Research article Special Issues

A sub-super solution method to continuous weak solutions for a semilinear elliptic boundary value problems on bounded and unbounded domains

  • Received: 26 March 2024 Revised: 15 May 2024 Accepted: 31 May 2024 Published: 07 June 2024
  • In this paper, we prove the existence of solutions for an elliptic system. More precisely, we combine the potential theory with the sub-super solution method and use the properties of the well-known Kato class to justify our existence results. The novelty of our study is that we consider either the bounded or the exterior domain; Also, the nonlinearities may be singular near the boundary. Some examples are presented to validate our main results.

    Citation: Abdeljabbar Ghanmi, Hadeel Z. Alzumi, Noureddine Zeddini. A sub-super solution method to continuous weak solutions for a semilinear elliptic boundary value problems on bounded and unbounded domains[J]. Electronic Research Archive, 2024, 32(6): 3742-3757. doi: 10.3934/era.2024170

    Related Papers:

  • In this paper, we prove the existence of solutions for an elliptic system. More precisely, we combine the potential theory with the sub-super solution method and use the properties of the well-known Kato class to justify our existence results. The novelty of our study is that we consider either the bounded or the exterior domain; Also, the nonlinearities may be singular near the boundary. Some examples are presented to validate our main results.



    加载中


    [1] H. Zou, A priori estimates for a semilinear elliptic system without variational structure and their applications, Math. Ann., 323 (2002), 713–735. https://doi.org/10.1007/s002080200324 doi: 10.1007/s002080200324
    [2] K. Akô, On the Dirichlet problem for quasi-linear elliptic differential equations of the second order, J. Math. Soc. Jpn., 13 (1961), 45–62. https://doi.org/10.2969/jmsj/01310045 doi: 10.2969/jmsj/01310045
    [3] R. S. Alsaedi, H. Mâagli, V. D. Rădulescu, N. Zeddini, Asymptotic behavior of positive large solutions of quasilinear logistic problems, Electron. J. Qual. Theory Differ. Equations, 28 (2015), 1–15. https://doi.org/10.14232/ejqtde.2015.1.28 doi: 10.14232/ejqtde.2015.1.28
    [4] H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J., 21 (1972), 125–146. https://doi.org/10.1512/iumj.1972.21.21012 doi: 10.1512/iumj.1972.21.21012
    [5] P. Clément, G. Sweers, Getting a solution between sub- and supersolutions without monotone iteration, Rend. Ist. Mat. Univ. Trieste, 19 (1987), 189–194. Available from: http://hdl.handle.net/10077/4937.
    [6] S. Cui, Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems, Nonlinear Anal. Theory Methods Appl., 41 (2000), 149–176. https://doi.org/10.1016/S0362-546X(98)00271-5 doi: 10.1016/S0362-546X(98)00271-5
    [7] H. B. Keller, Elliptic boundary value problems suggested by nonlinear diffusion processes, Arch. Ration. Mech. Anal., 35 (1969), 363–381. https://doi.org/10.1007/BF00247683 doi: 10.1007/BF00247683
    [8] M. Montenegro, A. C. Ponce, The sub-supersolution method for weak solutions, Proc. Am. Math. Soc., 136 (2008), 2429–2438. https://doi.org/10.1090/S0002-9939-08-09231-9 doi: 10.1090/S0002-9939-08-09231-9
    [9] M. Montenegro, A. Suárez, Existence of a positive solution for a singular system, Proc. R. Soc. Edinburgh Sect. A: Math., 140 (2010), 435–447. https://doi.org/10.1017/S0308210509000705 doi: 10.1017/S0308210509000705
    [10] E. S. Noussair, On the existence of solutions of nonlinear elliptic boundary value problems, J. Differ. Equations, 34 (1979), 482–495. https://doi.org/10.1016/0022-0396(79)90032-9 doi: 10.1016/0022-0396(79)90032-9
    [11] E. S. Noussair, C. A. Swanson, Positive solutions of semilinear Schrödinger equations in exterior domains, Indiana Univ. Math. J., 28 (1979), 993–1003. Available from: https://www.jstor.org/stable/24892551.
    [12] A. Ogata, On bounded positive solutions of nonlinear elliptic boundary value problems in an exterior domain, Funkcialaj Ekvacioj, 17 (1974), 207–222.
    [13] V. D. Rădulescu, D. Repovš, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal. Theory Methods Appl., 75 (2012), 1524–1530. https://doi.org/10.1016/j.na.2011.01.037 doi: 10.1016/j.na.2011.01.037
    [14] I. Bachar, H. Mâagli, N. Zeddini, Estimates on the green function and existence of positive solutions of nonlinear singular elliptic equations, Commun. Contemp. Math., 5 (2003), 401–434. https://doi.org/10.1142/S0219199703001038 doi: 10.1142/S0219199703001038
    [15] H. Mâagli, M. Zribi, On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domains of $R^{n}$, Positivity, 9 (2005), 667–686. https://doi.org/10.1007/s11117-005-2782-z doi: 10.1007/s11117-005-2782-z
    [16] R. S. Alsaedi, H. Mâagli, N. Zeddini, Positive solutions for some competitive elliptic systems, Math. Slovaca, 64 (2014), 61–72. https://doi.org/10.2478/s12175-013-0187-1 doi: 10.2478/s12175-013-0187-1
    [17] A. Ghanmi, H. Mâagli, S. Turki, N. Zeddini, Existence of positive bounded solutions for some nonlinear elliptic systems, J. Math. Anal. Appl., 352 (2009), 440–448. https://doi.org/10.1016/j.jmaa.2008.04.029 doi: 10.1016/j.jmaa.2008.04.029
    [18] N. Zeddini, R. S. Sari, Existence of positive continuous weak solutions for some semilinear elliptic eigenvalue problems, Opuscula Math., 42 (2022), 489–519. https://doi.org/10.7494/OpMath.2022.42.3.489 doi: 10.7494/OpMath.2022.42.3.489
    [19] K. L. Chung, Z. Zhao, From Brownian motion to Schrödinger's equation, Bull. Am. Math. Soc., 39 (2001), 109–111. Available from: https://www.ams.org/journals/bull/2002-39-01/S0273-0979-01-00925-9/S0273-0979-01-00925-9.pdf.
    [20] R. Guefaifia, G. C. G. dos Santos, T. Bouali, R. Jan, S. Boulaaras, A. Alharbi, Sub-super solutions method combined with schauder's fixed point for existence of positive weak solutions for anisotropic non-local elliptic systems, Mathematics, 10 (2022), 4479. https://doi.org/10.3390/math10234479 doi: 10.3390/math10234479
    [21] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
    [22] R. Dautray, J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology-Volume 1-Physical Origins and Classical Methods, Springer-Verlag, 1999.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(500) PDF downloads(41) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog