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Abstract: In the paper, the authors simply review recent results of inequalities, monotonicity, signs of
determinants, determinantal formulas, closed-form expressions, and identities of the Bernoulli num-
bers and polynomials, establish an identity involving the differences between the Bernoulli polyno-
mials and the Bernoulli numbers, present two identities among the differences between the Bernoulli
polynomials and the Bernoulli numbers in terms of a determinant and a partial Bell polynomial, and
derive a determinantal formula of the differences between the Bernoulli polynomials and the Bernoulli
numbers.
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1. A simple review of recent developments

Recall from [1, p. 804, Entry 23.1.1] that the Bernoulli numbers B, can be generated by

Z o 7 I - 2"
= B,—=1—-=-+ By, ——, < 2. 1.1
e —1 Z; ! 2 Z‘ womp W27 (1.D

Since the function = — 1 + 5 is even in x € R, all the Bernoulli numbers B, for n > 1 are equal to

0. The first six non-zero Bernoulli numbers B,, are

1 1 1 1 1
By=1, Bi=-, By= = - BG:E, Bsz_%.
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Recall from [2, Chapter 1] that the Bernoulli polynomials B,(x) can be generated by

ZexZ
er—1

=> B, (0=, |z <2x. (1.2)
oy n!

It is clear that B,(0) = B,. The first four Bernoulli polynomials B,(x) are

1 1 3 1
By(x) =1, Bi(x) =x- 5 By(x) = x> — x + & Bs3(x) = x* — Exz + 5%

The Bernoulli numbers B, and the Bernoulli polynomials B,(x) are classical and fundamental no-
tions in both mathematical sciences and engineering sciences.

We now give a simple review of recent developments of the Bernoulli numbers B, and the Bernoulli
polynomials B,(x), including inequalities, monotonicity, determinantal expressions, signs of determi-
nants, and identities related to the Bernoulli numbers B, and the Bernoulli polynomials B, (x).

In [3], Alzer bounded the Bernoulli numbers B, by the double inequality

22n)! 1 22n)! 1
<|B al <
(27-[)211 1 - 2(1—211 - l 2 | (27-[)2n 1 - 2ﬁ—2n

(1.3)

forn > 1, wherea =0and 8 =2 + % = 0.6491 ... are the best possible in the sense that they
can not be replaced by any bigger and smaller constants respectively in the double inequality (1.3).

In [4,5], Qi bounded the ratio Bg—';*f by

21— 1@2n+1D@n+2) |Bun| 2"-1 @2n+1H@2n+2)
22n+1 _ 1 7-[-2 an 22n+2 _ 1 71'2 .

The double inequality (1.4) was generalized and refined in [6,7]. This double inequality has had a
number of non-self citations in over forty-eight articles or preprints published by other mathematicians.

In [8], Y. Shuang et al. proved that the sequence |B,%2*2 for n > 0 and the sequences

(1.4)

M5, [2(n + 1) + k]
[15.,@2n + k)

Brnio

> 1 1.
B | n> (L.5)

for fixed ¢ > 1 are increasing in n.

In the papers [9,10], many determinantal expressions of the Bernoulli numbers B, and the Bernoulli
polynomials B,(x) are reviewed and discovered. For example, the Bernoulli polynomials B,(x) for
n > 0 can be expressed in terms of the determinant of a Hessenberg matrix as

1 1 0 o 0 0
x 1) 1 0 0 0
e i %fg o 0 o
I I o 0 o
B,(x) = (=D)"| : : : P S : (1.6)
o L) L) e 0 0
MR TV S B B
S T I =
<o) a0 ) ) sl
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and, consequently, the Bernoulli numbers B, for n > 0 can be expressed as

1 1 0 0 0 0
0 %(é) 12 0 0 0
0 g(g) %(é) 0 0 0
0 i) () o 0 0
B, =(-D"|: : : : : S (1.7)
0 —E; m() e 10
Ln—Z Ln—Z ln—2
o by ) -
0 Z(o) ﬁ(l) §(n—3) E(n—z) 1
0 50 i) 10) 300m) 300

In [11], basing on the increasing property of the sequences in (1.5), among other things, Qi deter-
mined signs of certain Toeplitz—Hessenberg determinants whose elements involve the Bernoulli num-

bers B,,. For example, forn > 1 and @ > 2,

B, - o -~ 0 0 O
B4 Bz —a ce 0 0 0
Bs B, B - 0 0 O
D" : oo b s <0 (1.8)
By-4 By Bu-s -+ By —a 0
By2 Ba-s B -+ By By —a
By, B2 Baus -+ Bs By B
and
B, -By 0 0 0 0
By B, -B 0O O 0
Bs B, B, --- 0 0 0
GV : T © | <0. (1.9)
Byy By Byg -+ By —By O
By-2 By-a B -+ Bs By —By
By, By Baus -+ Bs By B

The rising factorial (@) is defined [12] by

(a/)k—l_[(a+€)—{a(a+l) (ark=D, ]]:(1)

b

The central factorial numbers of the second kind T'(n, k) for n > k > 0 can be generated [13, 14] by

k'(Zsmh ) ZT(n k)—
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n [15], considering the power series expansion

() = S [S G So T

m=1

for @ < 0, which was established in [16, Theorem 4.1], X.-Y. Chen et al. derived the closed-form

expression
22n-1 2n KT 2n + j, j)
2 = 5o IZZ( 1y ( ) i =l (1.10)
ot ()
and two identities
4n+2
Z( 1)( n )(221 Lo 1)@ —1)ByBuyrjer =0, n> 1 (1.11)
j=1
and
n—1 Mm ' .
> ( 2j)(l — 2% 2B B, = (2% = 1)By,, n 2. (1.12)
j=1

There have been a simple review about closed-form formulas for the Bernoulli numbers and
polynomials at the web sites https://math.stackexchange.com/a/4256911 (accessed on 5
February 2023), https://math.stackexchange.com/a/4256914 (accessed on 5 February 2023),
and https://math.stackexchange.com/a/4656534 (accessed on 11 March 2023). For more re-
cent developments of the Bernoulli numbers B, and the Bernoulli polynomials B,(x), please refer to
the monograph [17], to the papers [18-24], and to the articles [25-33].

2. A motivation of this paper
Let

Qn(x) =B,(x)-B,, n>0

denote the differences between the Bernoulli polynomials B,(x) and the Bernoulli numbers B,. Sub-
tracting (1.1) from (1.2) on both sides yields

z(e* —1) = 7" - "
= ;[Bn(x) -~ B = ZO 0.0, Kl <2m. 2.1)

(7

It is easy to see that
Qo(x) = Bo(x) — By = (2.2)
and Q,(0) = 0 for n > 0. Accordingly, Eq (2.1) can be reformulated as

el 0 O,
ei—1  Li(n+1)

lz| < 2. (2.3)

The values of Q,(x) for 1 <n <4 are

01(x) = x, Qo(x) = ¥ - x, Q3(x) = x° - %xz + %X, Q4(x) = x* = 2x° + x%.
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For a, € R such that a # 3, (o, 8) # (0, 1), and (@, 8) # (1,0), let

e~ _ e—,Bt 0

——— t#0;
Q={1-e "7

B—a, t=0.

In the papers [34-36], the monotonicity and logarithmic convexity of Q,z(#) were discussed and the
following conclusions were acquired:

1. the function @, 4(?) is increasing on (0, c0) if and only if (8 — a)(1 — @ — ) > 0 and (B8 — a)(la —
Bl—a-pB)=0,

2. the function Q, 4(¢) is decreasing on (0, co) if and only if (8 — a)(1 —a — ) < 0 and (8 — @)(la -
Bl—a-p) <0,

3. the function Q, 4(¢) is increasing on (—co, 0) if and only if (8 —a)(1 —a — ) > 0 and (8 — @)(2 -
lo —pl—a—-p) =0,

4. the function Q, 4(#) is decreasing on (—oo, 0) if and only if (B - a)(1 —a - ) <0and (B - @)(2 -
loe =Bl —a—-p) <0,

5. the function Q,4() is increasing on (—oo, c0) if and only if (8 — @)(la = 8| — @ — ) > 0 and
B-)2-la-pl-a-p) =0,

6. the function Q, 4(t) is decreasing on (—oo, c0) if and only if (8 — a)(la — 8| — @ — B) < 0 and
B-)2-le-pl-a-p) <0,

7. the function @, 4(t) on (—o0, 00) is logarithmically convex if 8—a > 1 and logarithmically concave
ifO0<f-a<l,

8. if 1 > B —a > 0, then Q, 4(¢) is 3-log-convex on (0, o) and 3-log-concave on (—oo, 0),

9. if B — a > 1, then Q, 4(t) is 3-log-concave on (0, o) and 3-log-convex on (—co, 0).

The monotonicity of @, z(¢) on (0, c0) was used in [34,37,38] to present necessary and sufficient con-
ditions for some functions involving ratios of the gamma and g-gamma functions to be logarithmically
completely monotonic. The logarithmic convexity of @,4(f) on (0, ) was employed in [36, 39] to
provide alternative proofs for Elezovi¢-Giordano-Pecari¢’s theorem. For more detailed information,
please refer to [40,41] and related references therein. The above texts are extracted and modified
from [42, pp. 486—487].

The generating function &= in (2.3) can be reformulated as
e¥—1 e Ui_g=

= = Ql—x,l(z)-

et —1 1—-e=

Consequently, we deduce properties of the generating function Q,_, ;(¢) = eex,t_‘ll in (2.3) as follows:

the function Q;_,(?) is increasing on (0, o) if and only if x(x — 1) > 0 and x(|x| + x — 2) > 0,
the function Q,_, ;(¢) is decreasing on (0, co) if and only if x(x — 1) < 0 and x(Jx| + x — 2) <0,
the function Q,_, ;(¢) is increasing on (—oo, 0) if and only if x(x — 1) > 0 and x(x — |x]) > 0,

the function Q;_, () is decreasing on (—oo, 0) if and only if x(x — 1) < 0 and x(x — |x]) < 0,

the function Q;_,(?) is increasing on (—oo, o) if and only if x(|x] + x — 2) > 0 and x(x — |x]) > 0,
the function Q,_,;(¢) is decreasing on (—co, o) if and only if x(|x| + x —2) < 0 and x(x — |x]) < 0,
the function Q;_, 1(f) on (—o0, o) is logarithmically convex if x > 1 and logarithmically concave
fOo<x<l,

Nk W=
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8. if 0 < x < 1, then the function Q,_, ;(?) is 3-log-convex on (0, c0) and 3-log-concave on (—c0, 0),
9. if x > 1, then Q,_,1(¢) is 3-log-concave on (0, o) and 3-log-convex on (—oo, 0).

What properties do the polynomials Q,(x) = B,(x) — B, for n > 0, the differences between the
Bernoulli polynomials B, (x) and the Bernoulli numbers B,, possess?
3. An identity involving differences between the Bernoulli polynomials and numbers

In this section, we establish an identity involving the polynomials Q,(x) = B,(x) — B, for n > 0, the
differences between the Bernoulli polynomials B, (x) and the Bernoulli numbers B,.
Theorem 3.1. Forn > 1, we have
z (n +2

1
I+ 1)Qk+l(;)Qn—k+l(x)xk =0. (3.1

k=0
Proof. The identity (3.1) can be reformulated as
"\ (n+2 1 Em+2) (1
Z ( )Qk+1(—)Qn+2—(k+1)(x)xk+1 =0, Z ( )Qk(—)Qn+2—k(X)xk =0,
X X

\k+1 ~i\ k

and

5 (n . Z)Qk(i)sz-k(x)xk = 00(+ )01 + Qoo JOut0v =0,
k=0

where we used the identity (2.2). The last equation means that the identity (3.1) is equivalent to
A (x)=0, n2x3, (3.2)

where

S 20 0
A= )

k=1
On both sides of the identity

B,(x+h) = Z (Z)Bk(X)h”"‘, n=>0,

k=0
which is listed in [1, p. 804, Entry 23.1.7], taking x = 0 yields

n

By =" (Z)Bkh”"‘, n>0.

k=0

This implies that

Electronic Research Archive Volume 32, Issue 1, 224-240.
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Let
_ QG ¢ B Q) A B
P == _Z;ﬂw—p! md'&ﬂﬂ_(n—M!_Z;ﬂM—k—ﬁ!

for 1 <k <n-1andn > 3. Therefore, we obtain

n—1
A0 = D PR, 4(x)
k=1

with A,(0) = 0. This means that A,(x) is a polynomial in x of degree n — 1. Hence, in order to verify
the equality (3.2), it is sufficient to show
AP0)=0, 0<g<n-1, nx3.

It is immediate that

B, ;_
&, <m<n—k
Ry (0) =0, R(0) =4 (n—k=m) (3.3)
0, m>n—k+1,
and 2
- T - T O0<m<k-1,
P(0) = (k—m)! (3.4)
0, m > k.

Differentiating ¢ > 2 times the polynomial A,(x), taking the limit x — 0, and interchanging the order
of repeated sums give

n—

AD(0) =

—
N

‘M

1l
(=)

1
(3)1_)(}) (O)R(q ])(0)

>~

J

():

S
” q-J
n—q=>1
S (k= J)’[n k—(qg—p1V

=
0, n—q<1

=[5 4q S B q—t
.|B; o N (S
Lo (f) JHH Wn—q—f)!]

=0,

—_

n—1

Z P(])(O)R(q J)(O)
=1

_Q

g

~—

1l
(=)

J

=
S
|
AN
A
p—

where we used the derivatives in (3.3) and (3.4) and utilized the identity

n—1

(ﬂm_, n=2.3..... (3.5)

k=0
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which is collected in [43, p. 591, Entry 24.5.3] and [44, p. 206, (15.14)].
Moreover, by the identity (3.5) again, it is easy to see that

AL(0) i 5, ! ni(”_ I)B 0, n>3
= - - = . i =V, n = 2.
" Hjn-1-pt @m-Drg\ j o]

The proof of the identity (3.1) is thus complete. m|

4. Two identities among differences between the Bernoulli polynomials and numbers

In this section, we demonstrate two identities among Q,(x) and Qn(;lc)'

The partial Bell polynomials B, for n > k > 0 are defined in [45, Definition 11.2] and [46, p. 134,
Theorem A] by
n—k+1
Bi(x1, X2, ooy Xy 1) = Z T ( ) .
€;>0 for 1<i<n—k+1, H i=

4 if=n,

T b=k
This kind of polynomials B, are important in analytic combinatorics, analytic number theory, analy-
sis, and other areas in mathematical sciences. In recent years, some novel conclusions and applications
of partial Bell polynomials B, ; have been discovered, carried out, reviewed, and surveyed in the pa-

pers [12,16,47-54], for example.

Theorem 4.1. For n > 1, we have

D) 1)
Qé(!x) Qll(!x) Q(z ) N 0 X 0
X X X
o db o o o o
Tl I
L
Ol = —(— ) syl B : : - : : co “4.1)
X 020 O30 Q™ . ® i 0
én—Z ! én—3 ! (n—4)! 2! 1!
h—1(x) h2(®)  On3® . B ™ Ql(x)
(n—1)! (n-2)! (n-3)! 3! 2!
O™ O 2™ . Q) W Qz(X)
n! (n—1)! (n-2)! 4! 3! 2!

where the determinant of order 0 is regarded as 1 by convention.
Forn > 0, we have

)R Sl (G000 o)y
Proof. The Wronski formula reads that, if ay # 0 and
P(x)=ay+a1x+ x>+ - 4.3)
is a formal series, then the coefficients of the reciprocal series
=by+b1x+byx* + - (4.4)

P(x)
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are given by

a, aop 0 0 0O 0 O

ay aq ao 0 0 0 0

as a a; ag 0O 0 O

1y ay as a a 0O 0 O

b, = g : : : oo b, nz0. 4.5)

O a3 apo Az Gpa - ay 00

ap—2 dp-3 Qp4 dys5 -+ 4p Qo 0

ap-1 Ap2 Aau3 dy4 -+ dy A1 Qo

ap, du1 A4y dy3 -+ d3 dy 4

This can be found in [55, p. 17, Theorem 1.3], [11, Lemma 2.1 and Section 5], and [9, Lemma 2.4]. Itis
easy to see that the equalities (4.3) and (4.4) are equivalent to the identities apby = 1 and };_, axb,—x =
Oforn > 1. See [47,56-58].

Let 8 be a fixed real number and let

n+,B

=

QM()mdm— 0 (4.6)

(+1)vﬁ

for n > 0. It is easy to verify that apby = 1. The identity (3.1) in Theorem 3.1 is equivalent to the
equality >;_,axb,—x = 0 for n > 1. Therefore, the sequences a, and b, defined in (4.6) satisfy the
relation (4.5). Interchanging the roles of a, and b, and simplifying yield (4.1).

On the other hand, if the sequences a, and b, satisfy ay = by = 1 and meet the equalities (4.3)
and (4.4), then

1 n
b, = — Z(—l)kk!Bn (Nay,2lay, . ..,(n—k+ 1)!a,_i41). 4.7
n! & ’
See the papers [47,48,54,59]. When 8 = 1 in (4.6), it follows that ay = by = 1 and };_, axb,— = O for
n > 1. Interchanging the roles of a, and b, in (4.7) and applying the sequences a, and b, in (4.6) result
in (4.2). The proof of Theorem 4.1 is complete. |

5. A determinantal formula of differences between Bernoulli polynomials and numbers

In this section, we derive a determinantal formula of the difference Q,(x) as follows.

Theorem 5.1. For n > 1, the difference Q,(x) can be computed by

1 1 0 0 0
%2 %(é) 112 0 0
Do) e

0,(x) = (~1)""nx| ! 0 %) o0 5.1)
gl ) L
R S KX = (RS
a08) ) 50 02
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Proof. The power series expansion (2.3) implies that

Qn+l(x):1- dn(xZ ) . d"Q 1)

im =lim—————, n>0.
n+1 —0dz"\ ez —1 70 dz"

The generating function Q;_,1(z) can be rewritten as

x(exz_l)/(xz) B fle s lds

Qi1(2) = =X
(e-1)/z fl seld s
with . .
d ¢ ¢ “1 1
lim—f sds = lim sz_llnksds:f n Sds:
z—0 de 1 =0 1 1 S k+1
and ;
d ¢ 1 Xk
lim—kf s ds = ¥ lim | ' Infsds = & f I g X
—>0dz* J, =0 k+1
for k > 0.

Let u(z) and v(z) # 0 be two differentiable functions, let U,,1)x1(z) be an (n + 1) X 1 matrix whose
elements are ;1 (z) = u*V(z) for 1 <k < n+ 1, let Vi,u1)x,(2) be an (n + 1) X n matrix whose elements
are

i—1
(i— J)(Z) i—jZ()
vij(z) = (J - 1)
0, i—j<0

forl <i<n+1land1 < j<n, andlet |W(n+1)x(n+1)(z)| denote the determinant of the (n + 1) X (n + 1)
matrix

Winsxna1)(2) = (U(n+1)x1(Z) V(n+1)><n(Z))~

Then the nth derivative of the ratio ”EZ; can be computed [60, p. 40, Exercise 5] by

el =

W(n+1)x(n+1)(2)|
vn+1 (Z)

See also [61, Lemma 1], [11, Section 2], [9, p. 94, The first proof of Theorem 1.2], and [10, Lemma 1].
Applying the formula (5.2) to the functions

M(Z)Zf s“'ds and v(z):fsz‘lds
1 1

d"Qak) . ([ s ds
hm _— = xl m--—\\——-
7—0 dz” z—0 dZ” f sclds
kel
v(z)

(5.2)

yields

= xlim
=0 dz"
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u(z) v(2) 0 0
u'(2) V(z) v(2) e 0
iy | v (e -0
= m . . . .
20 V1*+1(z) : : : KR :
U™ D(z) vrD(z) (n;l)v(n—n(z) v(2)
UM v(2) ('l’)v("_l)(z) . (nfl)V'(Z)
u(0) v(0) 0 0 0
u'(0) V' (0) v(0) . 0 0
—1yx | WO  v©O (O 0 0
T 0)| : : 3 : :
WD) VPO (O - (0 w0
W) v (PO e ([0 (O
1 1 0 0 0 0
0 40) 1 0 0 0
R 1 1 0o 0
PO ow
Sk O] I
ol A Gl L
K1 1(n- 1 (n- 1 (n- L. 1fn- 1
n n\ 0 n—=1\ 1 n=2\ 2 2\n-2
The determinantal formula (5.1) is thus proved. O

Remark 5.1. The formula (4.5) can also be proved by the formula (5.2). For details, please refer
to [11, Section 5].

Remark 5.2. For n > 1, the determinantal formula (5.1) can be reformulated as

1 1 0 0 0
L) 0
£ 1(2 1(2 0 0
2B TR

Qn(x) — (_1),,_1” 4 4 .0 3 .1 .

X N . N
S Af) &) ¢ 10
o) () e s()
a0 &) e 5G) s)
Since
tim 2200 iy B =B g = nlim B, () = nBy,
-0 X x—0 X x—0 x—0
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taking the limit x — 0 on both sides of the above determinantal formula gives

1 1 0 0 0
0 3(y) 1 0o 0
o i)y 0 o
anl:(—1f4n(? Z@) 5@) ? 0
0 5(70) S0 1 0
0 5(7) () 55;33 |
0 403 () e 402) 6

for n > 1. Consequently, we recover the determinantal formula (1.7).

Remark 5.3. The determinantal formula (5.1) can be rearranged as

X 1 0 0 0

{ %gg) 1 0 0

5ol () 00
QMFGMHn% i@ %) ’ ’ (5.3)

X"— () () 1o

Bl mh

n 7\ 0 -1\ 1 0 3\n-3) 2\n2

Differentiating with respect to x on both sides of (5.3) and making use of the relation B, (x) = nB,_;(x),
we recover the determinantal formula (1.6).

Remark 5.4. In theory, the determinantal formula (5.1) in Theorem 5.1 can be obtained by algebraically
subtracting the determinant (1.7) from the determinant (1.6).

6. Conclusions

In this paper, about the Bernoulli numbers B, and the Bernoulli polynomials B,(x), we simply
reviewed the inequalities (1.3) and (1.4), the increasing property of the sequence in (1.5), the determi-
nantal formulas (1.6) and (1.7), the negativity of two determinants in (1.8) and (1.9), the closed-form
formula (1.10), and the identities (1.11) and (1.12), established the identity (3.1) in Theorem 3.1 in
which the differences Q,(x) between the Bernoulli polynomials B,(x) and the Bernoulli numbers B,
are involved, presented two identities (4.1) and (4.2) among the differences Q,,(x) in terms of a beautiful
Hessenberg determinant and the partial Bell polynomials B, ; in Theorem 4.1, and derived a determi-
nantal formula (5.1) for the difference Q,(x) in Theorem 5.1.

To the best of our authors’ knowledge, the difference Q,(x) has been investigated in this paper for
the first time in the mathematical community.
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