038/s41598-024-57964-5
    [2] Nwazelibe VE, Egbueri JC, Unigwe CO, et al. (2023) GIS-based landslide susceptibility mapping of Western Rwanda: an integrated artificial neural network, frequency ratio, and Shannon entropy approach. Environ Earth Sci 82: 439. https://doi.org/10.1007/s12665-023-11134-4 doi: 10.1007/s12665-023-11134-4
    [3] Unigwe CO, Egbueri JC, Omeka ME, et al. (2023). Landslide Occurrences in Southeastern Nigeria: A Literature Analysis on the Impact of Rainfall. In: Egbueri JC, Ighalo JO, Pande CB (eds), Climate Change Impacts on Nigeria. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-21007-5_18
    [4] Nwazelibe VE, Unigwe CO, Egbueri JC (2023) Testing the performances of different fuzzy overlay methods in GIS-based landslide susceptibility mapping of Udi Province, SE Nigeria. Catena 20: 106654. https://doi.org/10.1016/j.catena.2022.106654 doi: 10.1016/j.catena.2022.106654
    [5] Nwazelibe VE, Unigwe CO, Egbueri JC (2023) Integration and comparison of algorithmic weight of evidence and logistic regression in landslide susceptibility mapping of the Orumba North erosion-prone region, Nigeria. Model Earth Syst Environ 9: 967–986. https://doi.org/10.1007/s40808-022-01549-6 doi: 10.1007/s40808-022-01549-6
    [6] ISPRA, Istituto Superiore per la Protezione e la Ricerca Amabientale. Available from: https://indicatoriambientali.isprambiente.it/sys_ind/report/html/737#C737.
    [7] ISPRA. Rapporto Frane, Capitolo 23 Calabria. Available from: https://www.isprambiente.gov.it/files/pubblicazioni/rapporti/rapporto-frane/capitolo-23-calabria.pdf.
    [8] ISPRA. Repporto Frane, Capitolo 4 WebGIS. Available from: https://www.isprambiente.gov.it/files/pubblicazioni/rapporti/rapporto-frane/capitolo-4-webgis.pdf.
    [9] Inventario Frane IFFI. IdroGEO. Available from: https://idrogeo.isprambiente.it/app/iffi/f/0801267600?@ = 38.25051188109998, 15.753338061897404, 16.
    [10] Mondini AC, Guzzetti F, Melillo M (2023) Deep learning forecast of rainfall-induced shallow landslides. Nat Commun 14: 1–10. https://doi.org/10.1038/s41467-023-38135-y doi: 10.1038/s41467-023-38135-y
    [11] Moraci N, Mandaglio MC, Gioffrè D, et al. (2017) Debris flow susceptibility zoning: an approach applied to a study area. Riv Ital Geotec 51: 47–62. https://doi.org/10.19199/2017.2.0557-1405.047 doi: 10.19199/2017.2.0557-1405.047
    [12] Borrelli L, Ciurleo M, Gullà G (2018) Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods: the contribution of the weathering grade map. Landslides 15: 1127–1142. https://doi.org/10.1007/s10346-018-0947-7 doi: 10.1007/s10346-018-0947-7
    [13] Cascini L, Ciurleo M, Di Nocera S, et al. (2015) A new–old approach for shallow landslide analysis and susceptibility zoning in fine-grained weathered soils of southern Italy. Geomorphology 241: 371–381. https://doi.org/10.1016/j.geomorph.2015.04.017 doi: 10.1016/j.geomorph.2015.04.017
    [14] Ciurleo M, Ferlisi S, Foresta V, et al. (2022) Landslide Susceptibility Analysis by Applying TRIGRS to a Reliable Geotechnical Slope Model. Geosciences 12: 18. https://doi.org/10.3390/geosciences12010018 doi: 10.3390/geosciences12010018
    [15] Ferlisi S, De Chiara G (2018) Risk analysis for rainfall-induced slope instabilities in coarse-grained soils: Practice and perspectives in Italy. In Landslides and engineered slopes. Experience, theory and practice. CRC Press. 137–154. https://doi.org/10.1201/9781315375007-8
    [16] Spizzichino D, Margottini C, Trigila A, et al. (2013) Landslide impacts in Europe: Weaknesses and strengths of databases available at European and national scale. In: Margottini C, Canuti P, Sassa K (eds), Landslide Science and Practice, Volume 1: Landslide Inventory and Susceptibility and Hazard Zoning, 73–80. https://doi.org/10.1007/978-3-642-31325-7_9
    [17] Barrile V, Cotroneo F, Iorio F, et al. (2022) An Innovative Experimental Software for Geomatics Applications on the Environment and the Territory. In Italian Conference on Geomatics and Geospatial Technologies. Cham: Springer International Publishing, 102–113. https://doi.org/10.1007/978-3-031-17439-1_7
    [18] Bilotta G, Genovese E, Citroni R, et al. (2023) Integration of an Innovative Atmospheric Forecasting Simulator and Remote Sensing Data into a Geographical Information System in the Frame of Agriculture 4.0 Concept. AgriEngineering 5: 1280–1301. https://doi.org/10.3390/agriengineering5030081 doi: 10.3390/agriengineering5030081
    [19] Bonavina M, Bozzano F, Martino S, et al. (2005) Le colate di fango e detrito lungo il versante costiero tra Bagnara Calabra e Scilla (Reggio Calabria): valutazioni di suscettibilità. G Geol Appl 2: 65–74. https://doi.org/10.1474/GGA.2005–02.0–09.0035 doi: 10.1474/GGA.2005–02.0–09.0035
    [20] Reichenbach P, Busca C, Mondini AC, et al. (2015) Land use change scenarios and landslide susceptibility zonation: The briga catchment test area (Messina, Italy). In Lollino G, Manconi A, Clague J, et al. (eds), Engineering Geology for Society and Territory-Volume 1: Climate Change and Engineering Geology. Springer International Publishing, 557–561.
    [21] Bhattacharjee K, Naskar N, Roy S, et al. (2020) A survey of cellular automata: types, dynamics, non-uniformity, and applications. Natural Comput 19: 433–461. https://doi.org/10.1007/s11047-018-9696-8 doi: 10.1007/s11047-018-9696-8
    [22] Hun LD, Min KD, Mo JJ (2020) A Unity-based Simulator for Tsunami Evacuation with DEVS Agent Model and Cellular Automata. J Korea Multimedia Soc 23: 772–783. https://doi.org/10.9717/kmms.2020.23.6.772 doi: 10.9717/kmms.2020.23.6.772
    [23] Sachidananda M, Zrnić DS (1987) Rain rate estimates from differential polarization measurements. J Atmos Oceanic Technol 4: 588–598. https://doi.org/10.1175/1520-0426(1987)004<0588:RREFDP>2.0.CO;2 doi: 10.1175/1520-0426(1987)004<0588:RREFDP>2.0.CO;2
    [24] Kale RV, Sahoo B (2011) Green-Ampt infiltration models for varied field conditions: A revisit. Water Resour Manage 25: 3505–3536. https://doi.org/10.1007/s11269-011-9868-0 doi: 10.1007/s11269-011-9868-0
    [25] Klambauer G, Unterthiner T, Mayr A, et al. (2017) Self-normalizing neural networks. In Advances in Neural Information Processing Systems 30.
    [26] Zhang D, Yang J, Li F, et al. (2022) Landslide risk prediction model using an attention-based temporal convolutional network connected to a recurrent neural network. IEEE Access 10: 37635–37645. https://doi.org/10.1109/ACCESS.2022.3165051 doi: 10.1109/ACCESS.2022.3165051
    [27] Vacondio R, Altomare C, De Leffe M, et al. (2021) Grand challenges for smoothed particle hydrodynamics numerical schemes. Comput Part Mech 8: 575–588. https://doi.org/10.1007/s40571-020-00354-1 doi: 10.1007/s40571-020-00354-1
    [28] Barrile V, Bilotta G, Fotia A (2018) Analysis of hydraulic risk territories: comparison between LIDAR and other different techniques for 3D modeling. WSEAS Trans Environ Dev 14: 45–52.
    [29] Wang S, Zhang K, van Beek LPH, et al. (2020) Physically based landslide prediction over a large region: scaling low-resolution hydrological model results for high resolution slope stability assessment. Environ Model Softw 124: 104607. https://doi.org/10.1016/j.envsoft.2019.104607 doi: 10.1016/j.envsoft.2019.104607
    [30] Italian National Geoportal Viewer. Available from: http://www.pcn.minambiente.it/viewer/.
    [31] Yao J, Yao X, Liu X (2022) Landslide Detection and Mapping Based on SBAS-InSAR and PS-InSAR: A Case Study in Gongjue County, Tibet, China. Remote Sens 14: 4728. https://doi.org/10.3390/rs14194728 doi: 10.3390/rs14194728
    [32] La Guardia M, Koeva M, D'ippolito F, et al. (2022) 3D Data integration for web based open source WebGL interactive visualisation. In 17th 3D GeoInfo Conference, 89–94. https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-89-2022
  • This article has been cited by:

    1. Ming Huang, Lili Gao, Lu Yang, Regularity of Wong-Zakai approximations for a class of stochastic degenerate parabolic equations with multiplicative noise, 2024, 0, 1937-1632, 0, 10.3934/dcdss.2024097
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1075) PDF downloads(57) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog