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Abstract: Landslides represent a growing threat among the various morphological processes that 

cause damage to territories. To address this problem and prevent the associated risks, it is essential to 

quickly find adequate methodologies capable of predicting these phenomena in advance. The 

following study focuses on the implementation of an experimental WebGIS infrastructure designed 

and built to predict the susceptibility index of a specific presumably at-risk area in real time (using 

specific input data) and in response to extreme weather events (such as heavy rain). The climate data 

values are calculated through an innovative and experimental atmospheric simulator developed by the 

authors, which is capable of providing data on meteorological variables with high spatial precision. To 

this end, the terrain is represented through cellular automata, implementing a suitable neural network 

useful for producing the desired output. The effectiveness of this methodology was tested on two debris 

flow events that occurred in the Calabria region, specifically in the province of Reggio Calabria, in 

2001 and 2005, which caused extensive damage. The (forecast) results obtained with the proposed 

methodology were compared with the (known) historical data, confirming the effectiveness of the 

method in predicting (and therefore signaling the possibility of an imminent landslide event) a higher 

susceptibility index than the known one and one provided (to date) by the Higher Institute for 

Environmental Protection and Research (ISPRA), validating the result obtained through the actual 

subsequent occurrence of a landslide event in the area under investigation. Therefore, the method 

proposed today is not aimed at predicting the local movement of a small landslide area, but is primarily 

aimed at predicting the change or improving the variation of the landslide susceptibility index to 

compare the predicted value with the current one provided by the relevant bodies (ISPRA), thus 

signaling an alert for the entire area under investigation. 
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1. Introduction 

In the international context, the detailed understanding and categorization of terrain based on their 

distinctive geomorphological features have long been regarded as critical aspects of geographical 

analyses. The creation of maps aimed at delineating landslide susceptibility zones represents a 

significant advancement in geospatial analyses, offering a comprehensive view of terrain 

vulnerabilities. These maps serve as invaluable tools, providing continuous assessments of slope 

conditions and enabling proactive measures to mitigate risks associated with landslides. The process 

of developing such maps involves the integration of various data sources, including satellite imagery, 

topographic surveys, and field observations, to accurately capture the intricate terrain characteristics. 

The resulting susceptibility maps not only highlight areas prone to landslides, but also offer insights 

into the magnitude of potential hazards posed to communities, infrastructures, and ecosystems. This 

information plays a crucial role in guiding land-use planning, infrastructure development, and disaster 

management efforts, thus allowing decision-makers to prioritize resources and implement targeted 

mitigation measures. The principal problem in the creation of such maps is the possibility to have 

upgraded and accurate systems based on near-real-time data. Besides the mapping traditionally 

conducted with geographic information systems technologies [1,2], artificial intelligence techniques 

are used to help better create these kinds of maps, and several authors in the literature have addressed 

this. For example, in various contributions [3–5], Nwazelibe et al. have demonstrated advanced 

mapping technologies for testing the performance of different algorithms in the landslide susceptibility 

mapping of Nigeria’s Udi Province, which is a region known for incessant soil erosion and landslide 

events. 

In regard to the Italian context, one of the most dangerous environmental risks is associated with 

the problem of landslides, which have occurred in Italy with increasing frequency in recent years, 

making the risk of landslides a real and widespread problem. For this reason, various bodies, and 

research institutes, such as the Research Institute for Protection (IRPI), have focused on studying and 

monitoring the evolution of landslide susceptibility. This institute provides in-depth information on 

landslides and contributes to understanding the evolution of risk in the country. Among its activities, 

the IRPI deals with the analysis of landslide phenomena, the development of prediction and monitoring 

models, and the promotion of risk mitigation and management measures. Additionally, the Higher 

Institute for Environmental Protection and Research (ISPRA) played a significant role in the analysis 

of this risk. In Italy, according to the ISPRA classification, the most affected regions include Valle 

d’Aosta, Liguria, Calabria, Campania, and Molise, with the latter presenting a significant risk, with 

16% of its territory at risk of a landslide. These regions are characterized by geologically unstable 

terrains and climatic conditions that can increase the risk of landslides [6–8]. The report on 

hydrogeological instability in Italy 2021 published by ISPRA provided an overview of the danger 

linked to landslides, floods, and coastal erosions throughout the country. Furthermore, it presented risk 

indicators relating to the population, buildings, businesses, and cultural heritage. This report was 

compiled by ISPRA as a part of its institutional tasks of collecting, processing, and disseminating data 

regarding soil protection and hydrogeological instability in Italy. To obtain a complete map of landslide 

hazards across the entire national territory, ISPRA adopted a mosaic approach that combined 
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information relating to the different hazard classes of the Hydrogeological Management Plans (PAI). 

This process involves the harmonization of the legends used, dividing the territory into five categories: 

very high danger (P4), high danger (P3), medium danger (P2), moderate danger (P1), and areas of 

attention (AA). According to the 2020–2021 mapping, many areas of the country, especially those 

classified as P3 and P4, presented a high risk of landslides. This is the result of a range of factors, 

including unstable terrains, coastal erosion, and climate change. The new national hazard maps were 

created using the PAI and hydraulic hazard maps according to the directives of Legislative Decree 

49/2010. These maps considered the updates provided by the District Basin Authorities. Overall, 18.4% 

of the Italian territory was classified as having a high landslide hazard and either very high or medium 

hydraulic hazard (with a return period between 100 and 200 years). Compared to the previous edition 

of the report, a percentage increase of 3.8% of the surface classified as having a high and very high 

landslide danger and of 18.9% of the surface of medium hydraulic danger was observed. This increase 

is attributable to an improvement in the information provided by the District Basin Authorities, who 

have conducted detailed studies and mapped new landslides and recent flood events. Moreover, the 

report presented updated data on the dynamics of the Italian coasts in the period 2007–2019. It 

highlighted that 19.7% of the coasts were advancing while 17.9% were retreating. Despite the 

progressive increase in coastal defense structures, there was an increase in stable and advancing 

coastlines compared to the 2000–2007 period, with a 1% decrease in eroding coastlines. However, the 

situation varied regionally, with some coastal regions being more prone to erosion. At the level of 

Italian municipalities, 93.9% are at risk from landslides, floods, and coastal erosion. There are 1.3 

million inhabitants at risk of landslides and 6.8 million inhabitants at risk of floods. The regions with 

the highest number of populations at risk are Emilia-Romagna, Tuscany, Campania, Veneto, Lombardy, 

and Liguria. Furthermore, almost 548,000 families are at risk from landslides and over 2.9 million 

from floods. Of the more than 14.5 million buildings in Italy, over 565,000 are located in areas with a 

high and very high landslide danger (3.9%) and over 1.5 million are in floodable areas in the medium 

scenario (10.7%). Moreover, the report presented data on the presence of industries and services in 

areas with a high and very high landslide danger, with over 84,000 companies and 220,000 employees 

at risk. Additionally, there are over 640,000 workers exposed to flood risks in the medium scenario 

(13.4% of the total). Finally, the report included an estimate of the cultural assets at risk of landslides 

and floods, with over 12,500 assets potentially subject to landslides and almost 34,000 assets at risk of 

flooding, [9]. It follows that monitoring landslide risk areas is essential to prevent disasters and adopt 

timely mitigation measures. 

There are various technologies and methodologies, geomatics in particular, to monitor these 

particularly susceptible areas. These methods, which mainly consist of on-site measurements, include 

traditional topographic monitoring, which involves the use of topographic instruments such as total 

stations and levels to measure changes in the terrain topography and detect even small changes in the 

ground surface, the Global Positioning System (GPS) method, which allows you to monitor ground 

movements precisely and continuously, making it particularly useful for monitoring slow and 

continuous deformations, and the most sophisticated and complex use of interferometric radar (InSAR, 

with all the its methods of use DInSAR, PSInSAR, ...), which uses satellite radar images to measure 

ground deformations, detecting millimetric changes in the ground surface. ISPRA uses different 

methods and approaches to evaluate the stability and danger of the slopes and calculate the 

susceptibility index to landslide phenomena by providing a Geographical Information System (GIS) 

with updated information on the susceptibility index derived from an information and statistical 
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analysis of geological, geomorphological, and hydrogeological data, taking the various factors that can 

influence the stability of the slopes into account, such as the terrain morphology, geology, vegetation, 

rainfall, terrain slope, and other relevant parameters. Therefore, it is undeniable that in this context, 

monitoring meteorological conditions (with particular reference to rainfall) is essential, since intense 

rainfall can trigger landslides that are particularly dangerous for high-risk areas such as those adjacent 

to urban areas. 

The constant vigilance of weather forecasts and the recording of current precipitation are crucial 

elements to recognize potentially dangerous situations. Mondini et al. [10] highlighted the importance 

of predicting and managing the risk of rainfall-induced landslides. Currently, both empirical models 

based on rainfall thresholds and models are used to predict the short-term occurrence of rainfall-driven 

shallow landslides. The article proposed the use of a strategy based on deep learning to link rainfall to 

the occurrence of landslides. The results of the study’s proposed system indicated that it is possible to 

effectively predict the occurrence of rainfall-induced landslides over large areas and that their location 

and timing are mainly controlled by rainfall. This opens the possibility of developing operational 

landslide forecasts based on precipitation measurements and quantitative weather forecasts. However, 

these approaches may not be effective for operational forecasting over large areas. 

Equally important is a geotechnical analysis: geotechnical deformation meters can be used to 

monitor geotechnical data, which are directly installed in the ground and can detect variations in the 

soil pressure, tension, and compression of the ground, providing valuable data on the state of the 

ground or seismometers and accelerometers to detect seismic tremors that could trigger landslides. 

Equally useful are the piezometry sensors that monitor the water level in the ground, which is a 

probable indicator of landslide risk if there is a sudden increase in the water level. It represents another 

type of approach and involves the measurement of parameters such as soil cohesion and porosity. This 

information is crucial to understand geotechnical conditions and to identify any significant changes. 

In parallel, in-depth geological analyses of the physical and geotechnical characteristics of a given area 

constitute an essential starting point to identify areas exposed to a potential risk of landslides. In this 

sense, some studies [11] have conducted a quantitative analysis of debris flow in a meteorized gneiss 

through a methodology aimed at identifying the key aspects related to risk management. 

Therefore, to identify the most susceptible areas, the most common methodologies focus on how 

the deformation progresses over time [12–16]. While deformation progression is a crucial aspect of 

the problem, other factors must also be evaluated, including materials, failure geometry, human causes, 

deforestation, and weather events. As these factors change over time, research has focused on 

developing prediction models based on artificial intelligence techniques, in particular using various 

neural network configurations. 

In this context, this article aims to present an experimental methodology capable of detecting 

susceptibility to landslide risk through the use of a WebGIS system with a Decision Support System 

(DSS) connotation; by exploiting cellular automata and soft computing techniques, this allows us to 

predict variations in the susceptibility index provided by ISPRA on large sample areas downstream of 

intense precipitation phenomena, even localized ones. In particular, starting from input data (such as 

the DEM Digital Terrain Model, degree of soil saturation, and ISPRA susceptibility index), using 

precise rainfall data (obtained from an innovative atmospheric simulator), discretizing the terrain 

(cellular automata), and using an appropriately optimized neural network, it will be possible to obtain 

the updated and predicted susceptibility index as an output, compared to the known one present in the 

susceptibility maps provided by ISPRA, all managed in a WebGIS environment. 
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To a certain extent, this system allows us to anticipate the possibility of imminent landslide events. 

The proposed system offers a number of key advantages in landslide risk management and land 

planning. First, it provides a long-term risk assessment, thus allowing the continuous monitoring of 

ground conditions and landslide susceptibility in a specific area. This long-term perspective is essential 

for prudent urban and regional planning, thus contributing to the sustainable management of resources 

and protection of the environment. Furthermore, the system supports informed decisions through 

accurate data and dynamic simulations. This information can influence urban planning, thus limiting 

development in high-risk areas and promoting responsible land management. Additionally, a 

significant advantage is the constant update on landslide risk, which allows authorities and experts to 

adapt mitigation strategies in real time, thus improving emergency response capacity. 

2. Materials and methods 

The fundamental approach underlying the operation of the proposed method is based on the 

creation of a Digital Twin that reflects the surrounding territory, including all of its physical and 

topographical characteristics. This process employs the three-dimensional component of GIS by 

incorporating orographic data and a DEM. In particular, this approach involves the representation of 

the surfaces and volumes that constitute the terrain using three-dimensional cellular automata. Such 

cellular automata are equipped with specific state variables, derived from microphysics rules, which 

regulate their mutual interactions (Figure 1). Subsequently, this representation of the territory is 

subjected to simulations, with each iteration representing a specific moment in time. During this 

process, the system dynamically evolves, with each cellular automaton seeing its state variables 

changed with each iteration. Then, these variables are examined by a Pattern Detector, which is 

implemented using a neural network. This detector can identify any variations in the landslide risk 

susceptibility index, if present. 

 

Figure 1. Process pipeline. 

The proposed methodology is divided into four phases: STAGE I, STAGE II, STAGE III, and 

STAGE IV (Figure 2). 

• STAGE I: This phase includes the development of the digital twin of the area in question by 

collecting data relating to the terrain, meteorological conditions, and all the variables relevant for the 

risk analysis. The WebGIS will process this data, allowing for the visualization of the information 
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associated with the maps, creating real-time interactions, and managing the data with maximum 

precision and speed. 

• STAGE II: This phase involves the use of an innovative atmospheric simulator that emulates the 

behavior of the atmosphere by discretizing the particles in cubic cells, following the Smoothed 

Particles Hydrodynamics (SPH) model for their interaction. The output of this phase will consist of 

precise values of the climate parameters and the estimate of variations in space and time, thus allowing 

meteorological events to be anticipated. 

• STAGE III: This phase includes the development of the WebGIS forecasting system, which 

begins with the discretization of the terrain using cellular automata described by appropriate physical 

variables that follow a specific interaction law. The prediction of the diffusion of the properties of the 

cellular automata will be carried out through the optimization of a neural network which will detect 

the change in the characteristic susceptibility index, if present. 

• STAGE IV: This phase is fundamental to evaluate the effectiveness of the proposed method by 

comparing the simulations carried out with the historical data collected. The simulations via WebGIS 

were compared with events that actually occurred in Calabria (Italy) in 2005. 

 

Figure 2. Logical diagram of the phases constituting the proposed methodology. 

2.1. Data collection 

In phase I, all of the appropriate and necessary data for the subsequent phases of the proposed 

methodology were collected. First, an open-source American Standard Code for Information 

Interchange (ASCII) DEM from the Calabria region was used, which is fundamental to obtain terrain 

elevation data. As the name suggests, the DEM is stored in an ASCII text format. Moreover, the 
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information from the DEM made it possible to attribute a fundamental parameter to the cellular 

automata, which is the slope (attributed only to surface automata). 

Then, the data provided by ISPRA in relation to landslides in Italy were obtained, with a particular 

reference to the susceptibility index. As is known, the ISPRA Susceptibility Index is a parameter used 

to evaluate the susceptibility of an area to slope instabilities, including landslides. This index is an 

integral part of the ISPRA “Charter of Nature” and contributes to the understanding of the ecological 

vulnerability of a territory. ISPRA uses several factors to calculate the Susceptibility Index, including 

the geological, geomorphological, and climatic characteristics of the area. These factors are analyzed 

and weighted to determine the degree of susceptibility of a specific area to landslide phenomena. The 

overall evaluation of the index considers multiple variables that can influence the stability of the soil. 

The functional relationship (1) underlying the calculation of the Landslide Susceptibility Index may 

vary slightly based on specific local conditions; in general, it can be expressed as follows: 

𝐼𝑆𝑃𝑅𝐴 = (𝐴 ∗ 𝐺) + (𝐵 ∗ 𝑅) + (𝐶 ∗ 𝑆) + (𝐷 ∗ 𝐿) + (𝐸 ∗ 𝐶) (1) 

where: 

A, B, C, D, E are the weights associated with geological, topographical, climatic variables, and 

so on. These weights may vary depending on the methodology used and the local conditions. 

G represents the geology of the area and considers factors such as lithology, the presence of faults 

or geological fractures, etc. 

R represents the slope of the land and takes the slope of the terrain in the area into account. 

S represents vegetation and takes the vegetation cover in the area into account. 

L represents rainfall and considers the rainfall levels in the area. 

C represents land use change and takes changes in land use in the area over time into account. 

The value in question presents variations both within the area taken into consideration and over 

time, which is in line with the updates made by the agency. This value is of a considerable importance 

in the process of the proposed methodology, since it contributes to modeling and simulations through 

the inference carried out by the neural network, thus incorporating the knowledge of the models used 

by ISPRA. 

Soil moisture is one of the main key factors in the landslide triggering process. The infiltration of 

rainwater or melting snow causes an increase in pressure in porous soils, with a consequent change in 

their consistency due to a decrease in cohesion and internal friction. During periods of drought, 

deformation phenomena are less evident; however, in soils with a significant presence of clay, cracks 

can form more easily, facilitating the infiltration of subsequent rainwater and causing a loss of cohesion 

in the soil. Similar effects can occur along riverbanks following rapid changes in water levels in the 

surrounding basins due to the drag forces of fine sand and silt grains, which can lead to liquefaction of 

the soil. One of the main physical causes of landslides is intense and prolonged rainfall. However, 

having only the weather data provided by the control units of the Calabria Region (7 km distance) 

available and wanting the most accurate measurements possible in a limited area, the surface humidity 

value (provided as input) was calculated through downscaling operations carried out from an 

appropriate atmospheric simulator developed by the Geomatics Laboratory of the University of Reggio 

Calabria, starting from the rainfall value recorded in the area of interest. In fact, the simulator has 

provided precise precipitation values in the study area, thus allowing a limited area to be taken into 

consideration and proceeding with a more precise and accurate spatial analysis. 
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With regard to the functioning of the atmospheric simulator (phase II) used to obtain highly 

detailed information on the quantity of rainfall in the specific area under study, please refer to the 

authors’ publication [17–19]. 

