In this paper we study the Mahler measures of reciprocal polynomials $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $ for $ k = 16 $, $ k = -104\pm60\sqrt{3} $, $ 4096 $ and $ k = -2024\pm765\sqrt{7} $. We prove six conjectural identities proposed by Samart in [
Citation: Huimin Zheng, Xuejun Guo, Hourong Qin. The Mahler measure of $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $[J]. Electronic Research Archive, 2020, 28(1): 103-125. doi: 10.3934/era.2020007
In this paper we study the Mahler measures of reciprocal polynomials $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $ for $ k = 16 $, $ k = -104\pm60\sqrt{3} $, $ 4096 $ and $ k = -2024\pm765\sqrt{7} $. We prove six conjectural identities proposed by Samart in [
[1] | M. J. Bertin, Mahler's measure and $L$-series of $K3$ hypersurfaces, Mirror Symmetry, AMS/IP Stud. Adv. Math., Amer. Math. Soc. Providence, RI, 38 (2006), 3–18. |
[2] | Bertin M. J. (2008) Mesure de Mahler d'hypersurfaces $K3$. J. Number Theory 128: 2890-2913. |
[3] | Birch B. J. (1969) Weber's class invariants. Mathematika 16: 283-294. |
[4] | Boyd D. W. (1998) Mahler's measure and special values of $L$-functions. Experimental Math. 7: 37-82. |
[5] | Deninger C. (1997) Deligne periods of mixed motives, K-theory and the entropy of certain $\mathbb{Z}_n$-actions. J. Amer. Math. Soc. 10: 259-281. |
[6] | Glasser M. L., Zucker I. J. (1980) Lattice sums. New York: Theoretical Chemistry - Advances and Perspectives V , Academic Press. |
[7] | X. Guo, Y. Peng and H. Qin, Three-variable Mahler measures and special values of $L$-functions of modular forms, Ramanujan J.. |
[8] | Lalin M. N., Rogers M. D. (2007) Functional equations for Mahler measures of genus-one curves. Algebraic Number Theory 1: 87-117. |
[9] |
K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and Q-series, , Amer.Math. Soc., Providence, RI, 2004.
MR2020489 |
[10] | Rogers M. (2009) New ${}_5F_4$ hypergeometric transformations, three-variable Mahler measures, and formulas for $1/\pi$. Ramanujan J. 18: 327-340. |
[11] |
M. Rogers and W. Zudilin, From $L$-series of elliptic curves to Mahler measures, Compositio Math., 148 (2012), 385–414. (MR 2904192)
10.1112/S0010437X11007342 |
[12] | Rogers M., Zudilin W. (2014) On the Mahler measure of $1+X +1/X +Y +1/Y$. Intern. Math. Res. Not. 2014: 2305-2326. |
[13] | The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.6), 2019, http://www.sagemath.org. |
[14] | F. Rodriguez-Villegas, Modular Mahler Measures I, Topics in number theory (University Park, PA, 1997), 1748, Math. Appl., 467, Kluwer Acad. Publ., Dordrecht, 1999. |
[15] | Samart D. (2013) Three-variable Mahler measures and special values of modular and Dirichlet $L$-series. Ramanujan J. 32: 245-268. |
[16] | Samart D. (2015) Mahler measures as linear combinations of $L$-values of multiple modular forms. Canad. J. Math. 67: 424-449. |
[17] | Smyth C. J. (1981) On measures of polynomials in several variables. Bull. Austral. Math. Soc. 23: 49-63. |
[18] | H. Weber, Lehrbuch der Algebra, Bd. III, F. Vieweg & Sohn, Braunschweig, 1908. |
[19] | Yui N., Zagier D. (1997) On the singular values of Weber modular functions. Math. Comp. 66: 1645-1662. |