Research article Special Issues

Landscape mapping using ground-penetrating radar, electrical resistivity tomography survey and landscape profiling

  • Received: 04 December 2021 Revised: 12 January 2022 Accepted: 08 February 2022 Published: 23 February 2022
  • This work aims to verify and correct the boundary between two landscapes—moraine and outwash plain—delineated earlier by the classical landscape approach. The initial interpretation of the boundary caused controversy due to the appearance of the thermokarst depression in the outwash landscape. The lithological structure is one of the main factors of landscape differentiation. The classical approach includes drilling to obtain the lithological and sedimentary data. However, the boreholes are usually shallow, while geophysical methods allow to look deeper into the subsurface and improve our knowledge about lithological structure and stratigraphy. In this study, we use ground-penetrating radar with a peak frequency of 250 and 50 MHz and detailed electrical resistivity tomography (with 1 m electrode spacing) in addition to the landscape mapping and drilling to correct the landscape boundary position. We conclude that it is primarily defined by the subsurface boundary between lithological complexes of clayish moraine deposits and sandy outwash deposits located at 7 m depth. Moving the boundary to the northeast by 70–100 m from the current position removes inconsistencies and clarifies the history of the area's formation in the Quaternary.

    Citation: Victor M Matasov, Svetlana S Bricheva, Alexey A Bobachev, Iya V Mironenko, Anton V Fedin, Vladislav V Sysuev, Lyudmila A Zolotaya, Sergey B Roganov. Landscape mapping using ground-penetrating radar, electrical resistivity tomography survey and landscape profiling[J]. AIMS Geosciences, 2022, 8(2): 213-223. doi: 10.3934/geosci.2022012

    Related Papers:

    [1] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [2] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [3] Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor . Some new generalized κ–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications. AIMS Mathematics, 2022, 7(2): 3203-3220. doi: 10.3934/math.2022177
    [4] Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121
    [5] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [6] Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538
    [7] Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506
    [8] Tahir Ullah Khan, Muhammad Adil Khan . Hermite-Hadamard inequality for new generalized conformable fractional operators. AIMS Mathematics, 2021, 6(1): 23-38. doi: 10.3934/math.2021002
    [9] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201
    [10] Paul Bosch, Héctor J. Carmenate, José M. Rodríguez, José M. Sigarreta . Generalized inequalities involving fractional operators of the Riemann-Liouville type. AIMS Mathematics, 2022, 7(1): 1470-1485. doi: 10.3934/math.2022087
  • This work aims to verify and correct the boundary between two landscapes—moraine and outwash plain—delineated earlier by the classical landscape approach. The initial interpretation of the boundary caused controversy due to the appearance of the thermokarst depression in the outwash landscape. The lithological structure is one of the main factors of landscape differentiation. The classical approach includes drilling to obtain the lithological and sedimentary data. However, the boreholes are usually shallow, while geophysical methods allow to look deeper into the subsurface and improve our knowledge about lithological structure and stratigraphy. In this study, we use ground-penetrating radar with a peak frequency of 250 and 50 MHz and detailed electrical resistivity tomography (with 1 m electrode spacing) in addition to the landscape mapping and drilling to correct the landscape boundary position. We conclude that it is primarily defined by the subsurface boundary between lithological complexes of clayish moraine deposits and sandy outwash deposits located at 7 m depth. Moving the boundary to the northeast by 70–100 m from the current position removes inconsistencies and clarifies the history of the area's formation in the Quaternary.



    For a convex function σ:IRR on I with ν1,ν2I and ν1<ν2, the Hermite-Hadamard inequality is defined by [1]:

    σ(ν1+ν22)1ν2ν1ν2ν1σ(η)dησ(ν1)+σ(ν2)2. (1.1)

    The Hermite-Hadamard integral inequality (1.1) is one of the most famous and commonly used inequalities. The recently published papers [2,3,4] are focused on extending and generalizing the convexity and Hermite-Hadamard inequality.

    The situation of the fractional calculus (integrals and derivatives) has won vast popularity and significance throughout the previous five decades or so, due generally to its demonstrated applications in numerous seemingly numerous and great fields of science and engineering [5,6,7].

    Now, we recall the definitions of Riemann-Liouville fractional integrals.

    Definition 1.1 ([5,6,7]). Let σL1[ν1,ν2]. The Riemann-Liouville integrals Jϑν1+σ and Jϑν2σ of order ϑ>0 with ν10 are defined by

    Jϑν1+σ(x)=1Γ(ϑ)xν1(xη)ϑ1σ(η)dη,   ν1<x (1.2)

    and

    Jϑν2σ(x)=1Γ(ϑ)ν2x(ηx)ϑ1σ(η)dη,  x<ν2, (1.3)

    respectively. Here Γ(ϑ) is the well-known Gamma function and J0ν1+σ(x)=J0ν2σ(x)=σ(x).

    With a huge application of fractional integration and Hermite-Hadamard inequality, many researchers in the field of fractional calculus extended their research to the Hermite-Hadamard inequality, including fractional integration rather than ordinary integration; for example see [8,9,10,11,12,13,14,15,16,17,18,19,20,21].

    In this paper, we consider the integral inequality of Hermite-Hadamard-Mercer type that relies on the Hermite-Hadamard and Jensen-Mercer inequalities. For this purpose, we recall the Jensen-Mercer inequality: Let 0<x1x2xn and μ=(μ1,μ2,,μn) nonnegative weights such that ni=1μi=1. Then, the Jensen inequality [22,23] is as follows, for a convex function σ on the interval [ν1,ν2], we have

    σ(ni=1μixi)ni=1μiσ(xi), (1.4)

    where for all xi[ν1,ν2] and μi[0,1], (i=¯1,n).

    Theorem 1.1 ([2,23]). If σ is convex function on [ν1,ν2], then

    σ(ν1+ν2ni=1μixi)σ(ν1)+σ(ν2)ni=1μiσ(xi), (1.5)

    for each xi[ν1,ν2] and μi[0,1], (i=¯1,n) with ni=1μi=1. For some results related with Jensen-Mercer inequality, see [24,25,26].

    In view of above indices, we establish new integral inequalities of Hermite-Hadamard-Mercer type for convex functions via the Riemann-Liouville fractional integrals in the current project. Particularly, we see that our results can cover the previous researches.

    Theorem 2.1. For a convex function σ:[ν1,ν2]RR with x,y[ν1,ν2], we have:

    σ(ν1+ν2x+y2)2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1)+σ(ν2)σ(x)+σ(y)2. (2.1)

    Proof. By using the convexity of σ, we have

    σ(ν1+ν2u+v2)12[σ(ν1+ν2u)+σ(ν1+ν2v)], (2.2)

    and above with u=1η2x+1+η2y, v=1+η2x+1η2y, where x,y[ν1,ν2] and η[0,1], leads to

    σ(ν1+ν2x+y2)12[σ(ν1+ν2(1η2x+1+η2y))+σ(ν1+ν2(1+η2x+1η2y))]. (2.3)

    Multiplying both sides of (2.3) by ηϑ1 and then integrating with respect to η over [0,1], we get

    1ϑσ(ν1+ν2x+y2)12[10ηϑ1σ(ν1+ν2(1η2x+1+η2y))dη+10ηϑ1σ(ν1+ν2(1+η2x+1η2y))dη]=12[2ϑ(yx)ϑν1+ν2x+y2ν1+ν2y((ν1+ν2x+y2)w)ϑ1σ(w)dw+2ϑ(yx)ϑν1+ν2xν1+ν2x+y2(w(ν1+ν2x+y2))ϑ1σ(w)dw]=2ϑ1Γ(ϑ)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)],

    and thus the proof of first inequality in (2.1) is completed.

    On the other hand, we have by using the Jensen-Mercer inequality:

    σ(ν1+ν2(1η2x+1+η2y))σ(ν1)+σ(ν2)(1η2σ(x)+1+η2σ(y)) (2.4)
    σ(ν1+ν2(1+η2x+1η2y))σ(ν1)+σ(ν2)(1+η2σ(x)+1η2σ(y)). (2.5)

    Adding inequalities (2.4) and (2.5) to get

    σ(ν1+ν2(1η2x+1+η2y))+σ(ν1+ν2(1+η2x+1η2y))2[σ(ν1)+σ(ν2)][σ(x)+σ(y)]. (2.6)

    Multiplying both sides of (2.6) by ηϑ1 and then integrating with respect to η over [0,1] to obtain

    10ηϑ1σ(ν1+ν2(1η2x+1+η2y))dη+10ηϑ1σ(ν1+ν2(1+η2x+1η2y))dη2ϑ[σ(ν1)+σ(ν2)]1ϑ[σ(x)+σ(y)].

    By making use of change of variables and then multiplying by ϑ2, we get the second inequality in (2.1).

    Remark 2.1. If we choose ϑ=1, x=ν1 and y=ν2 in Theorem 2.1, then the inequality (2.1) reduces to (1.1).

    Corollary 2.1. Theorem 2.1 with

    ϑ=1 becomes [24, Theorem 2.1].

    x=ν1 and y=ν2 becomes:

    σ(ν1+ν22)2ϑ1Γ(ϑ+1)(ν2ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2σ(ν1+ν22)]σ(ν1)+σ(ν2)2,

    which is obtained by Mohammed and Brevik in [10].

    The following Lemma linked with the left inequality of (2.1) is useful to obtain our next results.

    Lemma 2.1. Let σ:[ν1,ν2]RR be a differentiable function on (ν1,ν2) and σL[ν1,ν2] with ν1ν2 and x,y[ν1,ν2]. Then, we have:

    2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)=(yx)410ηϑ[σ(ν1+ν2(1η2x+1+η2y))σ(ν1+ν2(1+η2x+1η2y))]dη. (2.7)

    Proof. From right hand side of (2.7), we set

    ϖ1ϖ2:=10ηϑ[σ(ν1+ν2(1η2x+1+η2y))σ(ν1+ν2(1+η2x+1η2y))]dη=10ηϑσ(ν1+ν2(1η2x+1+η2y))dη10ηϑσ(ν1+ν2(1+η2x+1η2y))dη. (2.8)

    By integrating by parts with w=ν1+ν2(1η2x+1+η2y), we can deduce:

    ϖ1=2(yx)σ(ν1+ν2y)+2ϑ(yx)10ηϑ1σ(ν1+ν2(1η2x+1+η2y))dη=2(yx)σ(ν1+ν2y)+2ϑ+1ϑ(yx)ϑ+1ν1+ν2x+y2ν1+ν2yσ((ν1+ν2x+y2)w)ϑ1σ(w)dw=2(yx)σ(ν1+ν2y)+2ϑ+1Γ(ϑ+1)(yx)ϑ+1Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2).

    Similarly, we can deduce:

    ϖ2=2yxσ(ν1+ν2x)2ϑ+1Γ(ϑ+1)(yx)ϑ+1Jϑ(ν1+ν2x)σ(ν1+ν2x+y2).

    By substituting ϖ1 and ϖ2 in (2.8) and then multiplying by (yx)4, we obtain required identity (2.7).

    Corollary 2.2. Lemma 2.1 with

    ϑ=1 becomes:

    1yxν1+ν2xν1+ν2yσ(w)dwσ(ν1+ν2x+y2)=(yx)410η[σ(ν1+ν2(1η2x+1+η2y))σ(ν1+ν2(1+η2x+1η2y))]dη.

    ϑ=1, x=ν1 and y=ν2 becomes:

    1ν2ν1ν2ν1σ(w)dwσ(ν1+ν22)=(ν2ν1)410η[σ(ν1+ν2(1η2ν1+1+η2ν2))σ(ν1+ν2(1+η2ν1+1η2ν2))]dη.

    x=ν1 and y=ν2 becomes:

    2ϑ1Γ(ϑ+1)(ν2ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2σ(ν1+ν22)]σ(ν1+ν22)=(ν2ν1)410ηϑ[σ(ν1+ν2(1η2ν1+1+η2ν2))σ(ν1+ν2(1+η2ν1+1η2ν2))]dη.

    Theorem 2.2. Let σ:[ν1,ν2]RR be a differentiable function on (ν1,ν2) and |σ| is convex on [ν1,ν2] with ν1ν2 and x,y[ν1,ν2]. Then, we have:

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)2(1+ϑ)[|σ(ν1)|+|σ(ν2)||σ(x)|+|σ(y)|2]. (2.9)

    Proof. By taking modulus of identity (2.7), we get

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4[10ηϑ|σ(ν1+ν2(1η2x+1+η2y))|dη+10ηϑ|σ(ν1+ν2(1+η2x+1η2y))|dη].

    Then, by applying the convexity of |σ| and the Jensen-Mercer inequality on above inequality, we get

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4[10ηϑ[|σ(ν1)|+|σ(ν2)|(1+η2|σ(x)|+1η2)|σ(y)|]dη+10ηϑ[|σ(ν1)|+|σ(ν2)|(1η2|σ(x)|+1+η2)|σ(y)|]dη]=(yx)2(1+ϑ)[|σ(ν1)|+|σ(ν2)||σ(x)|+|σ(y)|2],

    which completes the proof of Theorem 2.2.

    Corollary 2.3. Theorem 2.2 with

    ϑ=1 becomes:

    |1yxν1+ν2xν1+ν2yσ(w)dwσ(ν1+ν2x+y2)|(yx)4[|σ(ν1)|+|σ(ν2)||σ(x)|+|σ(y)|2].

    ϑ=1, x=ν1 and y=ν2 becomes [27, Theorem 2.2].

    x=ν1 and y=ν2 becomes:

    |1ν2ν1ν2ν1σ(w)dwσ(ν1+ν22)|(ν2ν1)4[|σ(ν1)|+|σ(ν2)|2].

    Theorem 2.3. Let σ:[ν1,ν2]RR be a differentiable function on (ν1,ν2) and |σ|q,q>1 is convex on [ν1,ν2] with ν1ν2 and x,y[ν1,ν2]. Then, we have:

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4pϑp+1[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+3|σ(y)|q4))1q+(|σ(ν1)|q+|σ(ν2)|q(3|σ(x)|q+|σ(y)|q4))1q], (2.10)

    where 1p+1q=1.

    Proof. By taking modulus of identity (2.7) and using Hölder's inequality, we get

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(10ηϑp)1p{(10|σ(ν1+ν2(1η2x+1+η2y))|qdη)1q+(10|σ(ν1+ν2(1+η2x+1η2y))|qdη)1q}.

    Then, by applying the Jensen-Mercer inequality with the convexity of |σ|q, we can deduce

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(10ηϑp)1p{(10|σ(ν1)|q+|σ(ν2)|q(1η2|σ(x)|q+1+η2|σ(y)|q))1q+(10|σ(ν1)|q+|σ(ν2)|q(1+η2|σ(x)|q+1η2|σ(y)|q))1q}=(yx)4pϑp+1[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+3|σ(y)|q4))1q+(|σ(ν1)|q+|σ(ν2)|q(3|σ(x)|q+|σ(y)|q4))1q],

    which completes the proof of Theorem 2.3.

    Corollary 2.4. Theorem 2.3 with

    ϑ=1 becomes:

    |1yxν1+ν2xν1+ν2yσ(w)dwσ(ν1+ν2x+y2)|(yx)4pp+1[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+3|σ(y)|q4))1q+(|σ(ν1)|q+|σ(ν2)|q(3|σ(x)|q+|σ(y)|q4))1q].

    ϑ=1, x=ν1 and y=ν2 becomes:

    |1ν2ν1ν2ν1σ(w)dwσ(ν1+ν22)|(ν2ν1)22p(1p+1)1p[|σ(ν1)|+|σ(ν2)|].

    x=ν1 and y=ν2 becomes:

    |2ϑ1Γ(ϑ+1)(ν2ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2σ(ν1+ν22)]σ(ν1+ν22)|2ϑ12qν2ν1(1p+1)1p[|σ(ν1)|+|σ(ν2)|].

    Theorem 2.4. Let σ:[ν1,ν2]RR be a differentiable function on (ν1,ν2) and |σ|q,q1 is convex on [ν1,ν2] with ν1ν2 and x,y[ν1,ν2]. Then, we have:

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(ϑ+1)[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+(2ϑ+3)|σ(y)|q2(ϑ+2)))1q+(|σ(ν1)|q+|σ(ν2)|q((2ϑ+3)|σ(x)|q+|σ(y)|q2(ϑ+2)))1q]. (2.11)

    Proof. By taking modulus of identity (2.7) with the well-known power mean inequality, we can deduce

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(10ηϑ)11q{(10ηϑ|σ(ν1+ν2(1η2x+1+η2y))|qdη)1q+(10ηϑ|σ(ν1+ν2(1+η2x+1η2y))|qdη)1q}.

