Research article

Three identities and a determinantal formula for differences between Bernoulli polynomials and numbers

  • Received: 14 February 2023 Revised: 11 August 2023 Accepted: 30 August 2023 Published: 21 December 2023
  • In the paper, the authors simply review recent results of inequalities, monotonicity, signs of determinants, determinantal formulas, closed-form expressions, and identities of the Bernoulli numbers and polynomials, establish an identity involving the differences between the Bernoulli polynomials and the Bernoulli numbers, present two identities among the differences between the Bernoulli polynomials and the Bernoulli numbers in terms of a determinant and a partial Bell polynomial, and derive a determinantal formula of the differences between the Bernoulli polynomials and the Bernoulli numbers.

    Citation: Jian Cao, José Luis López-Bonilla, Feng Qi. Three identities and a determinantal formula for differences between Bernoulli polynomials and numbers[J]. Electronic Research Archive, 2024, 32(1): 224-240. doi: 10.3934/era.2024011

    Related Papers:

  • In the paper, the authors simply review recent results of inequalities, monotonicity, signs of determinants, determinantal formulas, closed-form expressions, and identities of the Bernoulli numbers and polynomials, establish an identity involving the differences between the Bernoulli polynomials and the Bernoulli numbers, present two identities among the differences between the Bernoulli polynomials and the Bernoulli numbers in terms of a determinant and a partial Bell polynomial, and derive a determinantal formula of the differences between the Bernoulli polynomials and the Bernoulli numbers.



    加载中


    [1] M. Abramowitz, I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, Reprint of the 1972 edition, Dover Publications, Inc., New York, 1992.
    [2] N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996. https://doi.org/10.1002/9781118032572
    [3] H. Alzer, Sharp bounds for the Bernoulli numbers, Arch. Math. (Basel), 74 (2000), 207–211. https://doi.org/10.1007/s000130050432 doi: 10.1007/s000130050432
    [4] F. Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, J. Comput. Appl. Math., 351 (2019), 1–5. https://doi.org/10.1016/j.cam.2018.10.049 doi: 10.1016/j.cam.2018.10.049
    [5] F. Qi, Notes on a double inequality for ratios of any two neighbouring non-zero Bernoulli numbers, Turkish J. Anal. Number Theory, 6 (2018), 129–131. https://doi.org/10.12691/tjant-6-5-1 doi: 10.12691/tjant-6-5-1
    [6] Z.-H. Yang, J.-F. Tian, Sharp bounds for the ratio of two zeta functions, J. Comput. Appl. Math., 364 (2020), 112359, 14 pages. https://doi.org/10.1016/j.cam.2019.112359
    [7] L. Zhu, New bounds for the ratio of two adjacent even-indexed Bernoulli numbers, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), Paper No. 83, 13 pages. https://doi.org/10.1007/s13398-020-00814-6
    [8] Y. Shuang, B.-N. Guo, F. Qi, Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 115 (2021), Paper No. 135, 12 pages. https://doi.org/10.1007/s13398-021-01071-x
    [9] F. Qi and R. J. Chapman, Two closed forms for the Bernoulli polynomials, J. Number Theory 159 (2016), 89–100. https://doi.org/10.1016/j.jnt.2015.07.021
    [10] F. Qi and B.-N. Guo, Some determinantal expressions and recurrence relations of the Bernoulli polynomials, Mathematics, 4 (2016), Art. 65, 11 pages. https://doi.org/10.3390/math4040065
    [11] F. Qi, On signs of certain Toeplitz–Hessenberg determinants whose elements involve Bernoulli numbers, Contrib. Discrete Math., 19 (2024), no. 1, in press.
    [12] S. Jin, B.-N. Guo, F. Qi, Partial Bell polynomials, falling and rising factorials, Stirling numbers, and combinatorial identities, CMES Comput. Model. Eng. Sci., 132 (2022), 781–799. https://doi.org/10.32604/cmes.2022.019941 doi: 10.32604/cmes.2022.019941
    [13] P. L. Butzer, M. Schmidt, E. L. Stark, L. Vogt, Central factorial numbers; their main properties and some applications, Numer. Funct. Anal. Optim., 10 (1989), 419–488. https://doi.org/10.1080/01630568908816313 doi: 10.1080/01630568908816313
    [14] M. Merca, Connections between central factorial numbers and Bernoulli polynomials, Period. Math. Hungar., 73 (2016), 259–264. https://doi.org/10.1007/s10998-016-0140-5 doi: 10.1007/s10998-016-0140-5
    [15] X.-Y. Chen, L. Wu, D. Lim, F. Qi, Two identities and closed-form formulas for the Bernoulli numbers in terms of central factorial numbers of the second kind, Demonstr. Math., (2022), 822–830. https://doi.org/10.1515/dema-2022-0166 doi: 10.1515/dema-2022-0166
    [16] F. Qi, P. Taylor, Series expansions for powers of sinc function and closed-form expressions for specific partial Bell polynomials, Appl. Anal. Discrete Math., 18 (2024), in press. https://doi.org/10.2298/AADM230902020Q
    [17] T. Arakawa, T. Ibukiyama, M. Kaneko, Bernoulli Numbers and Zeta Functions, with an appendix by Don Zagier, Springer Monographs in Mathematics, Springer, Tokyo, 2014. https://doi.org/10.1007/978-4-431-54919-2
    [18] T. Komatsu, B. K. Patel, C. Pita-Ruiz, Several formulas for Bernoulli numbers and polynomials, Adv. Math. Commun., 17 (2023), 522–535. https://doi.org/10.3934/amc.2021006 doi: 10.3934/amc.2021006
    [19] M. Beals-Reid, A quadratic relation in the Bernoulli numbers, PUMP J. Undergrad. Res., 6 (2023), 29–39.
    [20] L. Dai, H. Pan, Closed forms for degenerate Bernoulli polynomials, Bull. Aust. Math. Soc., 101 (2020), 207–217. https://doi.org/10.1017/s0004972719001266 doi: 10.1017/s0004972719001266
    [21] D. Gun, Y. Simsek, Some new identities and inequalities for Bernoulli polynomials and numbers of higher order related to the Stirling and Catalan numbers, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), Paper No. 167, 12 pp. https://doi.org/10.1007/s13398-020-00899-z
    [22] S. Hu, M.-S. Kim, Two closed forms for the Apostol–Bernoulli polynomials, Ramanujan J., 46 (2018), 103–117. https://doi.org/10.1007/s11139-017-9907-4 doi: 10.1007/s11139-017-9907-4
    [23] M. Merca, Bernoulli numbers and symmetric functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), Paper No. 20, 16 pp. https://doi.org/10.1007/s13398-019-00774-6
    [24] G. V. Milovanović, Y. Simsek, V. S. Stojanović, A class of polynomials and connections with Bernoulli's numbers, J. Anal., 27 (2019), 709–726. https://doi.org/10.1007/s41478-018-0116-3 doi: 10.1007/s41478-018-0116-3
    [25] C.-P. Chen, F. Qi, Three improper integrals relating to the generating function of Bernoulli numbers, Octogon Math. Mag., 11 (2003), 408–409.
    [26] B.-N. Guo, I. Mező, F. Qi, An explicit formula for the Bernoulli polynomials in terms of the $r$-Stirling numbers of the second kind, Rocky Mountain J. Math., 46 (2016), 1919–1923. https://doi.org/10.1216/RMJ-2016-46-6-1919 doi: 10.1216/RMJ-2016-46-6-1919
    [27] B.-N. Guo, F. Qi, A new explicit formula for the Bernoulli and Genocchi numbers in terms of the Stirling numbers, Glob. J. Math. Anal., 3 (2015), 33–36. http://dx.doi.org/10.14419/gjma.v3i1.4168 doi: 10.14419/gjma.v3i1.4168
    [28] B.-N. Guo, F. Qi, An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind, J. Anal. Number Theory, 3 (2015), 27–30.
    [29] B.-N. Guo, F. Qi, Generalization of Bernoulli polynomials, Internat. J. Math. Ed. Sci. Tech., 33 (2002), 428–431. http://dx.doi.org/10.1080/002073902760047913 doi: 10.1080/002073902760047913
    [30] B.-N. Guo, F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math., 255 (2014), 568–579. https://doi.org/10.1016/j.cam.2013.06.020 doi: 10.1016/j.cam.2013.06.020
    [31] Q.-M. Luo, B.-N. Guo, F. Qi, L. Debnath, Generalizations of Bernoulli numbers and polynomials, Int. J. Math. Math. Sci., 2003 (2003), 3769–3776. http://dx.doi.org/10.1155/S0161171203112070 doi: 10.1155/S0161171203112070
    [32] Q.-M. Luo, F. Qi, Relationships between generalized Bernoulli numbers and polynomials and generalized Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang), 7 (2003), 11–18.
    [33] F. Qi, B.-N. Guo, Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers, Analysis (Berlin), 34 (2014), 311–317. http://dx.doi.org/10.1515/anly-2014-0003 doi: 10.1515/anly-2014-0003
    [34] B.-N. Guo, F. Qi, Properties and applications of a function involving exponential functions, Commun. Pure Appl. Anal., 8 (2009), 1231–1249. http://dx.doi.org/10.3934/cpaa.2009.8.1231 doi: 10.3934/cpaa.2009.8.1231
    [35] F. Qi, Three-log-convexity for a class of elementary functions involving exponential function, J. Math. Anal. Approx. Theory, 1 (2006), 100–103.
    [36] F. Qi, B.-N. Guo, C.-P. Chen, The best bounds in Gautschi-Kershaw inequalities, Math. Inequal. Appl., 9 (2006), 427–436. http://dx.doi.org/10.7153/mia-09-41. doi: 10.7153/mia-09-41
    [37] F. Qi, A class of logarithmically completely monotonic functions and the best bounds in the first Kershaw's double inequality, J. Comput. Appl. Math., 206 (2007), 1007–1014. http://dx.doi.org/10.1016/j.cam.2006.09.005 doi: 10.1016/j.cam.2006.09.005
    [38] F. Qi, B.-N. Guo, Wendel's and Gautschi's inequalities: Refinements, extensions, and a class of logarithmically completely monotonic functions, Appl. Math. Comput., 205 (2008), 281–290. http://dx.doi.org/10.1016/j.amc.2008.07.005 doi: 10.1016/j.amc.2008.07.005
    [39] B.-N. Guo, F. Qi, An alternative proof of Elezović-Giordano-Pečarić's theorem, Math. Inequal. Appl., 14 (2011), 73–78. http://dx.doi.org/10.7153/mia-14-06 doi: 10.7153/mia-14-06
    [40] F. Qi, Q.-M. Luo, Bounds for the ratio of two gamma functions–-From Wendel's and related inequalities to logarithmically completely monotonic functions, Banach J. Math. Anal., 6 (2012), 132–158. https://doi.org/10.15352/bjma/1342210165 doi: 10.15352/bjma/1342210165
    [41] F. Qi, Q.-M. Luo, Bounds for the ratio of two gamma functions: from Wendel's asymptotic relation to Elezović-Giordano-Pečarić's theorem, J. Inequal. Appl., 2013 542, 20 pages. https://doi.org/10.1186/1029-242X-2013-542
    [42] F. Qi, Q.-M. Luo, B.-N. Guo, The function $(b^x-a^x)/x$: Ratio's properties, In: Analytic Number Theory, Approximation Theory, and Special Functions, G. V. Milovanović and M. Th. Rassias (Eds), Springer, 2014, pp. 485–494. https://doi.org/10.1007/978-1-4939-0258-3_16
    [43] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010; available online at http://dlmf.nist.gov/.
    [44] J. Quaintance, H. W. Gould, Combinatorial Identities for Stirling Numbers, the unpublished notes of H. W. Gould, with a foreword by George E. Andrews, World Scientific Publishing Co. Pte. Ltd., Singapore, 2016.
    [45] C. A. Charalambides, Enumerative Combinatorics, CRC Press Series on Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002.
    [46] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., 1974. https://doi.org/10.1007/978-94-010-2196-8
    [47] D. Birmajer, J. B. Gil, M. D. Weiner, Linear recurrence sequences and their convolutions via Bell polynomials, J. Integer Seq., 18 (2015), Article 15.1.2, 14 pp.
    [48] D. Birmajer, J. B. Gil, M. D. Weiner, Some convolution identities and an inverse relation involving partial Bell polynomials, Electron. J. Combin., 19 (2012), Paper 34, 14 pages. https://doi.org/10.37236/2476
    [49] J. Cao, F. Qi, W.-S. Du, Closed-form formulas for the $n$th derivative of the power-exponential function $x^x$, Symmetry, 15 (2023), Art. 323, 13 pages. https://doi.org/10.3390/sym15020323
    [50] B.-N. Guo, D. Lim, F. Qi, Maclaurin's series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial Bell polynomials, and series representation of generalized logsine function, Appl. Anal. Discrete Math., 16 (2022), 427–466. https://doi.org/10.2298/AADM210401017G doi: 10.2298/AADM210401017G
    [51] F. Qi, Taylor's series expansions for real powers of two functions containing squares of inverse cosine function, closed-form formula for specific partial Bell polynomials, and series representations for real powers of Pi, Demonstr. Math., 55 (2022), 710–736. https://doi.org/10.1515/dema-2022-0157 doi: 10.1515/dema-2022-0157
    [52] F. Qi, D.-W. Niu, D. Lim, B.-N. Guo, Closed formulas and identities for the Bell polynomials and falling factorials, Contrib. Discrete Math., 15 (2020), 163–174. https://doi.org/10.11575/cdm.v15i1.68111 doi: 10.11575/cdm.v15i1.68111
    [53] F. Qi, D.-W. Niu, D. Lim, Y.-H. Yao, Special values of the Bell polynomials of the second kind for some sequences and functions, J. Math. Anal. Appl., 491 (2020), Article 124382, 31 pages. https://doi.org/10.1016/j.jmaa.2020.124382
    [54] M. Shattuck, Some combinatorial formulas for the partial $r$-Bell polynomials, Notes on Number Theory and Discrete Mathematics, 23 (2017), 63–76.
    [55] P. Henrici, Applied and Computational Complex Analysis, Volume 1, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.
    [56] R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, Monographs and Textbooks in Pure and Applied Mathematics, 126. Marcel Dekker, Inc., New York, 1989.
    [57] R. Vein, P. Dale, Determinants and Their Applications in Mathematical Physics, Applied Mathematical Sciences, 134, Springer-Verlag, New York, 1999.
    [58] J. Malenfant, Finite, closed-form expressions for the partition function and for Euler, Bernoulli, and Stirling numbers, arXivprint, (2011), available online at http://arXiv.org/abs/1103.1585v6.
    [59] Z.-Z. Zhang, J.-Z. Yang, Notes on some identities related to the partial Bell polynomials, Tamsui Oxf. J. Inf. Math. Sci., 28 (2012), 39–48.
    [60] N. Bourbaki, Functions of a Real Variable, Elementary Theory, Translated from the 1976 French original by Philip Spain, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2004. https://doi.org/10.1007/978-3-642-59315-4
    [61] C.-O. Chow, Some determinantal representations of Eulerian polynomials and their $q$-analogues, J. Integer Seq., 26 (2023), Article 23.7.1, 14 pages.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(497) PDF downloads(46) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog