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1. Introduction and main results

In recent years, semilinear elliptic boundary value problems have attracted more attention. This
is due to their importance in several fields such as chemical reactions, population evolution, and pat-
tern formation, see, for instance, [1] for other related applications. Due to their importance, several
researchers have concentrated on the development of problems involving semilinear elliptic operators.
In this paper, we will continue in this direction, so we fix a C1,1 domain Λ in RN , (N ≥ 3), with a
nonempty compact boundary ∂Λ, and we consider the following problem:{

−∆u = ψ(x, u) in Λ,
u = f , on ∂Λ,

(1.1)

and in the case when Λ is unbounded, we assume the following supplementary condition

lim
|x|→∞

u(x) = c. (1.2)
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Also, we consider the following semilinear elliptic system
−∆u = ψ1(x, u, v) in Λ,
−∆v = ψ2(x, u, v) in Λ,
u = f1, v = f2 , on ∂Λ,

(1.3)

and in the case when Λ is unbounded, we assume the following supplementary condition

lim
|x|→∞

u(x) = c1 and lim
|x|→∞

v(x) = c2, (1.4)

where c, c1, and c2 are real numbers, and the functions f , f1, and f2 are continuous on ∂Λ. Problems
like (1.1) or like (1.3) are extensively studied by several authors and by different methods. For inter-
ested readers, we refer to the works of, Akô [2] (Schauder’s estimates in the Banach space of Hölder
continuous functions), Alsaedi et al. [3] (combination of the Karamata regular variation theory with a
related comparison principle), Amann [4] (fixed point index), Clément and Sweers [5] (monotone it-
erative and sub-super solution methods), Cui [6] (sub-super solution method and Sobolev-Morrey’s
inequality), Keller [7] (strong Maximum principle), Montenegro and Ponce [8] (method of sub-
supersolutions combined with Schauder’s fixed point theorem), Montenegro and Suárez [9] (adequate
sub-super solution method for singular systems), [10] (iterative method combined with Schauder’s type
and Sobolev inequalities), Noussair and Swanson [11] (Atkinson’s theorem), Ogata [12] (monotone ar-
guments combined with iterative methods), Rǎdulecu and Repovš [13] (monotone argument combined
with Variational method). Several works in the literature treat problems like (1.1) or problems like (1.3)
in the case where the nonlinearities ψ, ψ1, and ψ2 are continuous concerning x (in the case of classical
solutions) or Caratheodory functions (in the case of weak solutions in the Sobolev spaces); Moreover,
these problems are generally considered in regular bounded domains. Our goal in this paper is to en-
sure the validity of the sub-super solution method for continuous distributional solutions in the cases
where f , ψ1, and ψ2 may be singular concerning x near the boundary. This will be done using a fixed-
point argument based on the compacity property of a class of potential functions defined in Λ. To be
more precise, these singularities are related to the Kato class K(Λ) which is introduced and studied
by Bachar et al. [14] for the exterior domain, and by Mâagli and Zribi [15] for the bounded domain.
This class is used to find solutions for several semilinear elliptic problems. We cite, for example, the
papers of Alsaedi et al. [16], Bachar et al. [14], Ghanmi et al. [17], Mâagli and Zribi [15], and Zeddini
and Sari [18]. Our results for (1.1) apply to prove the existence of continuous solutions for singular
nonlinearities such that |ψ(x, u)| ≤ 1

(δ(x)λ) |h(u)| on a C1,1-bounded domain with δ(x) = dist(x, ∂Λ) and
λ < 2, and in the case where Λ is a C1,1-exterior domain, our results for (1.1) apply to nonlinearities
satisfying |ψ(x, u)| ≤ 1

(1+|x|)µ−λ(δ(x)λ) |h(u)| with λ < 2 < µ. Our results concerning sub-super-solution
methods involving nonlinearities that may be singular near the boundary are new and have not been
discussed before.

In this paper, we continue to study such problems using the Kato class. The novelty of our study is
that we consider either the bounded or the exterior domains; moreover, the nonlinearities used in our
problems can be singular, which means more complicated manipulation of our study. More precisely,
we transform our problem to an equivalent integral equation, and after that, we define an associated
operator, which is (using the properties of the Kato class) relatively compact. Finally, we prove that
the fixed points of the associated operator are weak solutions for the studied problem.

Before giving the main results of this paper, we assume the following hypothesis:
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(H1) ψ ∈ B(Λ×R), such that for almost every x ∈ Λ, the function t → ψ(x, t) is continuous. Moreover,
for all C > 0, there exists a function pC ∈ K(Λ) such that for any t ∈ and x ∈ Λ, we have

|ψ(x, t)| ≤ pC(x), ∀(x, t) ∈ Λ × [−C,C],

where B(D × R) and K(Λ) are introduced in Section 2.
(H2) For i = 1, 2, the function ψi ∈ B(Λ × R and the map (s, t) → ψi(x, s, t) are continuous on R × R

for almost every x ∈ Λ.
(H3) For every C > 0 there exists a nonnegative function pi,C (i = 1, 2), such that

|ψi(x, s, t)| ≤ pi,C(x), ∀ (x, s, t) ∈ Λ × [−C,C] × [−C,C].

Our main results from this work are the following theorems:

Theorem 1.1. Assume that the function f is continuous on ∂Λ and the hypothesis (H1) is satisfied.
If (1.1) and (1.2) have a continuous sub solution u and a continuous super solution u with u ≤ u in Λ,
then problems (1.1) and (1.2) admit a continuous weak solution u ∈ C(Λ ∪ ∂∞Λ) satisfying

u ≤ u ≤ u, in Λ.

Theorem 1.2. Assume that the functions fi (i = 1, 2) are continuous on ∂Λ and the hypotheses
(H2) and (H3) are satisfied. If (1.3) and (1.4) have a double pair of continuous sub-super so-
lution (u, v) and (u, v), then, problems (1.3) and (1.4) admit a continuous weak solution (u, v) ∈
C(Λ ∪ ∂∞Λ) ×C(Λ ∪ ∂∞Λ) satisfying in addition

u ≤ u ≤ u, and v ≤ v ≤ v, in Λ,

where ∂∞Λ and the notion of sub-super solution are introduced in Section 2.

Next, in Section 2, we introduce some notations and we present several properties of the Kato class
K(Λ). Section 3 is devoted to the proofs of our main results. As applications of our main results, four
examples are presented in Section 4 to validate the above theorems.

2. Notations and preliminaries on the Kato class

In this section, we begin by giving some notations, which will be used later in Section 3. We denote
by B(Λ) the set of all Borel measurable functions inΛ, by B+(Λ) the subset of all nonnegative functions
of B(Λ), and by Bb(Λ) the subset of the bounded ones. Also, we denote by C0(Λ) the set of continuous
functions in Λ that tend to zero near ∂Λ and satisfy, in addition, lim

|x|→∞
u(x) = 0 in the case of unbounded

domain. Now, let us denote by C(Λ) the subset of B(Λ) composed by continuous functions in Λ in the
case when Λ is bounded and in the case when Λ is unbounded, C(Λ ∪ {∞}) will denotes the subset of
B(Λ) composed of continuous functions in Λ for which the limit as |x| → ∞ exists and is finite.
∂∞Λwill denotes ∂Λ in the case whenΛ is bounded and ∂Λ∪{∞} in the case whenΛ is unbounded.

Consequently, C (Λ ∪ ∂∞Λ) will denote C(Λ∪{∞}) if Λ is unbounded and C(Λ) if Λ is bounded. Also,
we denote by D(Λ) the set of all C∞-functions in Λ with compact support in Λ. Now, we recall that
the supremum norm is defined for u ∈ C (Λ ∪ ∂∞D) by

∥u∥∞ = sup
x∈Λ

|u(x)|,
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furthermore it is well known that the normed space (C0(Λ), ∥.∥∞) is also a Banach space. The Green
function of the Dirichlet Laplacian in Λ will be denoted by GΛ: moreover, for a given function p in
B+(Λ), the Green potential V p of a function p is defined on Λ as follows:

V p(x) =
∫
Λ

GΛ(x, y)p(y) dy.

It is well known (see [19] p.52) that if p ∈ L1
loc(Λ) is such that V p ∈ L1

loc(Λ), then ( in the sense of
distributions) we have

∆(V p) = −p in Λ. (2.1)

Let f be a nonnegative continuous function on ∂Λ, then, HΛ f will denotes the unique solution in
C2(Λ) ∩C(Λ) of the following problem{

∆u = 0 in Λ
u = f on ∂Λ,

and in the case of an unbounded domain, the above problem is subject to the following condition:

lim
|x|→∞

u(x) = 0.

Hereafter, ξ will denote the following function

ξ = 1 − HΛ1.

It is not difficult to see that the function ξ is harmonic and equal to zero at the boundary of Λ;
moreover, if Λ is unbounded, then lim

|x|→∞
ξ(x) = 1.

Since we use the potential theory, it is natural to define the Kato class, which is defined in the
following definition.

Definition 2.1. (See [14, 15].) A function p ∈ B(Λ) is said to be in the Kato class K(Λ) if we have

lim
σ→0

sup
x∈Λ

∫
Λ∩D(x,σ)

ρ(y)
ρ(x)

GΛ(x, y)|p(y)|dy = 0,

in the case when Λ is bounded, and in addition, in the case of an unbounded domain, we have

lim
C→∞

sup
x∈Λ

∫
Λ∩{|y|≥C}

ρ(y)
ρ(x)

GΛ(x, y)|p(y)|dy = 0,

where D(x, α) is the open ball with center x and radius α, δ(x) = d(x, ∂Λ), and ρ(x) = min(1, δ(x)).

We note that if Λ is bounded, then we will use the following elementary inequality:
1

1 + d
δ(x) ≤ ρ(x) ≤ δ(x),

where d is the diameter of Λ. This means that we can replace ρ by δ in Definition 2.1. Moreover,
Zeddini and Sari [18] proved that in the case when Λ is a C1,1-bounded domain, then, this definition is
equivalent to

lim
σ→0

(
sup

(x,y)∈Λ×Λ

∫
Λ∩(D(x,σ)∪D(y,σ))

GΛ(x, z)GΛ(z, y)
GΛ(x, y)

|p(z)|dz
)
= 0.

The Kato class K(Λ) is very important in the manipulation of the Green potential, it is quite rich
and it contains several functions, as shown in the following example.
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Examples. (see [14, 15].)

1) If Λ is bounded, then the function x 7→ 1
(δ(x))λ is in K(Λ) if and only if λ ∈ (−∞, 2).

2) In the case when Λ is the open unit ball, then a radial function p is in K(Λ) if and only if∫ 1

0
r(1 − r)|p(r)| dr < ∞.

3) If Λ is an exterior domain. Then the function x→ 1
(|x|+1)µ−λ δ(x)λ

is in K(Λ) if and only if λ < 2 < µ.

4) If Λ is the exterior of the unit closed ball, a radial function p is in K(Λ) if and only if
∫ ∞

1
(r −

1) |p(r)| dr < ∞.

Remark 2.2. If Λ is a C1,1 exterior domain and a function q is nontrivial and nonnegative in K(Λ).
Then its Green potential, Vq, is positive in Λ. Indeed, q ∈ L1

loc(Λ), moreover, there exists a compact
subset F of Λ such that

0 <
∫

F
q(y) dy < ∞.

Without loss of generality, we can assume that 0 < Λ. Then it has been proved in Bachar et al. [14],
that there exists C > 0 such that

C
δ(x)
|x|N−1

δ(y)
|y|N−1 ≤ GΛ(x, y), ∀ (x, y) ∈ Λ2.

Hence, for every x ∈ Λ, we have

Vq(x) =
∫
Λ

GΛ(x, y)q(y) dy

≥ C
δ(x)
|x|N−1

∫
F

δ(y)
|y|N−1 q(y) dy

≥ C
δ(x)
|x|N−1 inf

z∈F

(
δ(z)
|z|N−1

) ∫
F

q(y) dy > 0.

Next, to prove the existence of solutions, we use the sub-super solution method, so in the following,
we define such a notion.

Definition 2.3. A function u ∈ C (Λ ∪ ∂∞Λ) is said to be a continuous sub-solution of the prob-
lems (1.1) and (1.2) if the following statements are true:

(i) lim
x−→ξ∈∂Λ

u(x) ≤ f (ξ), and in the case of an unbounded domain, it satisfies, in addition, lim
|x|−→∞

u(x) ≤
c.

(ii) For any nonnegative function φ ∈ D(Λ), we get∫
Λ

u(x)∆φ(x) + ψ(x, u(x))φ(x)dx ≥ 0.

The definition of a super-solution of the problems (1.1) and (1.2) is obtained similarly by reversing
the inequality in the last definition.

An analog definition is adopted for the problems (1.3) and (1.4). This type of definition is utilized
by Gfaifia et al. [20], and Pao [21]. Next, we recall this general definition.

Definition 2.4. ((u, v),(u, v)) ∈ (C (D ∪ ∂∞Λ))2
× (C (D ∪ ∂∞Λ))2 is said to be a sub-super solution of

problems (1.3) and (1.4) if the following statements hold:
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(i) For all x ∈ Λ, we have
u(x) ≤ u(x), and v(x) ≤ v(x).

(ii) We have 
lim

x−→ξ∈∂Λ
u(x) ≤ f1(ξ) ≤ lim

x−→ξ∈∂Λ
u(x)

lim
x−→ξ∈∂Λ

v(x) ≤ f2(ξ) ≤ lim
x−→ξ∈∂Λ

v(x),

and if in addition Λ is unbounded, then we get
lim
|x|−→∞

u(x) ≤ c1 ≤ lim
|x|−→∞

u(x),

lim
|x|−→∞

v(x) ≤ c2 ≤ lim
|x|−→∞

v(x).

(iii) For any nonnegative function φ ∈ D(Λ) and any (u, v) ∈ [u, u] × [v, v], we have{ ∫
D

u(x)∆φ(x) + ψ1(x, u(x), v(x))φ(x)dx ≥ 0,∫
D

v(x)∆φ(x) + ψ2(x, u(x), v(x))φ(x)dx ≥ 0,

moreover, the last inequalities hold by reversing the inequality and replacing u and v by u and v,
respectively.

3. Proofs of the main results

In this section, we present the proofs of our main results ( Theorems 1.1 and 1.2). Firstly, let us
introduce the following key result, which can be found in Mâagli and Zribi [15] in the case when Λ is
bounded, and in Bachar et al. [14] in the case when Λ is unbounded.

Proposition 3.1. For a given function p in K(Λ). The following statements hold:

1) V p is a continuous functions in Λ and tends to zero on ∂Λ.
2) The family of functions

{Vq such that |q| ≤ |p|} ,

is equicontinuous in Λ ∪ ∂∞Λ.
3) p ∈ L1

loc(Λ).

We note that from the well-known Ascoli’s theorem and (2) in the previous proposition, we deduce
that {Vq such that |q| ≤ |p|} is relatively compact in C0(Λ).

3.1. Proof of Theorem 1.1

In order to prove Theorem 1.1, we begin by defining the auxiliary function ψ̃ on Λ × R by

ψ̃(x, u(x)) =


ψ(x, u(x)) if u(x) < u(x),
ψ(x, u(x)) if u(x) ≤ u(x) ≤ u(x),
ψ(x, u(x)) if u(x) < u(x).

(3.1)
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Now, let us consider the following associated problem
−∆u = ψ̃(x, u) in Λ,
u = f , on ∂Λ
lim
|x|→∞

u(x) = c.
(3.2)

We begin by proving that problem (3.2) admits a weak solution u in C (Λ ∪ ∂∞Λ). Since the function
t 7→ ψ(x, t) is continuous, the function t 7→ ψ̃(x, t) is also continuous. On the other hand, if we put
C = ∥u∥∞ + ∥u∥∞, then from hypothesis (H1) there exists a nonnegative function pC ∈ K(Λ) such that

|ψ(x, t)| ≤ pC(x), ∀ (x, t) ∈ Λ × [−C,C].

Therefore, we deduce that

|ψ̃(x, u(x))| ≤ pC(x), ∀ (x, u) ∈ Λ ×C (Λ ∪ ∂∞Λ) .

So, Proposition 3.1 implies that

ψ̃(., c ξ(.) + HΛϕ(.) + v(.)) ∈ K(Λ),

moreover, for each v ∈ C0(Λ) the family{
V

(
ψ̃(., c ξ + HΛϕ + v)

)
: v ∈ C0(Λ)

}
,

is relatively compact in (C0(Λ), ∥.∥∞).
Now we define the operator T : C0(Λ)→ C0(Λ) by

Tv(x) = V
(
ψ̃(., c ξ + HΛϕ + v)

)
(x).

It is clear from the above information that T (C0(Λ)) is relatively compact in (C0(Λ), ∥.∥∞). On
the other hand, the operator T is continuous. Indeed, let {vn} be a sequence in C0(Λ) that converges
uniformly to v ∈ C0(Λ). Since we have

|ψ̃(y, c ξ + HΛϕ + vn(y))| ≤ pM(y), ∀ (y, n) ∈ Λ × N,

then, by combining the dominated convergence theorem and Proposition 3.1 with the continuity of ψ
concerning the second variable, we deduce

lim
n→∞

Tvn(x) = Tv(x), ∀ x ∈ Λ,

lim
∥x∥→∞

Tvn(x) = 0, uniformly in n.

From the equicontinuity of T (C0(Λ)), we deduce that the pointwise convergence implies uniform
convergence. This fact implies that Tvn converges uniformly to Tv in C0(Λ). Which implies that T is
continuous. By combining this fact and the fact that T (C0(Λ)) is relatively compact in (C0(Λ), ∥.∥∞)
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with the Schauder fixed point theorem, we deduce that T has a fixed point v ∈ C0(Λ). Now if we put
u = c ξ + HΛ f + v, then we get u ∈ C(Λ ∪ ∂∞Λ) and lim

x→σ∈∂Λ
u(x) = f (σ),

lim
|x|→∞

u(x) = c,

moreover, u satisfies the following integral equation:

u = c ξ + HΛ f + V
(
ψ̃(., u)

)
in Λ.

Next, let us prove that the function u satisfies the following inequality

u(x) ≤ u(x) ≤ u(x), ∀ x ∈ Λ.

To do this, we proceed by contradiction, and we suppose that there exists x0 ∈ Λ such that u(x0) <
u(x0). In this case, we define the following set:

E = {x ∈ Λ such that u(x) < u(x)}.

Then, from our assumption, the set E is nonempty; moreover, from the fact that the functions u and
u are continuous, we see that E is an open set in Λ. Moreover, we have u − u = 0 on ∂E. On the other
hand, from Eq (3.1), we can see that for all x ∈ E, we have ψ̃(x, u(x)) = ψ̃(x, u(x)). Hence, for any
nonnegative function φ inD(E), we have∫

E
(u(x) − u(x))(−∆φ)(x)dx ≥

∫
E

(
ψ̃(x, u(x)) − ψ̃(x, u(x))

)
φ(x)dx = 0.

The above information shows that u−u is a continuous superharmonic function in E with a boundary
value equal to zero. On the other hand, from the definition of the sub-solution, in the case when E is
unbounded, we have

lim
|x|→∞, x∈E

(
u(x) − u(x)

)
= c − lim

|x|→∞, x∈E
u(x) ≥ 0.

Hence the maximum principle (see [22, p.397–398]) can be applied, and we conclude that u−u ≥ 0
in E. This contradicts the fact that E is nonempty. So u ≤ u in Λ. Similar arguments can be used
to show that u ≤ u in Λ. Now, the fact that u(x) ≤ u(x) ≤ u(x), implies that for any x ∈ Λ we
have ψ̃(x, u(x)) = ψ(x, u(x)). Finally, since u is a solution for the problem (3.1) and since ψ̃(x, u(x)) =
ψ(x, u(x)), then u is also a solution for the problem (1.1). The proof is now finished.

3.2. Proof of Theorem 1.2

We suppose that problems (1.3) and (1.4) admit a double pair of continuous sub-supersolutions
(u, v) and (u, v). As in the proof of Theorem 1.1, for y ∈ C(Λ ∪ {∞}) and x ∈ Λ, we define

θ1(y)(x) =


u(x) if y(x) < u(x),
y(x) if u(x) ≤ y(x) ≤ u(x),
u(x) if u(x) < y(x) ,
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and

θ2(y)(x) =


v(x) if y(x) < v(x),
y(x) if v(x) ≤ y(x) ≤ v(x),
u(x) if v(x) < y(x).

Clearly
θ1(y) ∈ [u, u], and θ2(y) ∈ [v, v].

On the other hand, by the fact that the functions u, v, u, and v are in C
(
Λ ∪ {∞}

)
, we deduce the

existence of a positive constant C, such that for any x ∈ Λ, we have{
−C ≤ u(x) ≤ u(x) ≤ C,
−C ≤ v(x) ≤ v(x) ≤ C.

So, from (H3), there exist two nonnegative functions p1,C, p2,C in K(Λ) such that for all (x, y) ∈
Λ ×C(Λ ∪ {∞}), we have {

|ψ1(x, θ1(y)(x), θ2(y)(x))| ≤ p1,C(x),
|ψ2(x, θ1(y)(x), θ2(y)(x))| ≤ p2,C(x).

Hence, from Proposition 3.1, we deduce that the map ω → ψi(ω, θ1(y)(ω), θ2(y)(ω)) is in K(Λ),
moreover, for i ∈ {1, 2}, the set {

V (ψi(., θ1(y), θ2(y))) : y ∈ C(Λ ∪ {∞})
}
,

is relatively compact in (C0(Λ), ∥.∥∞).
Now, we consider the Banach space C0(Λ) ×C0(Λ), which is equipped with the following norm

∥(χ1, χ2)∥ = ∥χ1∥∞ + ∥χ2∥∞,

and we define the operator T : C0(Λ) ×C0(Λ)→ C0(Λ) ×C0(Λ) by

T (χ1, χ2) = (T1(χ1, χ2),T2(χ1, χ2)) ,

where T1(χ1, χ2) and T2(χ1, χ2) are defined by{
T1(χ1, χ2) = Vψ1 (., θ1[c1 ξ + HΛ f1 + χ1], θ2[c2 ξ + HΛ f2 + χ2]) (x),
T2(χ1, χ2) = Vψ2 (., θ1[c1 ξ + HΛ f1 + χ1], θ2[c2 ξ + HΛ f2 + χ2]) (x).

We note that T1(χ1, χ2) and T2(χ1, χ2) are the unique pair of solutions to the following problem:
−∆y = ψ1 (x, θ1[c1 ξ + HΛ f1 + χ1], θ2[c2 ξ + HΛ f2 + χ2]) in Λ,
−∆z = ψ1 (x, θ1[c1 ξ + HΛ f1 + χ1], θ2[c2 ξ + HΛ f2 + χ2]) in Λ,
y = 0, z = 0 , on ∂Λ
lim
|x|→∞

y(x) = 0 and lim
|x|→∞

z(x) = 0.

The same arguments as in the proof of Theorem 1.1, show that the set T (C0(Λ) ×C0(Λ)) is relatively
compact in C0(Λ) × C0(Λ), and moreover, the operator T is continuous. So, the Schauder fixed point
theorem implies that T has a fixed point (χ1, χ2) ∈ C0(Λ) ×C0(Λ).
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Now, if we put {
u = c1 ξ + HΛ f1 + χ1,

v = c2 ξ + HΛ f2 + χ2,

then, u , v ∈ C
(
Λ ∪ {∞}

)
, moreover, we have

 lim
x→σ∈∂Λ

u(x) = f1(σ),

lim
x→σ∈∂Λ

v(x) = f2(σ),

and 
lim
|x|→∞

u(x) = c1,

lim
|x|→∞

v(x) = c2.

Also, we have {
u(x) = c1 ξ(x) + HΛ f1(x) + Vψ1 (., θ1(u), θ2(v)) (x),
v(x) = c2 ξ(x) + HΛ f2(x) + Vψ2 (., θ1(u), θ2(v)) (x).

Finally, we will prove that u ≤ u ≤ u and v ≤ v ≤ v in Λ. Since the proofs are similar for the cases
u ≤ u, u ≤ u, v ≤ v, and v ≤ v, we will only prove that u ≤ u. By contradiction, we assume that this is
not true, so the set E1 = {x ∈ Λ such that u(x) < u(x)} is nonempty. Since u and u are continuous, then
E1 is open; u − u = 0 on ∂E1, and in the case when E1 is unbounded, we have

lim
|x|→∞ ,x∈E1

(u(x) − u(x)) = c − lim
|x|→∞ ,x∈E1

u(x) ≥ 0.

Moreover since θ1(u)(x) = u(x) for every x ∈ E1 and θ2(v) ∈
[
v, v

]
, then for every φ ∈ C∞c (E1) with

φ ≥ 0 we have ∫
E1

[
u(x) − u(x)

]
∆φ(x)dx =

∫
E1

u(x)∆φ(x)dx −
∫

E1

u(x)∆φ(x)dx

= −

∫
E1

ψ1 (x, θ1(u)(x), θ2(v)(x))φ(x)dx

−

∫
E1

u(x)∆φ(x)dx

≥ −

∫
E1

ψ1

(
x, u(x), θ2(v)(x)

)
φ(x)dx

+

∫
E1

ψ1

(
x, u(x), θ2(v)(x)

)
φ(x)dx = 0.

The above information shows that u − u is a continuous super-harmonic function in E1 and satisfies
u − u ≥ 0 on ∂E1 and lim

|x|→∞ ,x∈E1
u(x) − u(x) ≥ 0, if E1 is unbounded. Hence, from the maximum

principle [22, p.397–398] we deduce that u − u ≥ 0 in E1. This contradicts the definition of E1 and so
E1 is empty. Which proves that u ≤ u in Λ. Consequently, we conclude that θ1(u) = u, θ2(v) = v, and
(u, v) is a continuous weak solution of problem (1.3). The proof of Theorem 1.2 is now completed.
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4. Applications

In this section, we present several applications of the main results. These applications approve and
validate the main results of this paper. Since the case of the unbounded domain is more general than
the bounded domain, throughout this section, we assume that Λ is a C1,1 exterior domain, and the letter
i will denote the integer 1 or 2.

Application 1. Let α > 0 and a be a nontrivial nonnegative function in B(K(Λ)), and consider the
following problem: 

−∆u = λa(x) (1 − uα) in Λ ,
u = 0 , on ∂Λ ,
lim
|x|→∞

u(x) = 0.
(4.1)

By the fact that a ∈ K(Λ), we deduce that Va ∈ C0(Λ). So if we put u = λVa, then it is not difficult
to see that for λ > 0, the function u is a continuous super-solution of problem (4.1). On the other hand,
if we define the function f on

[
0, 1
∥Va∥∞

)
by

f (t) =
t

1 − ∥Va∥α∞ tα
.

Then it is not difficult to see that the function f is differentiable and increasing on
(
0, 1
∥Va∥∞

)
, and

since f (0) = 0 and lim
t→ 1
∥Va∥∞

f (t) = ∞, then the function f :
[
0, 1
∥Va∥∞

)
→ [0,∞) is a bijection.

Now, if λ > 0, then there exists ε ∈
(
0, 1
∥Va∥∞

)
such that 0 < ε < f (ε) < λ, which implies that

ε < λ
(
1 − εα∥Va∥α∞

)
< λ (1 − (εVa)α) .

So, ε a ≤ λ a (1 − (εVa)α) in Λ, and the function u = εVa becomes a continuous weak sub-solution
of (4.1) satisfying u ≤ u. Hence, it follows from Theorem 1.1 that problem (4.1) has a continuous
weak solution u satisfying εVa ≤ u ≤ λVa.

Application 2. Let α > 0 and let a and b be two nontrivial nonnegative functions in B(K(Λ)), and
we consider the following problem

−∆u = λ (a(x) + b(x)uα) in Λ ,
u = 0 , on ∂Λ ,
lim
|x|→∞

u(x) = 0.
(4.2)

We begin by remarking that, similar to Application 1, for any λ > 0, the function u = λVa is a
continuous sub-solution of (4.2). So to use the main theorems of this paper, we will find a positive
continuous weak supersolution of (4.2).

Next, if we define the function g on [0,∞) by

g(t) =
t

1 + ∥V(a + b)∥α∞ tα
.
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Then a simple calculation shows that g is differentiable on (0,∞) and

g′(t) =
1 + (1 − α)∥V(a + b)∥α∞tα(

1 + ∥V(a + b)∥α∞ tα
)2 . (4.3)

To discuss the monotonicity of the function g, we distinguish two cases.
Case 1: In this case, we consider the sublinear case, which means that α ∈ (0, 1). In this case, we see
from (4.3) that g is increasing, and so, it is a bijection from [0,∞) into [0,∞). Hence, for any λ > 0,
there exists M ∈ (0,∞) such that 0 < λ < g(M) < M. Now, it is not difficult to see that the function
u = MV(a + b) is a continuous super-solution of (4.2), which satisfies in addition u ≤ u. Finally,
Theorem 1.1 implies that (4.2) has a continuous weak solution u; moreover, we have

λV(a) ≤ u ≤ MV(a + b).

Case 2: In this case, we consider the super-solution case,which is the case when α ≥ 1. In this case,
easily, the function g is increasing on [0, t0] and decreasing on to [t0,∞) and satisfies g(0) = 0 and
lim
t→∞

g(t) = 0, where

t0 =
1

(α − 1)
1
α ∥V(a + b)∥∞

.

Put

λ∗ = g(t0) =
(α − 1)1− 1

α

α∥V(a + b)∥∞
.

Then, for any λ in (0, λ∗], we see that λ < t0. So the function u = t0V(a + b) is a continuous super-
solution to problem (4.2), which satisfies in addition u ≤ u. Again, Theorem 1.1 implies that (4.2) has
a continuous weak solution satisfying

λVa ≤ u ≤ t0V(a + b).

Application 3. For a positive real numbers α1, α2, β1, β2, and a nontrivial nonnegative functions a,
b in B(K(Λ)), we consider the following system:

−∆u = λa(x)
(
1 − uα1vβ1

)
in Λ ,

−∆v = µb(x)
(
1 − uα2vβ2

)
in Λ ,

u = v = 0 , on ∂Λ ,
lim
|x|→∞

u(x) = lim
|x|→∞

v(x) = 0 = 0.

(4.4)

We begin by remarking that for every λ > 0, µ > 0, the function

fi :

0, 1

∥Va∥
αi

αi+βi
∞ ∥Vb∥

βi
αi+βi
∞

→ [0,∞),

defined by:

fi(t) =
t

1 − ∥Va∥αi
∞∥Vb∥βi

∞ tαi+βi
,
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is an increasing bijection. So, there exists ε > 0 such that

0 < ε < fi(ε) < min(λ, µ).

From which we deduce that

εa ≤ λa
(
1 − (εVa)α1(εVb)β1

)
, and εb ≤ µb

(
1 − (εVa)α2(εVb)β2

)
.

This allows us to prove that the double pair (u, v) = (εVa, εVb), (u, v) = (λVa, µVb) is a continuous
sub-supersolution of system (4.4). Hence, it follows from Theorem 1.2 that (4.4) has a continuous
weak solution (u, v) satisfying εVa ≤ u ≤ λVa and εVb ≤ v ≤ µVb.

Application 4. For a positive real numbers α1, α2, β1, β2, and a nontrivial nonnegative functions a,
b in B(K(Λ)), we consider the following system:

−∆u = λ
(
a1(x) + b1(x)uα1vβ1

)
in Λ ,

−∆v = µ
(
a2(x) + b2(x)uα2vβ2

)
in Λ ,

u = v = 0 , on ∂Λ ,
lim
|x|→∞

u(x) = lim
|x|→∞

v(x) = 0.

(4.5)

We define the function gi on [0,∞) by

gi(t) =
t

1 + ∥V(a1 + b1)∥αi
∞ ∥V(a2 + b2)∥βi

∞ tαi+βi
.

Clearly, gi is differentiable on [0,∞) and

g′i(t) =
1 + (1 − αi − βi)∥V(a1 + b1)∥αi

∞ ∥V(a2 + b2)∥βi
∞ tαi+βi(

1 + ∥V(a1 + b1)∥αi
∞ ∥V(a2 + b2)∥βi

∞ tαi+βi
)2 .

Thus we will discuss four cases.
Case 1: 0 < αi + βi < 1. In this case, each gi is an increasing bijection from [0,∞) to [0,∞). Hence,
for every 0 < λ and 0 < µ, there exists M ∈ (0,∞) such that 0 < max(λ, µ) < min(g1(M), g2(M)) < M.
The double pair of continuous functions (u, v) = (λVa1, µVa2) and (u, v) = (MV(a1 +b1),MV(a2 +b2))
is a continuous sub-supersolution of system (4.5). Hence, it follows from Theorem 1.2 that (4.5) has a
continuous weak solution (u, v) satisfying λVa1 ≤ u ≤ MV(a1 + b1) and µVa2 ≤ v ≤ MV(a2 + b2).
Case 2: αi + βi ≥ 1. If we put

ti =
1

(αi + βi − 1)
1

αi+βi ∥V(a1 + b1)∥
αi

αi+βi
∞ ∥V(a2 + b2)∥

βi
αi+βi
∞

.

Then we see that gi is increasing on [0, ti] and decreasing on [ti,∞) and satisfies gi(0) = 0 and
lim
t→∞

gi(t) = 0. So, if we take λ∗ = g1(t1) and µ∗ = g2(t2). Then for every 0 < λ ≤ λ∗ and any 0 < µ ≤ µ∗,
the double pair

(u, v) = (λVa1, µVa2) and (u, v) = (t1V(a1 + b1), t2V(a2 + b2)),

is a continuous sub-supersolution of the system (4.5). Hence, it follows from Theorem 1.2 that (4.5)
has a continuous weak solution (u, v) satisfying λVa1 ≤ u ≤ t1V(a1+b1) and µVa2 ≤ v ≤ t2V(a2+b2).

Electronic Research Archive Volume 32, Issue 6, 3742–3757.



3755

Case 3: 0 < α1 + β1 < 1 and α2 + β2 ≥ 1. In this case, we obtain that for every 0 < λ and
0 < µ ≤ µ∗ = g2(t2) the double pair (u, v) = (λVa1, µVa2) and (u, v) = (MV(a1 + b1), t2V(a2 + b2)) is
a continuous sub-supersolution to system (4.5), where M is chosen so that 0 < λ < g1(M). Hence, it
follows from Theorem 1.2 that (4.5) has a continuous weak solution (u, v); moreover, we have

λVa1 ≤ u ≤ MV(a1 + b1) and µVa2 ≤ v ≤ t2V(a2 + b2).

Case 4: 0 < α2 + β2 < 1, and α1 + β1 ≥ 1. Inspired by cases 2 and 3, we can prove that for every
0 < λ ≤ λ∗ = g1(t1), and for every µ > 0, the double pair

(u, v) = (λVa1, µVa2) and (u, v) = (t1V(a1 + b1),MV(a2 + b2)),

is a continuous sub-supersolution of system (4.5), where M is chosen so that 0 < µ < g2(M). Hence, it
follows from Theorem 1.2 that (4.5) has a continuous weak solution (u, v) satisfying in addition

λVa1 ≤ u ≤ t1V(a1 + b1) and µVa2 ≤ v ≤ MV(a2 + b2).
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