2.2. Cellular automata 

For the discretization of the terrain and, therefore, phase III of model analysis, it was decided to 

use the cellular automata model [20–22]. 

Cellular automata are mathematical and computational models used to simulate the behavior of 

complex systems through the discretization of space and time. They were first introduced by 

mathematician John von Neumann and scientist Stanislaw Ulam in the 1940s. These models were later 

studied in detail by Stephen Wolfram and other scientists. They are composed of a regular grid of cells, 

each of which can be in a discrete state at a given instant of time. Each cell interacts with its neighboring 

cells according to a defined set of rules. These rules determine how the state of a cell changes over time 

based on the state of neighboring cells. The transition rules can be simple or complex, and the overall 

behavior of the system emerges from the combination of the rules of all the cells (Figure 3). 

Cellular automata can be used in a variety of applications, including modeling natural phenomena 

and simulating complex processes. In the context of terrain discretization, cellular automata are used 

to represent terrains divided into small units or cells. Each cell in the case at hand has attributes such 

as elevation, slope, degree of saturation, and other relevant parameters. The interactions between these 

cells can be used to simulate the behavior of the ground in response to factors such as rain, erosion, 

landslides and more. 

 

Figure 3. Logical diagram of the phases constituting the proposed methodology. 
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This method is particularly suitable for modeling complex spatial systems, where local 

interactions between units have a significant impact on the overall behavior of the system. Terrain 

discretization with cellular automata allows for a detailed representation of the landscape, making it 

possible to simulate geological and hydrological processes accurately. In the specific case, cellular 

automata are characterized by continuously evolving state variables during the simulation and by 

proximity interaction rules (local microphysics) between adjacent cellular automata. It should be noted 

that superficial cellular automata (i.e., those that intersect surfaces) have their state variables set by the 

inputs and not by proximity interactions. 

The cellular automata used in this context to create a phenomenological Digital Twin of the area 

under study are three-dimensional, georeferenced, and have the following dimensions: 

• Width: 1 meter. 

• Thickness: 1 meter. 

• Height: 1 meter. 

State variables include: 

• Slope, expressed in radians. Only relevant for shallow automata. 

• Characteristic Susceptibility Index. Only relevant for shallow automata. 

• Degree of Saturation Sr. 𝑆𝑟 = 𝑉𝑤/𝑉𝑒, i.e., the volume of free water divided by the volume of 

voids (the spaces between waterproof materials). 

• Sn, the number of hours out of a total of annual hours (8760) in which the soil had a saturation 

greater than 30%, considering the previous year as an instantaneous reference. The value varies from 

zero to one. 

The selection of these specific variables is motivated by the fact that the output class, which 

classifies the susceptibility, is ultimately determined in our experimentation by artificial intelligence 

(AI) called to infer the law that establishes the correlation between the inputs (precipitation) and the 

output (change in the susceptibility index). Therefore, this choice is aimed at ensuring that the typically 

used neural networks work at their best. This approach does not aim to completely replace classical 

phenomenological prediction methods with the cellular automata simulator, but rather to serve as an 

intermediate layer that makes the most of the inferential capabilities of AI, especially neural networks, 

in the specific context. 

Returning to the parameters previously defined and used in this work, we observe the following: 

• The slope provides the neural network with information on the orography that conditions 

landslide events. 

• The characteristic susceptibility index indirectly reports information obtained from classical 

methods, thus contributing to convergence during the learning phase. 

• The degree of saturation plays the role of the geological parameter, which can vary abruptly (at 

each iteration), thus significantly influencing the susceptibility as it modifies the stability of the terrain 

and its intrinsic characteristics, such as roughness [23]. 

• Finally, the Sn index offers a simple and effective way to inform the neural network about the 

historical evolution of the phenomenon, avoiding the use of recurrent neural networks and the related 

architectural complexities, while including the cumulative effect of precipitation in the overall model 

in time. 

Regarding the law used to model the local interaction law of cellular automata, the Green-Ampt 

Infiltration Model was selected, based on a simple law, which was focused on moisture diffusion. 
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The Green-Ampt method [24] is used to estimate water infiltration into the soil during a rainfall 

event. The basic mathematical relationship in the Green-Ampt method is used to calculate the initial 

infiltration rate (f) during the initial stages of a rainfall event. This initial infiltration rate is critical to 

understanding how water penetrates the soil. The main mathematical relationship (2) for calculating 

“f” is as follows: 

𝑓 = 𝐾𝑠 + (𝜃𝑖 − 𝜃𝑠)/(𝑡 + 𝑡0) (2) 

where: 

“f” is the initial infiltration rate (rate at which water penetrates the soil at the start of the rainfall 

event). 

“𝐾𝑠” is the hydraulic conductivity of the soil in saturated conditions. 