    By applying the Jensen-Mercer inequality with the convexity of |σ|q, we can deduce

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(10ηϑ)11q{(10ηϑ[|σ(ν1)|q+|σ(ν2)|q(1η2|σ(x)|q+1+η2|σ(y)|q)])1q+(10ηϑ[|σ(ν1)|q+|σ(ν2)|q(1+η2|σ(x)|q+1η2|σ(y)|q)])1q}=(yx)4(ϑ+1)[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+(2ϑ+3)|σ(y)|q2(ϑ+2)))1q+(|σ(ν1)|q+|σ(ν2)|q((2ϑ+3)|σ(x)|q+|σ(y)|q2(ϑ+2)))1q],

    which completes the proof of Theorem 2.4.

    Corollary 5. Theorem 2.4 with

    q=1 becomes Theorem 2.2.

    ϑ=1 becomes:

    |1yxν1+ν2xν1+ν2yσ(w)dwσ(ν1+ν2x+y2)|(yx)8[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+5|σ(y)|q6))1q+(|σ(ν1)|q+|σ(ν2)|q(5|σ(x)|q+|σ(y)|q6))1q].

    ϑ=1, x=ν1 and y=ν2 becomes:

    |1ν2ν1ν2ν1σ(w)dwσ(ν1+ν22)|(yx)8[(5|σ(ν1)|q+|σ(ν2)|q6)1q+(|σ(ν1)|q+5|σ(ν2)|q6)1q].

    x=ν1 and y=ν2 becomes:

    |2ϑ1Γ(ϑ+1)(ν2ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2σ(ν1+ν22)]σ(ν1+ν22)|(ν2ν1)4(ϑ+1)[((2ϑ+3)|σ(ν1)|q+|σ(ν2)|q2(ϑ+2))1q+(|σ(ν1)|q+(2ϑ+3)|σ(ν2)|q2(ϑ+2))1q].

    Here, we consider the following special means:

    ● The arithmetic mean:

    A(ν1,ν2)=ν1+ν22,ν1,ν20.

    ● The harmonic mean:

    H(ν1,ν2)=2ν1ν2ν1+ν2,ν1,ν2>0.

    ● The logarithmic mean:

    L(ν1,ν2)={ν2ν1lnν2lnν1,ifν1ν2,ν1,ifν1=ν2,ν1,ν2>0.

    ● The generalized logarithmic mean:

    Ln(ν1,ν2)={[νn+12νn+11(n+1)(ν2ν1)]1n,ifν1ν2ν1,ifν1=ν2,ν1,ν2>0;nZ{1,0}.

    Proposition 3.1. Let 0<ν1<ν2 and nN, n2. Then, for all x,y[ν1,ν2], we have:

    |Lnn(ν1+ν2y,ν1+ν2x)(2A(ν1,ν2)A(x,y))n|n(yx)4[2A(νn11,νn12)A(xn1,yn1)]. (3.1)

    Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=xn,x>0, one can obtain the result directly.

    Proposition 3.2. Let 0<ν1<ν2. Then, for all x,y[ν1,ν2], we have:

    |L1(ν1+ν2y,ν1+ν2x)(2A(ν1,ν2)A(x,y))1|(yx)4[2H1(ν21,ν22)H1(x2,y2)]. (3.2)

    Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.

    Proposition 3.3. Let 0<ν1<ν2 and nN, n2. Then, we have:

    |Lnn(ν1,ν2)An(ν1,ν2)|n(ν2ν1)4[A(νn11,νn12)], (3.3)

    and

    |L1(ν1,ν2)A1(ν1,ν2)|(ν2ν1)4H1(ν21,ν22). (3.4)

    Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.1 and Proposition 3.2, one can obtain the Proposition 3.3.

    Proposition 3.4. Let 0<ν1<ν2 and nN, n2. Then, for q>1,1p+1q=1 and for all x,y[ν1,ν2], we have:

    |Lnn(ν1+ν2y,ν1+ν2x)(2A(ν1,ν2)A(x,y))n|n(yx)4pp+1{[2A(νq(n1)1,νq(n1)2)12A(xq(n1),3yq(n1))]1q+[2A(νq(n1)1,νq(n1)2)12A(3xq(n1),yq(n1))]1q}. (3.5)

    Proof. By applying Corollary 2.4 (first item) for convex function σ(x)=xn,x>0, one can obtain the result directly.

    Proposition 3.5. Let 0<ν1<ν2. Then, for q>1,1p+1q=1 and for all x,y[ν1,ν2], we have:

    |L1(ν1+ν2y,ν1+ν2x)(2A(ν1,ν2)A(x,y))1|q2(yx)4pp+1{[H1(ν2q1,ν2q2)34H1(x2q,3y2q)]1q+[H1(ν2q1,ν2q2)34H1(3x2q,y2q)]1q}. (3.6)

    Proof. By applying Corollary 2.4 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.

    Proposition 3.6. Let 0<ν1<ν2 and nN, n2. Then, for q>1 and 1p+1q=1, we have:

    |Lnn(ν1,ν2)An(ν1,ν2)|n(ν2ν1)4pp+1{[2A(νq(n1)1,νq(n1)2)12A(νq(n1)1,3νq(n1)2)]1q+[2A(νq(n1)1,νq(n1)2)12A(3νq(n1)1,νq(n1)2)]1q}, (3.7)

    and

    |L1(ν1,ν2)A1(ν1,ν2)|q2(ν2ν1)4pp+1{[H1(ν2q1,ν2q2)34H1(ν2q1,3ν2q2)]1q+[H1(ν2q1,ν2q2)34H1(3ν2q1,ν2q2)]1q}. (3.8)

    Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.4 and Proposition 3.5, one can obtain the Proposition 3.6.

    As we emphasized in the introduction, integral inequality is the most important field of mathematical analysis and fractional calculus. By using the well-known Jensen-Mercer and power mean inequalities, we have proved new inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional operators. In the last section, we have considered some propositions in the context of special functions; these confirm the efficiency of our results.

    We would like to express our special thanks to the editor and referees. Also, the first author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

    The authors declare no conflict of interest.



