The environmental impact of mining and smelting in the world-class Monte Amiata mercury (Hg) ore field has long been studied, before and after the final closure in 1982. A first summary was presented in 2015. With this contribution, we review the studies conducted in the last eight years. The most significant results include ⅰ) Hg-isotope characterization of primary ore (cinnabar), smelting waste (calcines), soil, fish and stream sediments; ⅱ) analysis of the interplay between geomorphological evolution, fluvial dynamics and Hg distribution in the Paglia River catchment, which drains the main mining areas; ⅲ) an improved quantification of the Hg loads discharged to the Mediterranean Sea; ⅳ) the use of biomonitors to reveal the dispersion of Hg; ⅴ) new detailed surveys, including innovative techniques, of Hg distribution in air; ⅵ) specific investigations to support the ongoing reclamation at Abbadia San Salvatore, the main mining and smelting center of the district, and ⅶ) the assessment of the variability of Hg distribution in air, water and soil from the reclaimed Siele mine. Despite these progresses, there are further steps to be conducted to achieve optimal management of the wide contamination evidenced in this district. It is now fully clear that the diffuse character of contamination results in unfeasible hypotheses for total remediation. Therefore, the goal is that of a sustainable coexistence between contamination and human activities. This goal may involve the following activities: a) implementation of GIS-based contamination maps as a direct operational instrument for local authorities to tune up specific limitations and regulations of human activities (e.g., fishing, instream quarrying and wildfire management); b) mitigation measures such as increasing the vegetal cover of river banks to limit erosion and runoff, and c) continuous monitoring of air, water and soil contamination, including transfer to the food chain.
Citation: Alessia Nannoni, Federica Meloni, Marco Benvenuti, Jacopo Cabassi, Francesco Ciani, Pilario Costagliola, Silvia Fornasaro, Pierfranco Lattanzi, Marta Lazzaroni, Barbara Nisi, Guia Morelli, Valentina Rimondi, Orlando Vaselli. Environmental impact of past Hg mining activities in the Monte Amiata district, Italy: A summary of recent studies[J]. AIMS Geosciences, 2022, 8(4): 525-551. doi: 10.3934/geosci.2022029
The environmental impact of mining and smelting in the world-class Monte Amiata mercury (Hg) ore field has long been studied, before and after the final closure in 1982. A first summary was presented in 2015. With this contribution, we review the studies conducted in the last eight years. The most significant results include ⅰ) Hg-isotope characterization of primary ore (cinnabar), smelting waste (calcines), soil, fish and stream sediments; ⅱ) analysis of the interplay between geomorphological evolution, fluvial dynamics and Hg distribution in the Paglia River catchment, which drains the main mining areas; ⅲ) an improved quantification of the Hg loads discharged to the Mediterranean Sea; ⅳ) the use of biomonitors to reveal the dispersion of Hg; ⅴ) new detailed surveys, including innovative techniques, of Hg distribution in air; ⅵ) specific investigations to support the ongoing reclamation at Abbadia San Salvatore, the main mining and smelting center of the district, and ⅶ) the assessment of the variability of Hg distribution in air, water and soil from the reclaimed Siele mine. Despite these progresses, there are further steps to be conducted to achieve optimal management of the wide contamination evidenced in this district. It is now fully clear that the diffuse character of contamination results in unfeasible hypotheses for total remediation. Therefore, the goal is that of a sustainable coexistence between contamination and human activities. This goal may involve the following activities: a) implementation of GIS-based contamination maps as a direct operational instrument for local authorities to tune up specific limitations and regulations of human activities (e.g., fishing, instream quarrying and wildfire management); b) mitigation measures such as increasing the vegetal cover of river banks to limit erosion and runoff, and c) continuous monitoring of air, water and soil contamination, including transfer to the food chain.
[1] | Beckers F, Rinklebe J (2017) Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit Rev Environ Sci Tech 47: 693–794. https://doi.org/10.1080/10643389.2017.1326277 doi: 10.1080/10643389.2017.1326277 |
[2] | Bjørklund G, Dadar M, Mutter J, et al. (2017) The toxicology of mercury: Current research and emerging trends. Environ Res 159: 545–554. https://doi.org/10.1016/j.envres.2017.08.051 doi: 10.1016/j.envres.2017.08.051 |
[3] | Natasha SM, Khalid S, Bibi I, et al. (2020) A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: ecotoxicology and health risk assessment. Sci Total Environ 711: 134749. https://doi.org/10.1016/j.scitotenv.2019.134749 doi: 10.1016/j.scitotenv.2019.134749 |
[4] | Kocman D, Wilson SJ, Amos HM, et al. (2017) Toward an assessment of the global inventory of present-day mercury releases to freshwater environments. Int J Environ Res Public Health 14: 138. https://doi.org/10.3390/ijerph14020138 doi: 10.3390/ijerph14020138 |
[5] | Kim KH, Kabir E, Jahan SA (2016) A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater 306: 376–385. https://doi.org/10.1016/j.jhazmat.2015.11.031 doi: 10.1016/j.jhazmat.2015.11.031 |
[6] | Pirrone N, Cinnirella S, Feng X, et al. (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10: 5951–5964. https://doi.org/10.5194/acp-10-5951-2010 doi: 10.5194/acp-10-5951-2010 |
[7] | Ciani F, Rimondi V, Costagliola P (2021) Atmospheric mercury pollution: The current methodological framework outlined by environmental legislation. Air Qual Atmos Health 14: 1633–1645. https://doi.org/10.1007/s11869-021-01044-4 doi: 10.1007/s11869-021-01044-4 |
[8] | Driscoll CT, Mason RP, Chan HM, et al. (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47: 4967–4983. https://doi.org/10.1021/es305071v doi: 10.1021/es305071v |
[9] | Li WC, Tse HF (2015) Health risk and significance of mercury in the environment. Environ Sci Pollut Res 22: 192–201. https://doi.org/10.1007/s11356-014-3544-x doi: 10.1007/s11356-014-3544-x |
[10] | Gibb H, O'Leary KG (2014) Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: a comprehensive review. Environ Health Perspect 122: 667–672. https://doi.org/10.1289/ehp.1307864 doi: 10.1289/ehp.1307864 |
[11] | US EPA. Mercury study report to Congress. U.S. Environmental Protection Agency. 1997. Available from: https://www.epa.gov/mercury/mercury-study-report-congress. |
[12] | UNEP. Review of Minamata Convention initial assessment reports: key findings for health. Geneva: World Health Organization. 2021. Available from: https://apps.who.int/iris/handle/10665/351133. |
[13] | Kocman D, Horvat M, Pirrone N, et al. (2013) Contribution of contaminated sites to the global mercury budget. Environ Res 125: 160–170. https://doi.org/10.1016/j.envres.2012.12.011 doi: 10.1016/j.envres.2012.12.011 |
[14] | Rytuba JJ (2003) Mercury from mineral deposits and potential environmental impact. Environ Geol 43: 326–338. https://doi.org/10.1007/s00254-002-0629-5 doi: 10.1007/s00254-002-0629-5 |
[15] | Hylander LD, Meili M (2003) 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Sci Total Environ 304: 13–27. https://doi.org/10.1016/S0048-9697(02)00553-3 doi: 10.1016/S0048-9697(02)00553-3 |
[16] | Strappa O (1977) Storia delle miniere di mercurio del Monte Amiata—I Parte. L'industria mineraria (in Italian). |
[17] | Bombace MA, Rossi LC, Clemente GF, et al. (1973) Ecological study of the mercury-bearing area of Monte Amiata. Comitato Nazionale per l'Energia Nucleare, Casaccia 29: 191–237. https://doi.org/10.2172/4948308 doi: 10.2172/4948308 |
[18] | Benvenuti M, Costagliola P (2016) Il distretto mercurifero del comprensorio amiatino: nuovi dati sull'impatto ambientale nel sistema fuviale Paglia-Tevere. Geol Ambient 24: 2–5 (in Italian). |
[19] | Dall'Aglio M (1966) Distribuzione del mercurio nelle acque superfciali. Atti Soc Tosc Sci Nat 36: 577–595. |
[20] | Dall'Aglio M, Da Roit R, Orlandi C, et al. (1967) Prospezione geochimica del mercurio. Distribuzione Del Mercurio Nelle Alluvioni Della Toscana. Ind Miner 17: 391–398. |
[21] | Rimondi V, Chiarantini L, Lattanzi P, et al. (2015) Metallogeny, exploitation and environmental impact of the Mt. Amiata mercury ore district (Southern Tuscany, Italy). Ital J Geosci 134: 323–336. https://doi.org/10.3301/IJG.2015.02 doi: 10.3301/IJG.2015.02 |
[22] | Marroni M, Moratti G, Costantini A, et al. (2015) Geology of the Monte Amiata region, Southern Tuscany, Central Italy. Ital J Geosci 134: 171–199. https://doi.org/10.3301/IJG.2015.13 doi: 10.3301/IJG.2015.13 |
[23] | Laurenzi MA, Braschi E, Casalini M, et al. (2015) New 40Ar-39Ar dating and revision of the geochronology of the Monte Amiata Volcano, Central Italy. Ital J Geosci 134: 255–265. https://doi.org/10.3301/IJG.2015.11 doi: 10.3301/IJG.2015.11 |
[24] | Tanelli G, Lattanzi P (1983) Pyritic ores of southern Tuscany. Ita Geol Soc S Afr Spec Publ 7: 315–323. |
[25] | Lattanzi P, Benvenuti M, Costagliola P, et al. (1994) An overview on recent research on the metallogeny of Tuscany, with special reference to the Apuane Alps. Mem Soc Geol Ital 48: 613–625. |
[26] | Pribil MJ, Rimondi V, Costagliola P, et al. (2020) Assessing mercury distribution using isotopic fractionation of mercury processes and sources adjacent and downstream of a legacy mine district in Tuscany, Italy. Appl Geochem 117: 104600. https://doi.org/10.1016/j.apgeochem.2020.104600 doi: 10.1016/j.apgeochem.2020.104600 |
[27] | Deng CZ, Sun GY, Rong YM, et al. (2021) Recycling of mercury from the atmosphere-ocean system into volcanic-arc—associated epithermal gold systems. Geology 49: 309–313. https://doi.org/10.1130/G48132.1 doi: 10.1130/G48132.1 |
[28] | Bellander T, Merler E, Ceccarelli F, et al. (1998) Historical exposure to inorganic mercury at the smelter works of Abbadia San Salvatore, Italy. Ann Occup Hyg 42: 81–90. https://doi.org/10.1016/S0003-4878(97)00052-5 doi: 10.1016/S0003-4878(97)00052-5 |
[29] | Ciccacci S, Galiano M, Roma MA, et al. (2009) Morphodynamics and morphological changes of the last 50 years in a badland sample area of Southern Tuscany (Italy). Z Geomorphol 53: 273–297. https://doi.org/10.1127/0372-8854/2009/0053-0273 doi: 10.1127/0372-8854/2009/0053-0273 |
[30] | Ciccacci S, D'Alessandro L, Fredi P, et al. (1988) Contributo dell'analisi geomorfica quantitativa allo studio dei processi di denudazione nel bacino idrografco del Torrente Paglia (Toscana meridionale—Lazio settentrionale). Geogr Fis Dinam Quat 1: 171–188 (In Italian). https://doi.org/10.13140/2.1.2991.6802 doi: 10.13140/2.1.2991.6802 |
[31] | Moretti GP, Cianficconi F, Peroni E, et al. (1988) Considerazioni sulle comunità macrobentoniche del sistema fluviale Paglia Chiani. Boll Mus Sto Nat Lunigiana 67: 157161. |
[32] | Protano G, Nannoni F (2018) Influence of ore processing activity on Hg, As and Sb contamination and fractionation in soils in a former mining site of Monte Amiata ore district (Italy). Chemosphere 199: 320–330. https://doi.org/10.1016/j.chemosphere.2018.02.051 doi: 10.1016/j.chemosphere.2018.02.051 |
[33] | Montefinese S, Benvenuti M, Buccianti A, et al. (2021) Mercury in Quaternary sediments of the Paglia-Pagliola River system (Monte Amiata). Congresso della Società Geologica Italiana In press. |
[34] | Fornasaro S, Morelli G, Rimondi V, et al. (2022) Mercury distribution around the Siele Hg mine (Mt. Amiata district, Italy) twenty years after reclamation: Spatial and temporal variability in soil, stream sediments, and air. J Geochem Explor 232: 106886. https://doi.org/10.1016/j.gexplo.2021.106886 doi: 10.1016/j.gexplo.2021.106886 |
[35] | Italian Ministry of the Environment. D.Lgs 152/06—Legislative Decree. Norme in Materia Ambientale. Gazzetta Ufficiale N. 88. 2006. Available from: https://www.gazzettaufficiale.it/dettaglio/codici/materiaAmbientale |
[36] | Pasquetti F, Vaselli O, Zanchetta G, et al. (2020) Sedimentological, Mineralogical and Geochemical Features of Late Quaternary Sediment Profiles from the Southern Tuscany Hg Mercury District (Italy): Evidence for the Presence of Pre-Industrial Mercury and Arsenic Concentrations. Water 12: 1998. https://doi.org/10.3390/w12071998 doi: 10.3390/w12071998 |
[37] | Ruggieri G, Morelli G, Benvenuti M, et al. (2021) Origin of the As anomaly in Quaternary sediments of Southern Tuscany (Italy): New insights from geological, geochemical and fluid inclusion data from the Pecora River and Bruna River Valleys. Sed Geol 416: 105876. https://doi.org/10.1016/j.sedgeo.2021.105876 doi: 10.1016/j.sedgeo.2021.105876 |
[38] | Gray JE, Pribil MJ, Higueras PL (2013) Mercury isotope fractionation during ore retorting in the Almadén mining district, Spain. Chem Geol 357: 150–157. https://doi.org/10.1016/j.chemgeo.2013.08.036 doi: 10.1016/j.chemgeo.2013.08.036 |
[39] | Meloni F, Montegrossi G, Lazzaroni M, et al. (2021) Total and leached arsenic, mercury and antimony in the mining waste dumping area of Abbadia San Salvatore (Mt. Amiata, Central Italy). Appl Sci 11: 7893. https://doi.org/10.3390/app11177893 doi: 10.3390/app11177893 |
[40] | Rimondi V, Gray JE, Costagliola P, et al. (2012) Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy. Sci Total Environ 414: 318–327. https://doi.org/10.1016/j.scitotenv.2011.10.065 doi: 10.1016/j.scitotenv.2011.10.065 |
[41] | Pattelli G, Rimondi V, Benvenuti M, et al. (2014) Effects of the November 2012 flood event on the mobilization of Hg from the mount Amiata Mining district to the sediments of the Paglia river basin. Minerals 4: 241–256. https://doi.org/10.3390/min4020241 doi: 10.3390/min4020241 |
[42] | Gray JE, Rimondi V, Costagliola P, et al. (2014) Long-distance transport of Hg, Sb, and As from a mined area, conversion of Hg to methyl-Hg, and uptake of Hg by fish on the Tiber River basin, west-central Italy. Environ Geochem Health 36: 145–157. https://doi.org/10.1007/s10653-013-9525-z doi: 10.1007/s10653-013-9525-z |
[43] | Colica A, Benvenuti M, Chiarantini L, et al. (2019) From point source to diffuse source of contaminants: the example of mercury dispersion in the Paglia River (Central Italy). Catena 172: 488–500. https://doi.org/10.1016/j.catena.2018.08.043 doi: 10.1016/j.catena.2018.08.043 |
[44] | Rimondi V, Costagliola P, Lattanzi P, et al. (2019) A 200 km-long mercury contamination of the Paglia and Tiber floodplain: monitoring results and implications for environmental management. Environ Pollut 255: 11319. https://doi.org/10.1016/j.envpol.2019.113191 doi: 10.1016/j.envpol.2019.113191 |
[45] | Fornasaro S, Morelli G, Rimondi V, et al. (2022) The extensive mercury contamination in soil and legacy sediments of the Paglia River basin (Tuscany, Italy): interplay between Hg-mining waste discharge along rivers, 1960s economic boom, and ongoing climate change. J Soils Sediments 22: 656–671. https://doi.org/10.1007/s11368-021-03129-0 doi: 10.1007/s11368-021-03129-0 |
[46] | Brigante R, Cencetti C, De Rosa P, et al. (2017) Use of aerial multispectral images for spatial analysis of flooded riverbed-alluvial plain systems: the case study of the Paglia River (central Italy). Geomatic Nat Hazard Risk 8: 1126–1143. https://doi.org/10.1080/19475705.2017.1300607 doi: 10.1080/19475705.2017.1300607 |
[47] | Chiarantini L, Benvenuti M, Beutel M, et al. (2016) Mercury and arsenic in stream sediments and surface waters of the Orcia River basin, southern Tuscany, Italy. Water Air Soil Pollut 227: 1–15. https://doi.org/10.1007/s11270-016-3110-x doi: 10.1007/s11270-016-3110-x |
[48] | Lattanzi P, Rimondi V, Chiarantini L, et al. (2017) Mercury dispersion through streams draining the Mt. Amiata district, southern Tuscany, Italy. Procedia Earth Planet Sci 17: 468–471. https://doi.org/10.1016/j.proeps.2016.12.118 doi: 10.1016/j.proeps.2016.12.118 |
[49] | Lattanzi P, Costagliola P, Paolieri M (2020) Potential risk from the use of mine-contaminated sediments for road and rail embankments: preliminary data from Central Italy. EGU General Assembly Conference Abstracts, 11394. https://doi.org/10.5194/egusphere-egu2020-11394 doi: 10.5194/egusphere-egu2020-11394 |
[50] | Chiarantini L, Rimondi V, Bardelli F, et al. (2017) Mercury speciation in Pinus nigra barks from Monte Amiata (Italy): An X-ray absorption spectroscopy study. Environ Pollut 227: 83–88. https://doi.org/10.1016/j.envpol.2017.04.038 doi: 10.1016/j.envpol.2017.04.038 |
[51] | Bardelli F, Rimondi V, Lattanzi P, et al. (2022) Pinus nigra barks from a mercury mining district studied with high resolution XANES spectroscopy. Environ Sci Processes Impacts. https://doi.org/10.1039/D2EM00239F doi: 10.1039/D2EM00239F |
[52] | Rimondi V, Bardelli F, Benvenuti M, et al. (2014) Mercury speciation in the Mt. Amiata mining district (Italy): Interplay between urban activities and mercury contamination. Chem Geol 380: 110–118. https://doi.org/10.1016/j.chemgeo.2014.04.023 doi: 10.1016/j.chemgeo.2014.04.023 |
[53] | Italian Ministry of the Environment. D.Lgs 31/01—Legislative Decree. Attuazione della direttiva 98/83/CE relativa alla qualità delle acque destinate al consumo umano. Gazzetta Ufficiale N. 52. 2001. Available from: https://www.gazzettaufficiale.it/eli/id/2001/03/03/001G0074/sg. |
[54] | Minissale A, Magro G, Vaselli O, et al. (1997) Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy). J Volcanol Geotherm Res 79: 223–251. https://doi.org/10.1016/S0377-0273(97)00028-0 doi: 10.1016/S0377-0273(97)00028-0 |
[55] | Tamasi G, Cini R (2003) Study of binary and ternary metal complexes containing the sulfato ligand: molecular models for selected non-catalytic sites in sulfurylase. Dalton Trans 14: 2928–2936. https://doi.org/10.1039/b302779a doi: 10.1039/b302779a |
[56] | Magi F, Doveri M, Menichini M, et al. (2019) Groundwater response to local climate variability: hydrogeological and isotopic evidences from the Mt. Amiata volcanic aquifer (Tuscany, central Italy). Rend Fis Nat Acc Lincei 30: 125–136. https://doi.org/10.1007/s12210-019-00779-8 doi: 10.1007/s12210-019-00779-8 |
[57] | Vaselli O, Lazzaroni M, Nisi B, et al. (2021) Discontinuous Geochemical Monitoring of the Galleria Italia Circumneutral Waters (Former Hg-Mining Area of Abbadia San Salvatore, Tuscany, Central Italy) Feeding the Fosso Della Chiusa Creek. Environments 8: 15. https://doi.org/10.3390/environments8020015 doi: 10.3390/environments8020015 |
[58] | Lazzaroni M, Vetuschi Zuccolini M, Nisi B, et al. (2022) Mercury and Arsenic Discharge from Circumneutral Waters Associated with the Former Mining Area of Abbadia San Salvatore (Tuscany, Central Italy). Int J Environ Res Public Health 19: 5131. https://doi.org/10.3390/ijerph19095131 doi: 10.3390/ijerph19095131 |
[59] | Vaselli O, Higueras P, Nisi B, et al. (2013) Distribution of gaseous Hg in the Mercury mining district of Mt. Amiata (Central Italy): A geochemical survey prior the reclamation project. Environ Res 125: 179–187. https://doi.org/10.1016/j.envres.2012.12.010 doi: 10.1016/j.envres.2012.12.010 |
[60] | Cabassi J, Tassi F, Venturi S, et al. (2017) A new approach for the measurement of gaseous elemental mercury (GEM) and H2S in air from anthropogenic and natural sources: examples from Mt. Amiata (Siena, Central Italy) and Solfatara Crater (Campi Flegrei, Southern Italy). J Geochem Explor 175: 48–58. https://doi.org/10.1016/j.gexplo.2016.12.017 doi: 10.1016/j.gexplo.2016.12.017 |
[61] | McLagan DS, Monaci F, Huang H, et al. (2019) Characterization and Quantification of Atmospheric Mercury Sources Using Passive Air Samplers. J Geophys Res Atmos 124: 2351–2362. https://doi.org/10.1029/2018JD029373 doi: 10.1029/2018JD029373 |
[62] | Galoppini C, Lotti G, Pelosi P (1971) Contenuto di mercurio di piante cresciute al Monte Amiata. Agric Italliana 71. |
[63] | Bargagli R, Barghigiani C, Maserti, BE (1986) Mercury in vegetation of the Mount Amiata area (Italy). Chemosphere 15: 1035–1042. https://doi.org/10.1016/0045-6535(86)90555-2 doi: 10.1016/0045-6535(86)90555-2 |
[64] | Bargagli R, Barghigiani C (1991) Lichen biomonitoring of mercury emission and deposition in mining, geothermal and volcanic areas of Italy. Environ Monit Assess 16: 265–275. https://doi.org/10.1007/BF00397614 doi: 10.1007/BF00397614 |
[65] | Ferrara R, Maserti BE, Breder R (1991) Mercury in abiotic and biotic compartments of an area affected by a geochemical anomaly (Mt. Amiata, Italy). Water Air Soil Pollut 56: 219–233. https://doi.org/10.1007/BF00342273 doi: 10.1007/BF00342273 |
[66] | Bacci E, Gaggi C, Duccini M, et al. (1994) Mapping mercury vapours in an abandoned cinnabar mining area by azalea (Azalea indica) leaf trapping. Chemosphere 29: 641–656. https://doi.org/10.1016/0045-6535(94)90036-1 doi: 10.1016/0045-6535(94)90036-1 |
[67] | Barghigiani C, Ristori, T (1994) Mercury levels in agricultural products of Mt. Amiata (Tuscany, Italy). Arch Environ Contam Toxicol 26: 329–334. https://doi.org/10.1007/BF00203559 doi: 10.1007/BF00203559 |
[68] | Rimondi V, Costagliola P, Benesperi R, et al. (2020) Black pine (Pinus nigra) barks: A critical evaluation of some sampling and analysis parameters for mercury biomonitoring purposes. Ecol Indic 112: 106110. https://doi.org/10.1016/j.ecolind.2020.106110 doi: 10.1016/j.ecolind.2020.106110 |
[69] | Rimondi V, Benesperi R, Beutel MW, et al. (2020) Monitoring of airborne mercury: Comparison of different techniques in the Monte Amiata District, Southern Tuscany, Italy. Int J Environ Res Public Health 17: 2353. https://doi.org/10.3390/ijerph17072353 doi: 10.3390/ijerph17072353 |
[70] | Fornasaro S, Ciani F, Morelli G, et al. (2022) Mercury in chestnut tree-rings of the Monte Amiata area (Central Italy): impact of past mining activity and present-day geothermal power plants. SGI-SIMP Mtg, Torino. In press. |
[71] | Monaci F, Ancora S, Paoli L, et al. (2022) Air quality in post-mining towns: tracking potentially toxic elements using tree leaves. Environ Geochem Health, 1–17. https://doi.org/10.1007/s10653-022-01252-6 doi: 10.1007/s10653-022-01252-6 |
[72] | Mattioli A (2019) Inquinamento da mercurio dei fiumi Paglia e Tevere. Valutazione di impatto sulla salute. Azienda Unità Sanitaria Locale Umbria 2, Unita di Progetto Ambiente e salute Terni, 17. Available from: https://www.snpambiente.it/2019/04/29/contaminazione-da-mercurio-dellasta-fluviale-paglia-tevere/. |
[73] | Borum B, Manibusan MK, Schoeny R, et al. (2001) Water quality criterion for the protection of human health: methylmercury. USEPA. |
[74] | Fornasaro S, Delicato G, Ciani F, et al. (2021) The potential wildfire effects on mercury remobilization from soil and biomass in the Mt. Amiata mining district. Congresso della Società Geologica Italiana 1: 270. |
[75] | Lamborg CH, Bowman K, Hammerschmidt C, et al. (2014) Mercury in the anthropocene ocean. Oceanography 27: 76–87. Available from: https://www.jstor.org/stable/24862122. |
[76] | Kotnik J, Horvat M, Tessier E, et al. (2007) Mercury speciation in surface and deep waters of the Mediterranean Sea. Mar Chem 107: 13–30. https://doi.org/10.1016/j.marchem.2007.02.012 doi: 10.1016/j.marchem.2007.02.012 |
[77] | Baldi F, Bargagli R, Renzoni A (1979) The distribution of mercury in the surficial sediments of the northern Tyrrhenian Sea. Mar Pollut Bull 10: 301–303. https://doi.org/10.1016/0025-326X(79)90201-7 doi: 10.1016/0025-326X(79)90201-7 |
[78] | Seritti A, Petrosino A, Morelli E, et al. (1982) The biogeochemical cycle of mercury in the mediterranean: Part Ⅰ: Participate and dissolved forms of mercury in the Northern Tyrrhenian Sea. Environ Technol Lett 3: 251–256. https://doi.org/10.1080/09593338209384124 doi: 10.1080/09593338209384124 |
[79] | Baldi F, D'Amato ML (1986) Mercury pollution in marine sediment cores near cinnabar deposits and a chlor-alkali plant. Sci Total Environ 57: 111–120. https://doi.org/10.1016/0048-9697(86)90016-1 doi: 10.1016/0048-9697(86)90016-1 |
[80] | Barghigiani C, Ristori T (1995) Preliminary Results on the Role of Rivers in Total Hg Concentrations in Marine Sediments and Benthic Organisms of a Coastal Area of Italy, Mercury as a Global Pollutant, Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0153-0_111 |
[81] | Ferrara R, Maserti BE, Andersson M, et al. (1997) Mercury degassing rate from mineralized areas in the Mediterranean basin. Water Air Soil Pollut 93: 59–66. https://doi.org/10.1007/BF02404747 doi: 10.1007/BF02404747 |
[82] | Rajar R, Četina M, Horvat M, et al. (2007) Mass balance of mercury in the Mediterranean Sea. Mar Chem 107: 89–102. https://doi.org/10.1016/j.marchem.2006.10.001 doi: 10.1016/j.marchem.2006.10.001 |
[83] | Scanu S, Piazzolla D, Frattarelli FM, et al. (2016) Mercury enrichment in sediments of the coastal area of northern Latium, Italy. Bull Environ Contam Toxicol 96: 630–637. https://doi.org/10.1007/s00128-016-1776-9 doi: 10.1007/s00128-016-1776-9 |
[84] | Montuori P, Aurino S, Garzonio F, et al. (2016) Estimation of heavy metal loads from Tiber River to the Tyrrhenian Sea and environmental quality assessment. Environ Sci Poll Res 23: 23694–23713. https://doi.org/10.1007/s11356-016-7557-5 doi: 10.1007/s11356-016-7557-5 |
[85] | Lattanzi P, Costagliola P, Rimondi V, et al. (2019) New data on the presence and distribution of Hg in the Paglia-Tiber fluvial system. Geophysical Res Abstract 21. |
[86] | Fornasaro S, Morelli G, Costagliola P, et al. (2022) The contribute of the Paglia-Tiber River system (Central Italy) to the total mercury mass load in the Mediterranean Sea. Toxics 10: 395. https://doi.org/10.3390/toxics10070395 doi: 10.3390/toxics10070395 |
[87] | Belardi G, Marabini AM, et al. (1996) Check on level of environmental contamination by mercury and cleanup of Abetina Mining area (Grosseto-Italia). Warrendale, PA (United States). |
[88] | Bacci E, Facciotto C, Giunti M, et al. (2003) Miniera del Siele: azioni di monitoraggio e verifiche statiche a bonifica terminata. Novembre 2001-dicembre 2002. Report to Comunità Montana Amiata Senese, Piancastagnaio (In Italian). |
[89] | Malferrari D, Brigatti MF, Elmi C, et al. (2011) Determination of Hg binding forms in contaminated soils and sediments: state of the art and a case study approaching abandoned mercury mines from Mt. Amiata (Siena, Italy). N Jb Miner Abh 188: 65–74. https://doi.org/10.1127/0077-7757/2011/0194 |
[90] | Mining Italiana (1996) Progetto esecutivo di bonifica ambientale dell'area mineraria del Siele. All. 1A. Roma (Italy), 32 (in Italian). |
[91] | Bianchi F, Rappuoli D, Vaselli O, et al. (2019) Distribution of mercury, antimony and arsenic in the terrains from the former mining area of Abbadia San Salvatore (Siena, central Italy). Abstr SGI-SIMP Congress. Available from: https://www.socgeol.it/N2119/congresso-simp-sgi-sogei-2019-il-tempo-del-pianeta-terra-e-il-tempo-dell-uomo-le-geoscienze-fra-passato-e-futuro.html |
[92] | Vaselli O, Rappuoli D, Bianchi F, et al. (2019) One hundred years of mercury exploitation at the mining area of Abbadia San Salvatore (Mt. Amiata, Central Italy): A methodological approach for a complex reclamation activity before the establishment of a new mining park. El patrimonio geológico y minero: Identidad y motor de desarrollo, Instituto Geológico y Minero de España, 1109–1126. |
[93] | Vaselli O, Nisi B, Rappuoli D, et al. (2017) Gaseous elemental mercury and total and leached mercury in building materials from the former Hg-mining area of Abbadia San Salvatore (Central Italy). Int J Environ Res Public Health 14: 425. https://doi.org/10.3390/ijerph14040425 doi: 10.3390/ijerph14040425 |
[94] | Lazzaroni M, Nisi B, Rappuoli D, et al. (2020) A New Low-Cost and Reliable Method to Evaluate the Release of Hg0 from Synthetic Materials. Processes 8: 1282. https://doi.org/10.3390/pr8101282 doi: 10.3390/pr8101282 |
[95] | Cabassi J, Lazzaroni M, Giannini L, et al. (2022) Continuous and near real-time measurements of gaseous elemental mercury (GEM) from an Unmanned Aerial Vehicle: A new approach to investigate the 3D distribution of GEM in the lower atmosphere. Chemosphere 288: 132547. https://doi.org/10.1016/j.chemosphere.2021.132547 doi: 10.1016/j.chemosphere.2021.132547 |
[96] | Meloni F, Vaselli O, Nisi B, et al. (2019) Geochemical feature of shallow aquifer in the former mining area of Abbadia San Salvatore (Tuscany, central Italy). Abstr SGI-SIMP Congress 645. Available from: https://www.socgeol.it/N2119/congresso-simp-sgi-sogei-2019-il-tempo-del-pianeta-terra-e-il-tempo-dell-uomo-le-geoscienze-fra-passato-e-futuro.html |
[97] | Parkhurst DL, Appelo CAJ (1999) User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resour Invest Rep 99: 312. |
[98] | Barsi C (1957) Lo stato attuale della silicosi nei minatori di mercurio del Monte Amiata. Rass Med Ind 26: 74–86. (In Italian). |
[99] | Barsi C (1956) Studio clinico-statistico sul mercurialismo nell'industria mineraria del mercurio del Monte Amiata. Rass Med Ind 25: 121–132. (In Italian). |
[100] | Caselli G, Rosati C, Simone M (2007) La popolazione dei comuni minerari dell'Amiata. Popolazione E Storia 8: 63–89. (In Italian). Available from: https://popolazioneestoria.it/article/view/276. |
[101] | RAIS. The Risk Assessment Information System, Toxicity Profiles, Condensed Toxicity Summary for Mercury, 2018. Available from: https://rais.ornl.gov/tox/profiles/mercury_c_V1.html. |
[102] | Società Italiana Valori di Riferimento (2017) Quarta lista dei valori di riferimento per elementi, composti organici e loro metaboliti. Available from: http://www.sivr.it/ |
[103] | Rossi LC, Clemente GF, Santaroni G (1976) Mercury and selenium distribution in a defined area and in its population. Arch Environ Health Int J 31: 160–165. https://doi.org/10.1080/00039896.1976.10667211 doi: 10.1080/00039896.1976.10667211 |
[104] | Cinquina AL, Vaccari S, Santis LD, et al. (2000) Mercury contamination in products of animal origin [honey-ewe milk-freshwater fish] and biologic matrices [sheep kidney-wool-blood] taken from Mount Amiata [Tuscany]. Obiettivi e Documenti Veterinari 21: 55–58. |
[105] | Montomoli L, Sisinni AG, Cioni F, et al. (2002) Valutazione delle fonti di assorbimento di mercurio tramite lo studio dei livelli di mercurio urinario della popolazione generale. Med Lav 93: 184–188. |
[106] | Minichilli F, Nuvolone D, Bustaffa E, et al. (2012) State of health of populations residing in geothermal areas of Tuscany. Epidemiol Prev 36: 1–104. |
[107] | Bustaffa E, Minichilli F, Nuvolone D, et al. (2017) Mortality of populations residing in geothermal areas of Tuscany during the period 2003–2012. Ann Ist Super Sanità 53: 108–117. https://doi.org/10.4415/ANN_17_02_06 doi: 10.4415/ANN_17_02_06 |
[108] | Bustaffa E, Cori L, Manzella A, et al. (2020) The health of communities living in proximity of geothermal plants generating heat and electricity: A review. Sci Tot Environ 706: 135998. https://doi.org/10.1016/j.scitotenv.2019.135998 doi: 10.1016/j.scitotenv.2019.135998 |
[109] | ARS, Agenzia Regionale Sanità della Toscana (2021) Geotermia e salute in Toscana—Rapporto 2021. Available from: https://www.ars.toscana.it/2-articoli/4688-geotermia-e-salute-in-toscana-rapporto-2021.html |
[110] | Bates MN, Garrett N, Graham B, et al. (1997) Air pollution and mortality in the Rotorua geothermal area. Aust N Zealand J Public Health 21: 581–586. https://doi.org/10.1111/j.1467-842X.1997.tb01759.x doi: 10.1111/j.1467-842X.1997.tb01759.x |
[111] | Fornasaro S, Morelli G, Rimondi V, et al. (2021) Mercury and Methylmercury in the Monte Amiata Mining District. Mendeley Data. https://doi.org/10.17632/62jm9wr36b.1 |