“𝜃𝑖” is the initial soil moisture content (before the onset of the rainfall event). 

“𝜃𝑠” is the soil moisture content at saturation (maximum water holding capacity of the soil). 

“t” is the time elapsed since the start of the rain event. 

“𝑡0” is a corrective term for the time that takes the initial soil conditions into account. 

It is important to note that the Green-Ampt method simplifies some of the complexities of the soil 

behavior and that several variations of the method can be used. 

Once the phenomenological Digital Twin of the area of interest had been created, we opted for 

the implementation of a pattern detector using a neural network. The choice of the neural network 

focused on the model known as Self-normalizing Neural Networks (SNN), which was enriched with a 

layer that makes use of the Scaled Exponential Linear Units (SELUs) activation functions [25–27]. 

2.3. Self-Normalizing Neural Networks with SELU 

The SELU activation function represents an important development in the field of artificial neural 

networks, as it was designed to overcome some of the limitations associated with the Rectified Linear 

Unit (ReLU) activation function and its variants. 

A distinctive aspect of SELU is its ability to self-normalize. During the process of training a 

neural network, weights and biases are adjusted such that the network’s outputs have a mean close to 

zero and a standard deviation close to one. This self-normalization process is critical to deal with the 

vanishing gradient problem, which can significantly manifest in deep neural networks during training. 

In other words, SELU helps keep gradients stable, thus allowing for the creation of deeper and more 

efficient neural networks. 

Comparing SELU to the ReLU function, which is one of the most common activation functions, 

we notice some key differences. The ReLU is defined as 𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥), which means it returns 

zero for negative values and the input value for positive values. SELU, on the other hand, is defined 

more complexly as 𝑓(𝑥)  =  𝑠𝑐𝑎𝑙𝑒 ∗  (𝑚𝑎𝑥(0, 𝑥)  +  𝑚𝑖𝑛(0, 𝑎𝑙𝑝ℎ𝑎 ∗  (𝑒𝑥𝑝(𝑥)  −  1))) , where 

“scale” and “alpha” are positive constants (Figure 4). This additional complexity comes from the need 

for self-normalization. Among the advantages of SELU, we find its ability to improve convergence 

and stability in deep neural networks. 
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Figure 4. SELU function. 

The structure of the SNN is as follows: 

• One input layer (DensData) with 16,800 inputs. 

• One layer with linear activation function (16,800 neurons). 

• A DropOut layer with a 30% activation rate, which is used only during the training phase to 

prevent overfitting. 

• One layer with SELUs activation function. 

• A linear output layer with a single output. 

For the creation of the training set, a strategy was adopted that integrates with the overall process. 

Initially, areas such as the main study area were identified, considering variables such as lithology, 

volumetry, and relief morphology, together with the annual distribution of rainfall. For each of these 

areas, different years were selected, with the aim of including at least one landslide event, even if it 

was minor. Subsequently, simulations were run with a number of iterations corresponding to one year, 

using the precipitation history as the input. This process allowed us to populate the variable called 

“Sn”, which represents the historical evolution of soil saturation. The periods of maximum rainfall 

were recorded, and if no landslides were reported during these periods, the values of the cellular 

automata simulations (in the 24 hours following the rainfall) were used as the input for the training set, 

associating the index of ISPRA characteristic susceptibility as the output. It is important to highlight 

that the values of the state variables coming from the shallow and deep cellular automata contribute 

differently to the neural network due to their specific geographic locations. This aspect further enriches 

the learning process of the neural network [28,29]. 

Finally, in phase IV, to conduct a complete performance analysis of the results obtained (both 

with the atmospheric simulator and with the proposed method), various analyzes were performed. With 

regard to the atmospheric simulator presented in this study, it was necessary to compare the average 

parameters obtained from 100 tests performed via the atmospheric simulator with those obtained from 

the control units of the Calabria Region. The results indicate an average discrepancy varying between 

5% and 10%, which can be considered non-significant for the objectives of the proposed application. 

This process of comparing data between simulations and real measurements is fundamental to evaluate 
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the accuracy and reliability of our simulator and to guarantee the validity of the results obtained in the 

simulation of the phenomena examined. 

2.4. Index validation of percentage difference 

With regard to the validation of the results obtained, it was decided to conduct the simulation 

using data referring to the previous year in relation to which the landslide event actually affected the 

area under study, in such a way as to verify the correctness of the possible change in the predicted 

susceptibility index compared to the known ISPRA one. Furthermore, a mathematical analysis was 

conducted using the Index Validation of Percentage Difference (IVDP) method, which is used to 

compare the calculated susceptibility indices ( 𝑆𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 ) with the observed or historical ones 

(𝑆𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) and takes the percentage discrepancy between the two indices into account. 

1. For each area in which there are calculated susceptibility indices (𝑆𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑) and observed 

or historical ones (𝑆𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑), the percentage difference (DP) between the two indices was calculated 

(3): 

𝐷𝑃 = [
𝑆𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑−𝑆𝑜𝑟𝑠𝑒𝑟𝑣𝑒𝑑

𝑆𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
] ∗ 100        (3) 

The percentage difference represents how much the calculated index differs (in percentage) from 

the observed one. 

2. The average of the percentage differences on all the points or areas considered (4) was 

calculated: 

𝐼𝑉𝐷𝑃 =  𝛴(𝐷𝑃) / 𝑛         (4) 

where 𝛴(𝐷𝑃) represents the sum of the percentage differences for all points or areas and n is the 

total number of points or areas considered. 

3. A low value of IVDP indicates a good agreement between the calculated and observed 

susceptibility indices, while a high value indicates a significant discrepancy. 

3. Case study and results 

The study area was located in Favazzina (Figure 5), which is a fraction of the municipality of 

Scilla, in the region of Reggio Calabria, Italy. The aim was to make a comparison between the 

susceptibility index calculated by ISPRA with the susceptibility index provided as the output from the 

entire methodology. In this area, two recent landslide events, classified as debris flows, were recorded. 

These events originated as translational landslides involving the surface and altered material of the 

metamorphic substrate. The landslides occurred at positions higher than the channels and generated 

debris flows as the soil eroded and additional material was added to the movement.  

The most significant landslide events in this area date back to May 2001 and March 2005, both 

with grave consequences involving several vital infrastructures. 
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Figure 5. Study area: Favazzina, Reggio Calabria (RC), Italy. 

On May 12, 2001, two surface translational landslides occurred at the head of the Favagreca River. 

These landslides originated at heights of 567 meters and 558 meters above sea level, corresponding to 

two incisions. The unstable masses merged at approximately 300 meters above sea level, forming a 

primary channel before reaching the SNAM gas pipeline station, the SS 18 main road, and the railway. 

This event led to the derailment of the Turin-Reggio Calabria intercity train. 

On March 31, 2005, a similar incident took place in the valley near Favazzina. Three shallow 

translational landslides occurred at approximately 370 meters, 242 meters, and 170 meters above sea 

level, transforming into debris flows. This debris flow caused considerable damage to the 

transportation infrastructure, including the SS18 state road and the railway, thus resulting in the 

derailment of the ICN Reggio Calabria-Milan intercity train. 

Geometrically, the triggering areas of the May 12, 2001 event had a prismatic shape, with a sliding 

surface located at a depth of about 1.5 meters. The study area is situated in a region with a Paleozoic 

crystalline substrate, exhibiting intense alteration conditions. The lower-middle areas of the slope have 

highly and moderately altered rocks, while completely altered rocks predominate above 300 meters 

above sea level. About 60% of the area is covered by susceptible debris flow materials, known as class 

VI gneisses (Figure 6). 

Loose alluvial deposits with gravel and sand are present along the main waterways, and beach 

deposits composed of sand and gravel were observed between the sea and the base of the slope. The 

map indicates that the trigger areas of the 2001 debris flow mainly involved class VI gneiss, which 
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was still visible on-site. However, in the 2005 trigger areas, rocks from classes VI, V-IV, and III 

emerged, possibly due to the 2005 debris flow removing much of the previously visible class VI rocks. 

Tectonically, the study area is intersected by fault segments primarily oriented in NE-SW and 

WNW-ESE directions. The main NE-SW fault system gradually aligns northwestward, influencing the 

Favazzina slope’s morphology. The older WNW-ESE oriented fault system, which is morphologically 

less evident, contributed to the formation of the hydrographic network, including the Favagreca canal 

flowing towards the coastal plain of Favazzina. Figures 6 and 7 depict the geological map and 

widespread landslide areas of the studied region, sourced from the National Geoportal. 

 

Figure 6. Geological map. Source: Italian National Geoportal [30]. 

 

Figure 7. Areas with widespread landslides: Italian National Geoportal [30]. 

Input data were initially acquired at a given instant, including the following: the surface moisture 

value calculated by scaling from spatial scaling operations performed on the precipitation value 
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recorded in the area of interest; land use (forests, crops, burned areas...) to be encoded as an appropriate 

state variable for surface cellular automata; and the characteristic susceptibility index provided by 

ISPRA (Figure 8). 

 

Figure 8. Cesium platform environment: ISPRA susceptibility classification in the study area. 

Subsequently, the domain of interest was represented using 3D cellular automata, as shown in 

Figure 9, where it is possible to visualize the three-dimensional view of the DEM and observe how the 

cellular automata intersected with the surface. 

 

Figure 9. View with the rendering 3D of the DEM showing the Cellular Automata 

intersecting the DEM surface. 
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Next, the simulation was started using the cellular automata, whose simulated states represented 

the inputs for the described neural network. This network returns as the new value (if changed) of the 

susceptibility index as the output. In fact, the output of the pipeline is provided by the pattern detector. 

The values of the state variables of the individual automata come to be the input of the latter module 

of the susceptibility classification process. As said in the methodology section, the pattern detector was 

an implemented SNN equipped with a layer with an activation function SELU. The only existing 

output produces the simulated susceptibility index. 

The classification values used in this study were drawn from the ISPRA dataset. Specifically, a 

numerical scale was employed to designate the severity of a landslide risk within various areas. When 

a warning area was identified, it was attributed a value of 1.0 on this scale. For regions characterized 

by a moderate level of warning, the assigned value was escalated to 2.0; similarly, for areas posing a 

medium warning, the value increased to 3.0. Higher degrees of risk were denoted by assigning values 

of 4.0 and 5.0 for areas with high and very high warnings, respectively. Moreover, to enhance the 

versatility of this classification system, two additional categories were incorporated. First, for areas 

deemed not to require immediate attention, a value of 0.0 was assigned. Second, an index value of 6.0 

was designated when evidence of recurring patterns leading to landslides under similar circumstances 

existed. The implementation of the proposed methodology yielded insightful outcomes for the area 

under investigation. Specifically, the analysis conducted resulted in a computed value of 5.8, as 

illustrated in Figure 10, which serves to underscore the severity of landslide risk within this region. 

 

Figure 10. The result of the simulation related to March 27, 2005. 

3.1. Discussions and validation 

To validate the results obtained, it was observed that the iterations corresponding to the date of 

March 29, 2004 returned an index of 5.8 in the platform (Figure 7). This value indicates a significant 

deviation from the indices provided by ISPRA (4.9), thus signaling, a priori, a marked deterioration in 

the state of stability of the slopes in 2005, which actually occurred in the same year with the consequent 

landslide recorded. We decided to call the new obtained index “Fast reclassification index”, as it allows 

us to obtain a quick reclassification of the area under investigation through the data input provided. 
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The representation is typical of the GIS environment with a polygon representing the cellular automata 

having inherited that value. Finally, the IVDP showed that for the results obtained in the last months 

of simulations before the landslide event, the percentage value was on average around 3.2% and 4.7%, 

showing a good adherence between the known values and the calculated and simulated values. The 

adherence of simulated results to known data suggests that the model used is reliable. 

4. Conclusion 

The results obtained suggested the need to further explore the prospects offered by the presented 

technique. Although the study was conducted on a specific location, the validation period of the results 

was extended to one year, in accordance with expectations. A signal of worsening of the stability 

conditions emerged precisely around the time of the landslide events, thus confirming the temporal 

relevance. Future investigations should concern both the understanding of the micro-interactions 

between atmospheric conditions in a more detailed way and the consideration of a complex and non-

uniform distribution of lithology in the study areas. The main objective of our work was to introduce 

an innovative methodology to predict susceptibility variations, which has the advantage of allowing 

the use of mathematical models with emergent properties and especially of artificial intelligence with 

neural networks, which is a field often considered complex according to literature. Further refinements 

of the method will be dedicated to the integration of contextual information derived from the geological 

characteristics of the terrain, seismic data, and the impact of human activities. In regard to the 

construction of the training set, we will exploit monitoring tools for suspicious slopes and the SBAS-

InSAR and PS-InSAR techniques [31,32] to expand the number of areas suitable for providing useful 

information for identifying any ongoing deformations, thus associating an estimated value of 

susceptibility to avoid training the network only with boundary values. In addition to the initial 

parameters mentioned, it would be equally significant to consider the land use and seismicity of the 

area. However, in an initial testing phase, we decided to exclusively focus on a few variables handled 

by a simple diffusion relationship. The aim of this work was to present the method, with the intention 

of carrying out more detailed and accurate future implementations. These future implementations will 

not neglect factors such as geotechnical mechanical properties, geomorphology, the seismicity of the 

terrain, and all possible natural and anthropogenic causes that can contribute to landslides. Finally, it 

is important to underline that the choice to have a single classification output is guided by the desire 

to test the effectiveness of the method in general terms and to confer, in this work, a greater reliability 

on the temporal domain compared to the spatial one, considering the complexity of the model and the 

richness of the training set. 
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