    [1] Fan B, Liu X, Zhu Q, et al. (2020) Exploring the interplay between infiltration dynamics and Critical Zone structures with multiscale geophysical imaging: A review. Geoderma 374: 114431. https://doi.org/10.1016/j.geoderma.2020.114431 doi: 10.1016/j.geoderma.2020.114431
    [2] Chorover J, Kretzschmar R, Garcia-Pichel F, et al. (2007) Soil Biogeochemical Processes within the Critical Zone. Elements 3: 321-326. https://doi.org/10.2113/gselements.3.5.321 doi: 10.2113/gselements.3.5.321
    [3] Frolova M (2019) From the Russian/Soviet landscape concept to the geosystem approach to integrative environmental studies in an international context. Landscape Ecol 34: 1485-1502. https://doi.org/10.1007/s10980-018-0751-8 doi: 10.1007/s10980-018-0751-8
    [4] Solntsev NA (1948) The natural geographic landscape and some of its general rules. Proc Second All-Union Geogr Congr 1: 258-269.
    [5] Bryan BA (2003) Physical environmental modeling, visualization and query for supporting landscape planning decisions. Landscape Urban Plann 65: 237-259. https://doi.org/10.1016/S0169-2046(03)00059-8 doi: 10.1016/S0169-2046(03)00059-8
    [6] Opdam P, Luque S, Nassauer J, et al. (2018) How can landscape ecology contribute to sustainability science? Landscape Ecol 33: 1-7. https://doi.org/10.1007/s10980-018-0610-7 doi: 10.1007/s10980-018-0610-7
    [7] Alekseeva NN, Klimanova OA, Khazieva ES (2017) Global land cover data bases and their perspectives for present-day landscapes mapping. Izvestiya RAN Ser Geogr, 110-123. https://doi.org/10.15356/0373-2444-2017-1-110-123 doi: 10.15356/0373-2444-2017-1-110-123
    [8] Lavalle C, Baranzelli C, Batista e Silva F, et al. (2011) A High Resolution Land Use/Cover Modelling Framework for Europe: Introducing the EU-ClueScanner100 Model, Computational Science and Its Applications ICCSA 2011, Berlin, Heidelberg, Springer, 60-75.
    [9] Bristow CS, Jol HM (2003) Ground penetrating radar in sediments, London, Geological Society. https://doi.org/10.1144/GSL.SP.2003.211
    [10] Bricheva SS, Modin IN, Panin AV, et al. (2020) The Structure of Quaternary Deposits in the Upper Dnieper Valley According to Integrated (Combined) Geophysical Data. Moscow Univ Geol Bull 75: 413-424. https://doi.org/10.3103/S014587522004002X doi: 10.3103/S014587522004002X
    [11] Pellicer XM, Gibson P (2011) Electrical resistivity and Ground Penetrating Radar for the characterisation of the internal architecture of Quaternary sediments in the Midlands of Ireland. J Appl Geophys 75: 638-647. https://doi.org/10.1016/j.jappgeo.2011.09.019 doi: 10.1016/j.jappgeo.2011.09.019
    [12] Conyers LB (2018) Ground-penetrating Radar and Magnetometry for Buried Landscape Analysis, Cham, Springer International Publishing.
    [13] Ryazantsev PA, Bakhmet ON (2020) Application of Geoelectric Methods for Mapping Soil Heterogeneity. Eurasian Soil Sc 53: 558-568. https://doi.org/10.1134/S1064229320050129 doi: 10.1134/S1064229320050129
    [14] Zolotaya LA, Kosnyreva MV (2015) Ground-penetrating radar (GPR) researches in solving soil geophysics problems. Geofizika 2: 16-22.
    [15] Martin T, Nordsiek S, Weller A (2015) Low-Frequency Impedance Spectroscopy of Wood. J Res Spectrosc 2015: 9.
    [16] Bricheva SS, Matasov VM, Shilov PM (2017) Ground penetrating radar (GPR) as a part of integrated landscape studies on peatlands. Geoecol Eng geol Hydrogeol Geocryology 3: 76-83.
    [17] Sysuev VV (2014) Geo-radar investigation of the poly-scale structures in landscapes (case study of the Smolensk-Moscow highland). Vestnik Mosk Univ Seriya 5 Geografiya 4: 26-33.
    [18] Mamay Ⅱ (1992) Dinamika landshaftov. Metodika izucheniya, Moskva, Izd-vo Mosk. un-ta. Available from: https://search.rsl.ru/ru/record/01001639692
    [19] Novenko EY, Tsyganov AN, Volkova EM, et al. (2016) Mid- and Late Holocene vegetation dynamics and fire history in the boreal forest of European Russia: A case study from Meshchera Lowlands. Palaeogeogr Palaeoclimatol Palaeoecol 459: 570-584. https://doi.org/10.1016/j.palaeo.2016.08.004 doi: 10.1016/j.palaeo.2016.08.004
    [20] Matasov V, Prishchepov AV, Jepsen MR, et al. (2019) Spatial determinants and underlying drivers of land-use transitions in European Russia from 1770 to 2010. J Land Use Sci 14: 362-377. https://doi.org/10.1080/1747423X.2019.1709224 doi: 10.1080/1747423X.2019.1709224
    [21] Aseev AA, Vedenskaya IE (1962) Razvitie rel'efa Meshcherskoj nizmennosti, Moskva, Izd-vo AN SSSR. Available from: https://search.rsl.ru/ru/record/01005950799
    [22] Mamay Ⅱ (2013) Zakonomernosti projavlenija processov v landshaftah Meshhjory. Landshaftnyj sbornik (Razvitie idej N.A. Solnceva v sovremennom landshaftovedenii). M Smolensk: Ojkumena, 32-34. Available from: https://elibrary.ru/item.asp?id=25180335
    [23] Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52: 379-398. https://doi.org/10.1111/j.1365-2478.2004.00423.x doi: 10.1111/j.1365-2478.2004.00423.x
    [24] Astakhov V, Shkatova V, Zastrozhnov A, et al. (2016) Glaciomorphological Map of the Russian Federation. Quat Int 420: 4-14. https://doi.org/10.1016/j.quaint.2015.09.024 doi: 10.1016/j.quaint.2015.09.024
    [25] Kupriyanov DA, Novenko EY (2019) Reconstruction of the Holocene Dynamics of Forest Fires in the Central Part of Meshcherskaya Lowlands According to Antracological Analysis. Contemp Probl Ecol 12: 204-212. https://doi.org/10.1134/S1995425519030065 doi: 10.1134/S1995425519030065
    [26] Novenko EY, Mironenko IV, Kupriyanov DA, et al. (2019) Pre-agrarian landscapes in Southeastern Meshchera: reconstruction from paleoecological data. Geogr Nat Res. Available from: https://elibrary.ru/item.asp?id=37418763&
  • This article has been cited by:

    1. Tariq A. Aljaaidi, Deepak B. Pachpatte, Ram N. Mohapatra, The Hermite–Hadamard–Mercer Type Inequalities via Generalized Proportional Fractional Integral Concerning Another Function, 2022, 2022, 1687-0425, 1, 10.1155/2022/6716830
    2. Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad, (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates, 2021, 6, 2473-6988, 4677, 10.3934/math.2021275
    3. Ifra Bashir Sial, Nichaphat Patanarapeelert, Muhammad Aamir Ali, Hüseyin Budak, Thanin Sitthiwirattham, On Some New Ostrowski–Mercer-Type Inequalities for Differentiable Functions, 2022, 11, 2075-1680, 132, 10.3390/axioms11030132
    4. Deniz Uçar, Inequalities for different type of functions via Caputo fractional derivative, 2022, 7, 2473-6988, 12815, 10.3934/math.2022709
    5. Soubhagya Kumar Sahoo, Y.S. Hamed, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, New midpoint type Hermite-Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators, 2023, 65, 11100168, 689, 10.1016/j.aej.2022.10.019
    6. Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf, The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator, 2022, 7, 2473-6988, 7040, 10.3934/math.2022392
    7. Churong Chen, Discrete Caputo Delta Fractional Economic Cobweb Models, 2023, 22, 1575-5460, 10.1007/s12346-022-00708-5
    8. Soubhagya Kumar Sahoo, Ravi P. Agarwal, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications, 2022, 14, 2073-8994, 836, 10.3390/sym14040836
    9. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators, 2023, 11, 2227-7390, 1953, 10.3390/math11081953
    10. Loredana Ciurdariu, Eugenia Grecu, Hermite–Hadamard–Mercer-Type Inequalities for Three-Times Differentiable Functions, 2024, 13, 2075-1680, 413, 10.3390/axioms13060413
    11. Muhammad Aamir Ali, Thanin Sitthiwirattham, Elisabeth Köbis, Asma Hanif, Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications, 2024, 13, 2075-1680, 114, 10.3390/axioms13020114
    12. Muhammad Aamir Ali, Christopher S. Goodrich, On some new inequalities of Hermite–Hadamard–Mercer midpoint and trapezoidal type in q-calculus, 2024, 44, 0174-4747, 35, 10.1515/anly-2023-0019
    13. Thanin Sitthiwirattham, Ifra Sial, Muhammad Ali, Hüseyin Budak, Jiraporn Reunsumrit, A new variant of Jensen inclusion and Hermite-Hadamard type inclusions for interval-valued functions, 2023, 37, 0354-5180, 5553, 10.2298/FIL2317553S
    14. Muhammad Aamir Ali, Zhiyue Zhang, Michal Fečkan, GENERALIZATION OF HERMITE–HADAMARD–MERCER AND TRAPEZOID FORMULA TYPE INEQUALITIES INVOLVING THE BETA FUNCTION, 2024, 54, 0035-7596, 10.1216/rmj.2024.54.331
    15. Bahtiyar Bayraktar, Péter Kórus, Juan Eduardo Nápoles Valdés, Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators, 2023, 12, 2075-1680, 517, 10.3390/axioms12060517
    16. THANIN SITTHIWIRATTHAM, MIGUEL VIVAS-CORTEZ, MUHAMMAD AAMIR ALI, HÜSEYIN BUDAK, İBRAHIM AVCI, A STUDY OF FRACTIONAL HERMITE–HADAMARD–MERCER INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS, 2024, 32, 0218-348X, 10.1142/S0218348X24400164
    17. Muhammad Ali, Hüseyin Budak, Elisabeth Köbis, Some new and general versions of q-Hermite-Hadamard-Mercer inequalities, 2023, 37, 0354-5180, 4531, 10.2298/FIL2314531A
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3134) PDF downloads(159) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog