The Mahler measure of $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $

  • Received: 01 October 2019 Revised: 01 December 2019
  • Primary: 11F67, 11R06; Secondary: 33C20

  • In this paper we study the Mahler measures of reciprocal polynomials $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $ for $ k = 16 $, $ k = -104\pm60\sqrt{3} $, $ 4096 $ and $ k = -2024\pm765\sqrt{7} $. We prove six conjectural identities proposed by Samart in [16].

    Citation: Huimin Zheng, Xuejun Guo, Hourong Qin. The Mahler measure of $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $[J]. Electronic Research Archive, 2020, 28(1): 103-125. doi: 10.3934/era.2020007

    Related Papers:

  • In this paper we study the Mahler measures of reciprocal polynomials $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $ for $ k = 16 $, $ k = -104\pm60\sqrt{3} $, $ 4096 $ and $ k = -2024\pm765\sqrt{7} $. We prove six conjectural identities proposed by Samart in [16].



    加载中


    [1] M. J. Bertin, Mahler's measure and $L$-series of $K3$ hypersurfaces, Mirror Symmetry, AMS/IP Stud. Adv. Math., Amer. Math. Soc. Providence, RI, 38 (2006), 3–18.
    [2] Bertin M. J. (2008) Mesure de Mahler d'hypersurfaces $K3$. J. Number Theory 128: 2890-2913.
    [3] Birch B. J. (1969) Weber's class invariants. Mathematika 16: 283-294.
    [4] Boyd D. W. (1998) Mahler's measure and special values of $L$-functions. Experimental Math. 7: 37-82.
    [5] Deninger C. (1997) Deligne periods of mixed motives, K-theory and the entropy of certain $\mathbb{Z}_n$-actions. J. Amer. Math. Soc. 10: 259-281.
    [6] Glasser M. L., Zucker I. J. (1980) Lattice sums. New York: Theoretical Chemistry - Advances and Perspectives V , Academic Press.
    [7] X. Guo, Y. Peng and H. Qin, Three-variable Mahler measures and special values of $L$-functions of modular forms, Ramanujan J..
    [8] Lalin M. N., Rogers M. D. (2007) Functional equations for Mahler measures of genus-one curves. Algebraic Number Theory 1: 87-117.
    [9] K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and Q-series, , Amer.Math. Soc., Providence, RI, 2004.

    MR2020489

    [10] Rogers M. (2009) New ${}_5F_4$ hypergeometric transformations, three-variable Mahler measures, and formulas for $1/\pi$. Ramanujan J. 18: 327-340.
    [11] M. Rogers and W. Zudilin, From $L$-series of elliptic curves to Mahler measures, Compositio Math., 148 (2012), 385–414. (MR 2904192)

    10.1112/S0010437X11007342

    [12] Rogers M., Zudilin W. (2014) On the Mahler measure of $1+X +1/X +Y +1/Y$. Intern. Math. Res. Not. 2014: 2305-2326.
    [13] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.6), 2019, http://www.sagemath.org.
    [14] F. Rodriguez-Villegas, Modular Mahler Measures I, Topics in number theory (University Park, PA, 1997), 1748, Math. Appl., 467, Kluwer Acad. Publ., Dordrecht, 1999.
    [15] Samart D. (2013) Three-variable Mahler measures and special values of modular and Dirichlet $L$-series. Ramanujan J. 32: 245-268.
    [16] Samart D. (2015) Mahler measures as linear combinations of $L$-values of multiple modular forms. Canad. J. Math. 67: 424-449.
    [17] Smyth C. J. (1981) On measures of polynomials in several variables. Bull. Austral. Math. Soc. 23: 49-63.
    [18] H. Weber, Lehrbuch der Algebra, Bd. III, F. Vieweg & Sohn, Braunschweig, 1908.
    [19] Yui N., Zagier D. (1997) On the singular values of Weber modular functions. Math. Comp. 66: 1645-1662.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2898) PDF downloads(372) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog