In this paper we study the Mahler measures of reciprocal polynomials (x+1/x)(y+1/y)(z+1/z)+√k for k=16, k=−104±60√3, 4096 and k=−2024±765√7. We prove six conjectural identities proposed by Samart in [
Citation: Huimin Zheng, Xuejun Guo, Hourong Qin. The Mahler measure of (x+1/x)(y+1/y)(z+1/z)+√k[J]. Electronic Research Archive, 2020, 28(1): 103-125. doi: 10.3934/era.2020007
[1] |
Huimin Zheng, Xuejun Guo, Hourong Qin .
The Mahler measure of |
[2] | Dmitry Krachun, Zhi-Wei Sun . On sums of four pentagonal numbers with coefficients. Electronic Research Archive, 2020, 28(1): 559-566. doi: 10.3934/era.2020029 |
[3] | Hai-Liang Wu, Zhi-Wei Sun . Some universal quadratic sums over the integers. Electronic Research Archive, 2019, 27(0): 69-87. doi: 10.3934/era.2019010 |
[4] | Rong Zhang, Liangchen Wang . Global dynamics in a competitive two-species and two-stimuli chemotaxis system with chemical signalling loop. Electronic Research Archive, 2021, 29(6): 4297-4314. doi: 10.3934/era.2021086 |
[5] | Heesung Shin, Jiang Zeng . More bijections for Entringer and Arnold families. Electronic Research Archive, 2021, 29(2): 2167-2185. doi: 10.3934/era.2020111 |
[6] | Fedor Petrov, Zhi-Wei Sun . Proof of some conjectures involving quadratic residues. Electronic Research Archive, 2020, 28(2): 589-597. doi: 10.3934/era.2020031 |
[7] | Haiyu Liu, Rongmin Zhu, Yuxian Geng . Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28(4): 1563-1571. doi: 10.3934/era.2020082 |
[8] | Maoji Ri, Shuibo Huang, Canyun Huang . Non-existence of solutions to some degenerate coercivity elliptic equations involving measures data. Electronic Research Archive, 2020, 28(1): 165-182. doi: 10.3934/era.2020011 |
[9] | Lirong Huang, Jianqing Chen . Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system. Electronic Research Archive, 2020, 28(1): 383-404. doi: 10.3934/era.2020022 |
[10] |
Zhi-Wei Sun .
New series for powers of |
In this paper we study the Mahler measures of reciprocal polynomials (x+1/x)(y+1/y)(z+1/z)+√k for k=16, k=−104±60√3, 4096 and k=−2024±765√7. We prove six conjectural identities proposed by Samart in [
Let
m(f)=∫10⋯∫10log|f(e2πiθ1, ..., e2πiθn)|dθ1⋯dθn. |
There have been a lot of numerical evidence and theoretical results implying that there exist non-trivial relations between Mahler measure of certain kind of Laurent polynomials and special values of
m(x+y+1)=3√34πL(χ−3,2)=L′(χ−3,1), |
where
Suppose
m(1+X+1/X+Y+1/Y)=L′(E15,0), |
where
In 2008, Bertin [1,2] investigated the Mahler measure of three-variable Laurent polynomials:
m(x+x−1+y+y−1+z+z−1+k). |
Later, Rogers [10] considered the following functions:
f2(k)=2m((x+1x)(y+1y)(z+1z)+√k),f4(k)=4m(x4+y4+z4+1+k1/4xyz), |
where
f2(−64)=2L′(g32,0)+2L′(χ−4,−1),f2(−512)=L′(g64,0)+L′(χ−8,−1),f4(−1024)=85(5L′(g20,0)+2L′(χ−4,−1)),f4(−12288)=409(L′(g36,0)+2L′(χ−3,−1)),f4(−82944)=4013(L′(g52,0)+2L′(χ−4,−1)), |
where
In this article, we prove six identities conjectured in 2015 in [16]:
f2(16)=8M12,f2(−104−60√3)=16(4M12⊗(−4)+36M12+15d3+8d4),f2(−104+60√3)=12(4M12⊗(−4)−36M12+15d3−8d4),f2(4096)=47(M7⊗(−4)+8d4),f2(−2024−765√7)=114(4M7⊗(−4)+384M7+32d4+11d7),f2(−2024+765√7)=12(4M7⊗(−4)−384M7−32d4+11d7). |
Here,
In addition to the complicated computation of the lattice sums, which is mainly due to the distinct forms of the integral basis of the number fields
As usual we denote the Dedekind eta function by
s2(q(τ))=−Δ(τ+12)Δ(2τ+1). |
Write
s2(q(τ))=f(2τ)24. |
Let
Moreover,
(x−16)3−j(τ)x=0, |
where
Lemma 2.1. We have the following special values of
(1)
(2)
(3)
(4)
(5)
(6)
Proof. (1)We have
(f(τ+1)f1(τ+1)f2(τ+1))=(0ζ−10ζ−10000ζ2)(f(τ)f1(τ)f2(τ)) | (2.1) |
where
It follows from
f(τ)24=16,−f1(τ)24=16,−f2(τ)24=16, |
and we are done.
{x1=256,x2=−104−60√3,x3=−104+60√3}. |
By Weber's table VI [18],
{−f1(√−3)24,−f2(√−3)24}={−104+60√3,−104−60√3}. |
By numerical computations, one can deduce that
Using
f(1+√−3)24=−f1(√−3)24=−104−60√3. |
(3) Note that the transformation
f(1+−1√−3)24=−f1(−1√−3)24=−104+60√3. |
(4) By Weber's table VI [18], we have
f(√−7)24=4096. |
(5) & (6): Setting
{x1=4096,x2=−2024+765√7,x3=−2024−765√7}. |
From above, we have known that
{−f1(√−7)24,−f2(√−7)24}={−2024+765√7,−2024−765√7}. |
By numerical computation, one can decide that
−f1(√−7)24=−2024−765√7 |
and
−f2(√−7)24=−2024+765√7. |
Therefore
f(1+√−7)24=−f1(√−7)24=−2024−765√7. |
Moreover, we have
−f1(√−7/7)24=−2024+765√7, |
which implies
f(1+√−77)24=−f1(√−7/7)24=−2024+765√7. |
Lemma 2.2.([15], Proposition 2.1(i)). Assume that
f2(s2(q(τ)))=2Im(τ)π3(−A+16B) |
where
A=∑′m,n∈Z4(mRe(τ)+n)2|mτ+n|6−∑′m,n∈Z1|mτ+n|4,B=∑′m,n∈Z4(4mRe(τ)+n)2|4mτ+n|6−∑′m,n∈Z1|4mτ+n|4. |
The restriction on
The
We will use the notations as in [6]. For any integer
Lemma 2.3. (Glasser & Zucker [6], Table Ⅵ). For any complex
(1)
(2)
(3)
(4)
Remark 1. The following results are useful for our computation:
Remark 2. For the sake of brevity, let us do the following convention of notations in this paper. Let
∑(a,b)R(l,m)=∑(l,m)≡(a,b)(mod2)R(l,m), |
where
Following Samart's method, we will calculate
A=∑′m,n∈Z(16((m+n)+3n)2((m+n)2+3n2)3−16((m+n)2+3n2)2)=∑′l,n∈Z(16(l+3n)2(l2+3n2)3−16(l2+3n2)2)(let l=m+n)=∑′l,n∈Z(16(l2+9n2)(l2+3n2)3−16(l2+3n2)2)(∑′l,n∈Zln/(l2+3n2)3=0)=∑′l,n∈Z(16(l2+9n2)(l2+3n2)3−32(l2+3n2)(l2+3n2)3+16(l2+3n2)2)=∑′l,n∈Z−16(l2−3n2)(l2+3n2)3+∑′l,n∈Z16(l2+3n2)2=AM+AD, |
and
B=∑′m,n∈Z(4(m+n)2(n2+2mn+4m2)3−1(n2+2mn+4m2)2)=∑′l,m∈Z(4l2(l2+3m2)3−1(l2+3m2)2)=∑′l,m∈Z(2(l2−3m2)(l2+3m2)3+1(l2+3m2)2)=BM+BD. |
Thus,
−AD+16BD=−∑′l,n∈Z16(l2+3n2)2+∑′l,m∈Z16(l2+3m2)2=0. |
Let
f(τ)=∑x,y∈Z(x2−3y22)qx2+3y2=η(2τ)3η(6τ)3. |
By lemma 2.7 in [15],
−AM+16BM=∑′l,m∈Z(16(l2−3m2)(l2+3m2)3+32(l2−3m2)(l2+3m2)3)=∑′l,m∈Z48(l2−3m2)(l2+3m2)3=96L(f,3)=16π3√33L′(f,0). |
Therefore, we obtain:
2Im(τ)π3(−A+16B)=2Im(τ)π3(−AM+16BM)=8L′(f,0), |
as desired.
In this subsection,
s2(q(1+√−32))=f(1+√−3)24=−104−60√3. |
So in this case
τ=1+√−32,Im(τ)=√32,Re(τ)=12. |
To ease the notation, we set
AM=∑∑′m≡l(2)32(l2−3m2)(l2+3m2)3,BM=∑∑′l,m∈Z2(l2−12m2)(l2+12m2)3,AD=∑∑′m≡l(2)16(l2+3m2)2,BD=∑∑′l,m∈Z1(l2+12m2)2,C=∑∑′l,m∈Z1(l2+3m2)2,X=∑∑(1,1)1(l2+3m2)2. |
By Samart's formulas in Lemma 2.2, we have
A=∑′m,n∈Z(64(2n+m)2((2n+m)2+3m2)3−16((2n+m)2+3m2)2)=∑′m≡l(2)(64l2(l2+3m2)3−16(l2+3m2)2)(l=2n+m)=∑′m≡l(2)32(l2−3m2)(l2+3m2)3+∑′m≡l(2)16(l2+3m2)2=AM+AD, |
and
B=∑′m,n∈Z(4(n+2m)2(16m2+4mn+n2)3−1(16m2+4mn+n2)2)=∑′m,n∈Z(4(n+2m)2((n+2m)2+12m2)3−1((n+2m)2+12m2)2)=∑′l,m∈Z(4l2(l2+12m2)3−1(l2+12m2)2)(l=n+2m)=∑′l,m∈Z2(l2−12m2)(l2+12m2)3+∑′l,m∈Z1(l2+12m2)2=BM+BD. |
We continue to set
f(τ)=∑x,y∈Z(x2−3y22)qx2+3y2=η(2τ)3η(6τ)3∈S3(Γ0(12),χ−3). |
From the proof of Lemma 2.4 in [15], we know that
f(τ)=∑x≢y(2)(x2−3y22)qx2+3y2. |
On the other hand, we let
f⊗χ−4(τ)=∑x≢y(2)(x2−3y22)χ−4(x2+3y2)qx2+3y2. |
It follows from [15] (cf. page 248, last line) that
f⊗χ−4(τ)=∑(x,y)≡(1,0)(mod2)(x2−3y22)qx2+3y2−∑(x,y)≡(0,1)(mod2)(x2−3y22)qx2+3y2, |
and
∑(x,y)≡(1,0)(mod2)(x2−3y22)qx2+3y2=12(f(τ)+f⊗χ−4(τ)). |
Therefore,
∑′l,m∈Z2(l2−12m2)(l2+12m2)3=∑∑′l,m∈Zm even2(l2−3m2)(l2+3m2)3=∑′(0,0)2(l2−3m2)(l2+3m2)3+∑∑′(1,0)2(l2−3m2)(l2+3m2)3=94L(f,3)+2L(f⊗χ−4,3). |
Applying the functional equation (the sign can be settled by finite precision numerical computation, it is '
(√N2π)sΓ(s)L(f,s)=±(√N2π)3−sΓ(3−s)L(f,3−s), | (3.1) |
we obtain
2Im(τ)π3(−AM+16BM)=16√3π3(94π36√3L′(f,0)+2π348√3L′(f⊗χ−4,0))=6L′(f,0)+23L′(f⊗χ−4,0). |
Now let us deal with the Dirichlet
∑′m≡l(2)1(l2+3m2)2=∑′(0,0)1(l2+3m2)2+∑′(1,1)1(l2+3m2)2. |
One can easily check that
{I⊂OK}={αOK|α=x+y√−32,x≡1(mod2)y≡1(mod2)}⊔{αOK|α=x+y√−3,x∈Zy∈Z}, |
where
Thus we have
6∑I⊂OK1N(I)2=∑(1,1)16(x2+3y2)2+∑x,y∈Z1(x2+y2)2, |
which implies
X=116(6ζK(2)−C). |
Here we used the fact that
By Lemma 2.3, we know that the following results hold
C=2(1+21−2⋅2)ζK(2)=94ζK(2). | (3.2) |
Hence,
X=116⋅154ζK(2)=1564⋅L1(2)L−3(2). | (3.3) |
Therefore,
2Im(τ)π3(−AD+16BD)=2√32π3(−∑′m≡l(2)16(l2+3m2)2+16∑′l,m∈Z1(l2+12m2)2)=16√3π3(−(∑′(0,0)1(l2+3m2)2+∑′(1,1)1(l2+3m2)2)+∑′l,m∈Z1(l2+12m2)2)=16√3π3(−964⋅π26L−3(2)−1564⋅π26L−3(2)+6964⋅π26L−3(2)+√318π2L−4(2))=16√36π(4564L−3(2)+√33L−4(2))=8√33π(45644π3√3d3+√33π2d4)=52d3+43d4. |
Here, we used the functional equation
(πk)−2−s2Γ(2−s2)L(χ−k,1−s)=(πk)−s+12Γ(s+12)L(χ−k,s). | (3.4) |
In conclusion,
s2(q(τ))=2Im(τ)π3(−A+16B)=2Im(τ)π3(−AM+16BM−AD+16BD)=6L′(f,0)+23L′(f⊗χ−4,0)+52d3+43d4=16(4M12⊗(−4)+36M12+15d3+8d4). |
In this subsection, we still denote
s2(q(3+√−36))=f(3+√−36)24=−104+60√3. |
So in this case,
τ=3+√−36, Im(τ)=√36, Re(τ)=12. |
To ease the notation, we set
AM=∑∑′m≡l(2)288(3l2−m2)(3l2+m2)3,BM=∑∑′l,m∈Z18(3l2−4m2)(3l2+4m2)3,AD=∑∑′m≡l(2)122(3l2+m2)2,BD=∑∑′l,m∈Z32(3l2+4m2)2,C=∑∑′l,m∈Z1(3l2+m2)2,X=∑∑′(1,1)1(3l2+m2)2,D=∑∑′l,m∈Zl even1(3l2+m2)2,Y=∑∑′(1,0)1(3l2+m2)2. |
We need to calculate the values of
A=∑′m,n∈Z(123(2n+m)2(3(2n+m)2+m2)3−122(3(2n+m)2+m2)2)=∑′m≡l(2)(123l2(3l2+m2)3−122(3l2+m2)2)(l=2n+m)=∑′m≡l(2)288(3l2−m2)(3l2+m2)3+∑′m≡l(2)122(3l2+m2)2=AM+AD, |
and
B=∑′m,n∈Z(4(4m12+n)2(n2+4mn+16m23)3−1(n2+4mn+16m23)2)=∑′m,n∈Z(4(n+2m)2((n+2m)2+4m23)3−1((n+2m)2+4m23)2)=∑′l,m∈Z(33⋅4l2(3l2+4m2)3−32(3l2+4m2)2)(l=n+2m)=∑′l,m∈Z18(3l2−4m2)(3l2+4m2)3+∑′l,m∈Z32(3l2+4m2)2=BM+BD. |
From the computation in the last section, we know that
∑′l,m∈Z(4m2−3l2)(3l2+4m2)3=∑∑′l,m∈Zm even(m2−3l2)(3l2+m2)3=∑′(0,0)(m2−3l2)(m2+3l2)3+∑(1,0)(m2−3l2)(m2+3l2)3=2∑′l,m∈Z4(m2−3l2)43⋅2(m2+3l2)3+2∑(1,0)(m2−3l2)2(m2+3l2)3=18L(f,3)+2⋅12(L(f,3)−L(f⊗χ−4,3))=98L(f,3)−L(f⊗χ−4,3)=98π36√3L′(f,0)−π348√3L′(f⊗χ−4,0). |
Thus,
2Im(τ)π3(−AM+16BM)=16√33π3∑′l,m∈Z18(3l2−4m2)(3l2+4m2)3=−96√3π3(98π36√3L′(f,0)−π348√3L′(f⊗χ−4,0))=−18L′(f,0)+2L′(f⊗χ−4,0). |
We now treat the part involving the Dirichlet
D=∑′l,m∈Z1(l2+12m2)2=(1+2−4+2−6)L1(2)L−3(2)+L−4(2)L12(2) |
=6964⋅π26L−3(2)+√318π2L−4(2), | (3.5) |
where we used Remark 2.4 that
2Im(τ)π3(−AD+16BD)=122√33π3(−∑′m≡l(2)1(m2+3l2)2+∑′l,m∈Z1(4m2+3l2)2)=122√33π3(−∑′(1,1)1(m2+3l2)2+∑(1,0)1(m2+3l2)2)=122√33π3(−X+Y)=122√33π3(C−2X−D)=122√33π3(4564π26L−3(2)−√318π2L−4(2))=122√33π3(4564π264π3√3d3−√318π2π2d4)=152d3−4d4. |
Thus
s2(q(τ))=2Im(τ)π3(−A+16B)=2Im(τ)π3(−AM+16BM−AD+16BD)=−18L′(f,0)+2L′(f⊗χ−4,0)+152d3−4d4=12(4L′(f⊗χ−4,0)−36L′(f,0)+15d3−8d4). |
In this section, let
w=1+√−72 |
and
℘=(w). |
Hence,
2OK=℘ˉ℘. |
On the other hand, let us do the following settings
C=∑∑′I⊂OK1N(I)2=ζK(2),F=∑∑′l,m∈Z1(l2+7m2)2, |
where
⋆=(∑′l,m∈Z+2∑′(0,0)−∑′m≡l(2))1(l2+7m2)2. |
By Lemma 2.1, we know that
s2(q(√−72))=f(√−7)24=4096. |
So in this case,
τ=√−72,Im(τ)=√72,Re(τ)=0. |
To ease the notation, we set
AM=∑∑′l,m∈Zl even32(l2−7m2)(l2+7m2)3,BM=∑∑′m,n∈Z2(n2−28m2)(n2+28m2)3,AD=∑∑′l,m∈Zl even16(l2+7m2)2,BD=∑∑′m,n∈Z1(n2+28m2)2, |
We have
A=∑′m,n∈Z(256n2(7m2+4n2)3−16(7m2+4n2)2)=∑∑′l,m∈Zl even32(l2−7m2)(l2+7m2)3+∑∑′l,m∈Zl even16(l2+7m2)2=AM+AD, |
and
B=∑′m,n∈Z(4n2(28m2+n2)3−1(28m2+n2)2)=∑′m,n∈Z2(n2−28m2)(n2+28m2)3+∑′m,n∈Z1(n2+28m2)2=BM+BD. |
Let
Theorem 4.1. Let
g=∑x−y≡1(2)(x2−7y22)qx2+7y2. |
Then,
g⊗χ−4=g7⊗χ−4 |
Proof. Let
In fact, if
N(α)=N(x+y1+√−72)=(x+y2+√−72y)(x+y2−√−72y)=(x+y2)2−−74y2=(x+y2)2+74y2=x2+xy+2y2≡x2+xy(Λ′). |
Hence,
(x,y)≡(1,0)(mod2). |
Thus if
g(τ)=∑aϕ(a)qN(a)=∑n(∑aN(a)=nϕ(a)qn) |
is a newform in
As
N(α)=N(x+y′(1+√−7))(y′=y/2)=N(x+y′+y′√−7)=N(x″+y″√−7)(x″=x+y′,y″=y′). |
Here,
Note that
g(τ)=12∑(α,Λ′)=1(ϕ(α)+ϕ(β))qN(α)=12⋅12∑x−y≡1(2)(x2+y2(−7)+2xy√−7+x2+y2(−7)−2xy√−7)qx2+7y2=∑x−y≡1(2)(x2−7y22)qx2+7y2. |
So one can deduce that
g7=q−3q2+5q4−7q7−3q8+9q9−6q11+21q14−11q16−27q18+18q22+18q23+25q25−35q28−54q29+45q32+45q36−38q37+58q43−30q44−54q46+49q49+O(q50), |
g=q−7q7+9q9−6q11+18q23+25q25−54q29−38q37+58q43+49q49+O(q50), |
and
g⊗χ−4=g7⊗χ−4=q+7q7+9q9+6q11−18q23+25q25−54q29−38q37−58q43+49q49+O(q50). |
Since
−AM+16BM=−∑∑′l,m∈Zl even32(l2−7m2)(l2+7m2)3+∑∑′l,m∈Zm even32(l2−7m2)(l2+7m2)3=32(−∑′(0,0)−∑(0,1)+∑′(0,0)+∑(1,0))=32(∑(1,0)−∑(0,1))=64L(g7⊗χ−4,3), |
one can get
2Im(√−7/2)π3(−AM+16BM)=√7π3(−AM+16BM)=√7π364L(g7⊗χ−4,3)=√7π3⋅64⋅π3112√7L′(g7⊗χ−4,0)=47L′(g7⊗χ−4,0). |
Here we applied the functional equation (1) to
Now let us deal with the Dirichlet
∑∑′l,m∈Zm even1(l2+7m2)2−∑∑′l,m∈Zl even1(l2+7m2)2. |
Firstly, by
∑′m≡l(2)=∑′m,l∈Z−∑∑′l,m∈Zm even−∑∑′l,m∈Zl even+2∑′(0,0), |
we obtain
⋆=∑∑′l,m∈Zm even+∑∑′l,m∈Zl even. |
Thus,
∑∑′l,m∈Zm even1(l2+7m2)2−∑∑′l,m∈Zl even1(l2+7m2)2=2∑∑′l,m∈Zm even1(l2+7m2)2−⋆. |
By Lemma 2.3,
∑∑′l,m∈Zm even1(l2+7m2)2=∑′x,y∈Z1(x2+28y2)2=4164L1(2)L−7(2)+L−4(2)L28(2). |
On the other hand, we have
⋆=∑′l,m∈Z+2∑′(0,0)−∑′(0,0)−∑′(1,1)=∑′l,m∈Z+∑′(0,0)−∑′(1,1). |
In addition, one can easily check that
{I⊂OK}={αOK|α=x+y√−72,x≡1(mod2)y≡1(mod2)}⊔{αOK|α=x+y√−7,x∈Zy∈Z} |
which implies
16∑(1,1)1(l2+7m2)2=2ζK(2)−F. |
By Lemma 2.3,
⋆=4132ζK(2)=4132L1(2)L−7(2), |
Therefore,
16(∑∑′l,m∈Zm even1(l2+7m2)2−∑∑′l,m∈Zl even1(l2+7m2)2)=16(2∑∑′l,m∈Zm even−⋆)=32(4164L1(2)L−7(2)+L−4(2)L28(2))−16⋅4132L1(2)L−7(2)=32L−4(2)L28(2). |
Since
L−4(2)=π2L′−4(−1)=π2d4. |
Hence,
2Im(τ)π3(−AD+16BD)=√7π332L−4(2)L28(2)=√7π3⋅32⋅π2⋅d4⋅2π27√7=327d4. |
Finally, we obtain
2Im(τ)π3(−A+16B)=2Im(τ)π3(−AM−AD+16BM+16BD)=47(L′(g7⊗χ−4,0)+8d4), |
as desired.
To ease the notation, in this subsection we set
AM=∑∑′l,m∈Zl even32(l2−7m2)(l2+7m2)3,BM=∑∑′m,n∈Z2(n2−28m2)(n2+28m2)3,AD=∑∑′l,m∈Zl even16(l2+7m2)2,BD=∑∑′m,n∈Z1(n2+28m2)2. |
Following Samart's method, we will calculate
A=∑′m,n∈Z(64(2n+m)2((2n+m)2+7m2)3−16((2n+m)2+7m2)2)=∑′m≡l(2)(64l2(l2+7m2)3−16(l2+7m2)2)(Letl=2n+m)=∑′m≡l(2)32(l2−7m2)(l2+7m2)3+∑′m≡l(2)16(l2+7m2)2=AD+AM,andB=∑′m,n∈Z(4(n+2m)2((n+2m)2+28m2)3−1((n+2m)2+28m2)2)=∑′l,m∈Z(4l2(l2+28m2)3−1(l2+28m2)2)(Letl=n+2m)=∑′l,m∈Z2(l2−28m2)(l2+28m2)3+∑′l,m∈Z1(l2+28m2)2=BM+BD. |
To prove this identity, we need to find another expression for
Theorem 4.2. We have
g7=∑x≡y(2)(x2−7y28)qx2+7y24∈S3(Γ0(7),χ−7). |
Proof. Take modulus
G7(τ)=∑aϕ(a)qN(a)=∑n(∑aN(a)=nϕ(a)qn) |
is a newform in
Rewrite
Note that
G7(τ)=12∑I=(α)(ϕ(α)+ϕ(β))qN(α)=12⋅12∑x≡y(2)((x+y√−72)2+(x−y√−72)2)qx2+7y24=12⋅12∑x≡y(2)(x2+y2(−7)+2xy√−74+x2+y2(−7)−2xy√−74)qx2+7y24=∑x≡y(2)(x2−7y28)qx2+7y24. |
Finally one can show that
Theorem 4.3. With the notation above, the following identity holds:
3L(g7,3)=−2∑′(1,1)(l2−7m2)(l2+7m2)3+∑′(1,0)(l2−7m2)(l2+7m2)3+∑′(0,1)(l2−7m2)(l2+7m2)3. |
Proof. Firstly, by the fact that,
∑(0,0)=∑4|l,2||m+∑2||l,4|m+∑2||l,2||m+∑4|l,4|m, |
we have
L(g7,3)=8(∑(1,1)l2−7m2(l2+7m2)3+∑(0,0)l2−7m2(l2+7m2)3)=8(∑(1,1)l2−7m2(l2+7m2)3+(124+128+⋯)(∑(1,1)+∑(1,0)+∑(0,1)))=12815∑(1,1)+815∑(1,0)+815∑(0,1). | (4.1) |
Secondly, we have
{I⊆idealOK}=S1⊔S2⊔S3⊔S4, |
where
S1={(α)|α∈OK,((2),(α))=1},S2={(α)|α∈OK,℘∣(α),ˉ℘∤(α)},S3={(α)|α∈OK,ˉ℘∣(α),℘∤(α)},S4={(α)|α∈OK,2|(α)}. |
And it is clear that:
S2={(α)|α∈OK,α=wjβ,j≥1,(β)∈S1},S3={(α)|α∈OK,α=ˉwjβ,j≥1,(β)∈S1},S4=S4,1⊔S4,2⊔S4,3. |
where
S4,1={(α)|α∈OK,α=2jβ,j≥1,(β)∈S1},S4,2={(α)|α∈OK,α=2jwkβ,where j,k≥1,(β)∈S1},S4,3={(α)|α∈OK,α=2jˉwkβ,where j,k≥1,(β)∈S1}. |
Write
g7=∑I=(α)α2qN(α), |
i.e.,
g7=∑I=(α)I∈S1α2qN(α)+∑I=(α)I∈S2α2qN(α)+∑I=(α)I∈S3α2qN(α)+∑I=(α)I∈S4α2qN(α). |
We can find that
∑I=(α)I∈S1α2qN(α)=g,∑I=(α)I∈S2α2qN(α)=∑I=(α)α∈S1∞∑j=1(wjα)2qN(wjα)=∞∑j=1w2j∑I=(α)α∈S1α2q2jN(α) |
=∞∑j=1w2jg(2jτ),∑I=(α)I∈S3α2qN(α)=∑I=(α)α∈S1∞∑j=1(ˉwjα)2qN(ˉwjα)=∞∑j=1ˉw2j∑I=(α)α∈S1α2q2jN(α)=∞∑j=1ˉw2jg(2jτ). |
In addition,
∑I=(α)I∈S4α2qN(α)=∑I=(α)I∈S4,1α2qN(α)+∑I=(α)I∈S4,2α2qN(α)+∑I=(α)I∈S4,3α2qN(α), |
where
∑I=(α)I∈S4,1α2qN(α)=∑I=(α)α∈S1∞∑j=1(2jα)2qN(2jα)=∞∑j=122j∑I=(α)α∈S1α2q22jN(α)=∞∑j=122jg(22jτ),∑I=(α)I∈S4,2α2qN(α)=∑I=(α)α∈S1∞∑k=1∞∑j=1(2kwjα)2qN(2kwjα)=∞∑k=122k∞∑j=1w2j∑I=(α)α∈S1α2q22k2jN(α),∑I=(α)I∈S4,3α2qN(α)=∑I=(α)α∈S1∞∑k=1∞∑j=1(2kˉwjα)2qN(2kˉwjα)=∞∑k=122k∞∑j=1ˉw2j∑I=(α)α∈S1α2q22k2jN(α). |
Let
g7=g(τ)+h(τ)+∞∑j=122jg(22jτ)+∞∑k=122kh(22kτ). |
Note that
L(h,3)=∞∑j=1(w2j+ˉw2j)23jL(g,3). |
Therefore,
L(g7,3)=L(g,3)(1+∞∑j=1w2j+ˉw2j23j)(1+124+128+⋯)=1615L(g,3)(1+∞∑j=1((w28)j+(ˉw28)j))=1615L(g,3)(1+w2/81−w2/8+ˉw2/81−ˉw2/8)=1623L(g,3)=823(∑(1,0)+∑(0,1)). |
Combining the relation (6), we have
∑(1,1)=−146(∑(1,0)+∑(0,1)). |
Thus
−23∑(1,1)+13(∑(1,0)+∑(0,1))=823(∑(1,0)+∑(1,1))=L(g7,3), |
as desired.
By functional equations, one can show that
L′(g7,0)=7√74π3L(g7,3), |
L′(g7⊗χ−4,0)=112√7π3L(g7⊗χ−4,3). |
In addition
114(4M7⊗(−4)+384M7)=414⋅112√7π3L(g7⊗χ−4,3)+38414⋅7√74π3L(g7,3)=√7π3(32L(g7⊗χ−4,3)+48L(g7,3))=16√7π3(2L(g7⊗χ−4,3)+3L(g7,3)). | (4.2) |
On the other hand,
√7π3(−AM+16BM)=16√7π3(−∑′m≡l(2)2(l2−7m2)(l2+7m2)3+∑∑′l,m∈Zm even2(l2−7m2)(l2+7m2)3)=32√7π3(−∑′m≡l(2)+∑∑′l,m∈Zm even)=32√7π3(−∑′(1,1)+∑′(1,0))=32√7π3(−∑′(1,1)+12∑′(1,0)+12∑′(0,1)+12(∑′(1,0)−∑′(0,1)))=32√7π3(−∑′(1,1)+12∑′(1,0)+12∑′(0,1)+L(g⊗χ−4,3)). | (4.3) |
Comparing (7) and (8) and by Theorem 4.2, 4.3, we are done.
−AD+16BD=−∑(0,0)′16(l2+7m2)2−∑(1,1)′16(l2+7m2)2+∑l,m∈Zm even16(l2+7m2)2 =16(−∑(0,0)′1(l2+7m2)2−∑(1,1)′1(l2+7m2)2+∑l,m∈Zm even1(l2+7m2)2). |
From last subsection, one can get
−AD+16BD=16(−564C−364C+4164C+L−4(2)L28(2))=334C+L−4(2)L28(2)=334L1(2)L−7(2)+16L−4(2)L28(2)=1114L′(χ−7,−1)+167L′(χ−4,−1)=1114d7+167d4, |
as desired. Here we used the following facts:
L1(2)=π26;L28(2)=2π27√7;(Remark 2.4)L−4(2)=π2d4;L−7(2)=4π7√7d7.(by functional equation) |
To ease the notation, we set:
AM=∑′m≡l(2)72⋅25⋅(7l2−m2)(7l2+m2)3,BM=∑′m,n∈Z2⋅72(7l2−4m2)(7l2+4m2)3,AD=∑′m≡l(2)72⋅16(7l2+m2)2,BD=∑′m,n∈Z72(7l2+4m2)2. |
in this subsection.
Following Samart's method, we will calculate
A=∑′m,n∈Z(64(2n+m)2((2n+m)2+m27)3−16((2n+m)2+m27)2)=∑′m≡l(2)(64l2(l2+m27)3−16(l2+m27)2)(Letl=2n+m)=∑′m≡l(2)(72⋅25⋅(7l2−m2)(7l2+m2)3+72⋅25⋅(7l2+m2)(7l2+m2)3−72⋅16(7l2+m2)2)=∑′m≡l(2)72⋅25⋅(7l2−m2)(7l2+m2)3+∑′m≡l(2)72⋅16(7l2+m2)2=AM+AD, |
and
B=∑′m,n∈Z(73⋅4(n+2m)2(7(n+2m)2+4m2)3−72(7(n+2m)2+4m2)2)=∑′m,n∈Z(73⋅4l2(7l2+4m2)3−72(7l2+4m2)2)(Letl=n+2m,)=∑′m,n∈Z(2⋅72(7l2−4m2)(7l2+4m2)3+2⋅72(7l2+4m2)(7l2+4m2)3−72(7l2+4m2)2)=∑′m,n∈Z2⋅72(7l2−4m2)(7l2+4m2)3+∑′m,n∈Z72(7l2+4m2)2=BM+BD. |
By functional equations, we have
L′(g7,0)=7√74π3L(g7,3), |
L′(g7⊗χ−4,0)=112√7π3L(g7⊗χ−4,3). |
And,
12(4M7⊗(−4)−384M7)=42⋅112√7π3L(g7⊗χ−4,3)−3842⋅7√74π3L(g7,3)=√7π3(224L(g7⊗χ−4,3)−336L(g7,3))=112√7π3(2L(g7⊗χ−4,3)−3L(g7,3)). | (4.4) |
On the other hand,
√77π3(−AM+16BM)=224√7π3(∑′m≡l(2)(l2−7m2)(l2+7m2)3−∑∑′l,m∈Zl even(l2−7m2)(l2+7m2)3)=224√7π3(∑′(1,1)−∑′(0,1))=224√7π3(∑′(1,1)−12∑′(1,0)−12∑′(0,1)+12(∑′(1,0)−∑′(0,1)))=224√7π3(∑′(1,1)−12∑′(1,0)−12∑′(0,1)+L(g⊗χ−4,3)). | (4.5) |
By Theorem 4.2 and Theorem 4.3, comparing (9) and (10), we are done.
−AD+16BD=−∑(0,0)′72⋅16(l2+7m2)2−∑(1,1)′72⋅16(l2+7m2)2+∑l,m∈Zl even72⋅16(l2+7m2)2 =72⋅16(−∑(0,0)′1(l2+7m2)2−∑(1,1)′1(l2+7m2)2+∑l,m∈Zl even1(l2+7m2)2). |
From previous computation, we have
∑∑′l,m∈Zl even1(l2+7m2)2=−∑∑′l,m∈Zm even1(l2+7m2)2+⋆. |
Hence,
−AD+16BD=72⋅16(−564C−364C−4164C−L−4(2)L28(2)+4132C)=72(334L1(2)L−7(2)−16L−4(2)L28(2))=72(1114L′(χ−7,−1)−167L′(χ−4,−1))=72(1114d7−167d4), |
as desired. Here we used the following facts:
L1(2)=π26;L28(2)=2π27√7;(Remark 2.4.)L−4(2)=π2d4;L−7(2)=4π7√7d7(by functional equation) |
The first author would like to thank Dr.Wei Lu for deducing the very useful form of
[1] | M. J. Bertin, Mahler's measure and L-series of K3 hypersurfaces, Mirror Symmetry, AMS/IP Stud. Adv. Math., Amer. Math. Soc. Providence, RI, 38 (2006), 3–18. |
[2] |
Bertin M. J. (2008) Mesure de Mahler d'hypersurfaces K3. J. Number Theory 128: 2890-2913. ![]() |
[3] |
Birch B. J. (1969) Weber's class invariants. Mathematika 16: 283-294. ![]() |
[4] |
Boyd D. W. (1998) Mahler's measure and special values of L-functions. Experimental Math. 7: 37-82. ![]() |
[5] |
Deninger C. (1997) Deligne periods of mixed motives, K-theory and the entropy of certain Zn-actions. J. Amer. Math. Soc. 10: 259-281. ![]() |
[6] | Glasser M. L., Zucker I. J. (1980) Lattice sums. New York: Theoretical Chemistry - Advances and Perspectives V , Academic Press. |
[7] | X. Guo, Y. Peng and H. Qin, Three-variable Mahler measures and special values of L-functions of modular forms, Ramanujan J.. |
[8] |
Lalin M. N., Rogers M. D. (2007) Functional equations for Mahler measures of genus-one curves. Algebraic Number Theory 1: 87-117. ![]() |
[9] |
K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and Q-series, , Amer.Math. Soc., Providence, RI, 2004.
MR2020489 |
[10] |
Rogers M. (2009) New 5F4 hypergeometric transformations, three-variable Mahler measures, and formulas for 1/π. Ramanujan J. 18: 327-340. ![]() |
[11] |
M. Rogers and W. Zudilin, From L-series of elliptic curves to Mahler measures, Compositio Math., 148 (2012), 385–414. (MR 2904192)
10.1112/S0010437X11007342 |
[12] |
Rogers M., Zudilin W. (2014) On the Mahler measure of 1+X+1/X+Y+1/Y. Intern. Math. Res. Not. 2014: 2305-2326. ![]() |
[13] | The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.6), 2019, http://www.sagemath.org. |
[14] | F. Rodriguez-Villegas, Modular Mahler Measures I, Topics in number theory (University Park, PA, 1997), 1748, Math. Appl., 467, Kluwer Acad. Publ., Dordrecht, 1999. |
[15] |
Samart D. (2013) Three-variable Mahler measures and special values of modular and Dirichlet L-series. Ramanujan J. 32: 245-268. ![]() |
[16] |
Samart D. (2015) Mahler measures as linear combinations of L-values of multiple modular forms. Canad. J. Math. 67: 424-449. ![]() |
[17] |
Smyth C. J. (1981) On measures of polynomials in several variables. Bull. Austral. Math. Soc. 23: 49-63. ![]() |
[18] | H. Weber, Lehrbuch der Algebra, Bd. III, F. Vieweg & Sohn, Braunschweig, 1908. |
[19] |
Yui N., Zagier D. (1997) On the singular values of Weber modular functions. Math. Comp. 66: 1645-1662. ![]() |
1. | Qiao He, Dongxi Ye, On conjectures of Samart, 2022, 167, 0025-2611, 545, 10.1007/s00229-021-01279-6 |