In this paper, a fractional opposite-direction accumulating nonlinear grey Bernoulli Markov model (FOANGBMKM) is established to forecast the annual GDP of Huizhou city from 2017 to 2021. The optimal fractional order number and nonlinear parameters of the model are determined by particle swarm optimization (PSO) algorithm. An experiment is provided to validate the high fitting accuracy of this model, and the effect of prediction is better than that of the other four competitive models such as autoregressive integrated moving average model (ARIMA), grey model (GM (1, 1)), fractional accumulating nonlinear grey Bernoulli model (FANGBM (1, 1)) and fractional opposite-direction accumulating nonlinear grey Bernoulli model (FOANGBM (1, 1)), which proves the robustness of the opposite-direction accumulating nonlinear Bernoulli Markov model. This research will provide a scientific basis and technical references for the economic planning industries.
Citation: Meilan Qiu, Dewang Li, Zhongliang Luo, Xijun Yu. Huizhou GDP forecast based on fractional opposite-direction accumulating nonlinear grey bernoulli markov model[J]. Electronic Research Archive, 2023, 31(2): 947-960. doi: 10.3934/era.2023047
In this paper, a fractional opposite-direction accumulating nonlinear grey Bernoulli Markov model (FOANGBMKM) is established to forecast the annual GDP of Huizhou city from 2017 to 2021. The optimal fractional order number and nonlinear parameters of the model are determined by particle swarm optimization (PSO) algorithm. An experiment is provided to validate the high fitting accuracy of this model, and the effect of prediction is better than that of the other four competitive models such as autoregressive integrated moving average model (ARIMA), grey model (GM (1, 1)), fractional accumulating nonlinear grey Bernoulli model (FANGBM (1, 1)) and fractional opposite-direction accumulating nonlinear grey Bernoulli model (FOANGBM (1, 1)), which proves the robustness of the opposite-direction accumulating nonlinear Bernoulli Markov model. This research will provide a scientific basis and technical references for the economic planning industries.
[1] | Y. C. Yao, Analysis of Economic Factors affecting GDP Growth, Master's Thesis, Harbin Institute of Technology in Harbin, 2014. |
[2] | X. Z. Hao, S. Y. Li, Modeling and forecasting of GDP time series in China, Stat. Decis., 23 (2007), 4–6. |
[3] | T. Liu, W. M. Yang, R. T. Hu, An empirical study on quarterly GDP forecasting of mixed frequency data based on AIC criterion, Stat. Theory Pract., 6 (2021), 26–33. https://doi.org/10.13999/j.cnki.tjllysj.2021.06.006 doi: 10.13999/j.cnki.tjllysj.2021.06.006 |
[4] | W. G. Wang, Y. Yu, Short-term prediction of quaeterly GDP in China based on MIDAS regression model, J. Quant. Technol. Econ., 33 (2016), 108–125. https://doi.org/10.13653/j.cnki.jqte.2016.04.008 doi: 10.13653/j.cnki.jqte.2016.04.008 |
[5] | M. Zhang, Y. G. Dang, The application of combined forecast model base on wavelets on the predict of Nanjing's GDP, Math. Pract. Theory, 48 (2018), 111–118. |
[6] | L. Wu, S. Liu, L. Yao, S. Yan, D. Liu, Grey system model with the fractional order accumulation, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 1775–1785. https://doi.org/10.1016/j.cnsns.2012.11.017 doi: 10.1016/j.cnsns.2012.11.017 |
[7] | X. Ma, M. Xie, W. Wu, B. Zeng, Y. Wang, X. Wu, The novel fractional discrete multivariate grey system model and its applications. Appl. Math. Modell. 70 (2019), 402–424. https://doi.org/10.1016/j.apm.2019.01.039 doi: 10.1016/j.apm.2019.01.039 |
[8] | W. Wu, X. Ma, B. Zeng, Y. Wang, W. Cai, Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model, Renewable Energy, 140 (2019), 70–87. https://doi.org/10.1016/j.renene.2019.03.006 doi: 10.1016/j.renene.2019.03.006 |
[9] | S. Mao, M. Gao, X. Xiao, M. Zhu, A novel fractional grey system model and its application, Appl. Math. Modell., 40 (2016), 5063–5076. https://doi.org/10.1016/j.apm.2015.12.014 doi: 10.1016/j.apm.2015.12.014 |
[10] | S. Mao, Y. Kang, Y. Zhang, X. Xiao, H. Zhu, Fractional grey model based on non-singular exponential kernel and its application in the prediction of electronic waste precious metal content, ISA Trans., 107 (2020), 12–26. https://doi.org/10.1016/j.isatra.2020.07.023 doi: 10.1016/j.isatra.2020.07.023 |
[11] | Y. Kang, S. Mao, Y. Zhang, Variable order fractional grey model and its application, Appl. Math. Model., 97 (2021), 619–635. https://doi.org/10.1016/j.apm.2021.03.059 doi: 10.1016/j.apm.2021.03.059 |
[12] | W. Xie, W. Wu, C. Liu, M. Goh, Generalized fractional grey system models: the memory effects perspective, ISA Trans., 126 (2022), 36–46. https://doi.org/10.1016/j.isatra.2021.07.037 doi: 10.1016/j.isatra.2021.07.037 |
[13] | B. Zeng, S. Liu, A self-adaptive intelligence grey prediction model with the optimal fractional order accumulating operator and its application, Math. Methods Appl. Sci., 40 (2017), 7843–7857. https://doi.org/10.1002/mma.4565 doi: 10.1002/mma.4565 |
[14] | B. Zeng, H. Liu, X. Ma, A novel multi-variable grey forecasting model and its application in forecasting the grain production in China, Comput. & Ind. Eng., 150 (2020), 106915. https://doi.org/10.1016/j.cie.2020.106915 doi: 10.1016/j.cie.2020.106915 |
[15] | X. Ma, X. Mei, W. Wu, X. Wu, B. Zeng, A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China. Energy, 178 (2019), 487–507. https://doi.org/10.1016/j.energy.2019.04.096 doi: 10.1016/j.energy.2019.04.096 |
[16] | X. Ma, W. Wu, B. Zeng, Y. Wang, X. Wu, The conformable fractional grey system model, ISA Trans., 96 (2020), 255–271. https://doi.org/10.1016/j.isatra.2019.07.009 doi: 10.1016/j.isatra.2019.07.009 |
[17] | W. Meng, S. F. Liu, B. Zeng, Z. G. Fang, Mutual Invertibility of Fractional order Grey Accumulating Generation Operator and Reducing Generation Operator, Acta Anal. Funct. Appl., 18 (2016), 274–283. doi: 10.12012/1009-1327(2016)03-0274-10 |
[18] | J. H. Wang, T. Zhu, R. N. Yu, N. Zhang, Fractional inverse accumulation and accumulation operators and reciprocal properties, Math. Pract. Theory, 48 (2018), 262–271. |
[19] | L. F. Wu, B. Fu, GM (1, 1) Model with Fractional Order Opposite-direction Accumulated Generation and its properties, Stat. & Decis. 18 (2017), 33–36. https://doi.org/10.13546/j.cnki.tjyjc.2017.18.007 doi: 10.13546/j.cnki.tjyjc.2017.18.007 |
[20] | Y. Zhang, S. Mao, Y. Kang, A clean energy forecasting model based on artificial intelligence and fractional derivative grey Bernoulli models, Grey Syst.: Theory Appl., 11 (2020). https://doi.org/10.1108/GS-08-2020-0101 doi: 10.1108/GS-08-2020-0101 |
[21] | M. Gao, H. Yang, Q. Xiao, M. Goh, COVID-19 lockdowns and air quality: Evidence from grey spatiotemporal forecasts, Socio-Econ. Plan. Sci., 83 (2022), 101228. https://doi.org/10.1016/j.seps.2022.101228 doi: 10.1016/j.seps.2022.101228 |
[22] | X. L. Bian, Econometric analysis of China's GDP growth and industrial structure. Ecol. Econ., 18 (2022), 34–41. |
[23] | X. B. Tang, B. Liu, J. N. Liu, Variable selection, Factor-MIDAS and GDP nowcasting during recession and recovery period of Covid-19, Stat. Res., 39 (2022), 106–121. https://doi.org/10.19343/j.cnki.11-1302/c.2022.01.008 doi: 10.19343/j.cnki.11-1302/c.2022.01.008 |
[24] | C. Y. Sun, X. Y. Liu, Prediction of per capital GDP in hebei province based on dynamic combination model, J. Appl. Stat. Manage., 41 (2022), 254–263. https://doi.org/10.13860/j.cnki.sltj.20210722-005 doi: 10.13860/j.cnki.sltj.20210722-005 |
[25] | Y. Yu, GDP Economic forecasting model based on improved RBF neural network, Math. Probl. Eng., 2022, 1–11. https://doi.org/10.1155/2022/7630268 doi: 10.1155/2022/7630268 |
[26] | S. Hua, Back-Propagation neural network and ARIMA algorithm for GDP trend analysis, Wirel. Commun. Mob. Comput., 2022, 1–9. https://doi.org/10.1155/2022/1967607 doi: 10.1155/2022/1967607 |
[27] | Z. Jiang, Prediction and industrial structure analysis of local GDP economy based on machine learning, Math. Probl. Eng., 2022, 1–9. https://doi.org/10.1155/2022/7089914 doi: 10.1155/2022/7089914 |
[28] | W. Wu, T. Zhang, C. Zheng, A novel optimized nonlinear grey bernoulli model for forecasting China's GDP, Complexity, 2019, 1–10. https://doi.org/10.1155/2019/1731262 doi: 10.1155/2019/1731262 |
[29] | B. Wang, Prediction algorithm of uncertain fund demand for regional economics using GM model and Few-Shot learning, Comput. Intell. Neurosci., 2022, 1–10. https://doi.org/10.1155/2022/2307149 doi: 10.1155/2022/2307149 |
[30] | J. L. Lu, M. H. Wang, Prediction and analysis of Guangdong's gross domestic product based on grey prediction method, J. Sci. Teach. Coll. Univ., 39 (2019), 10–12. |
[31] | Y. Liu, M. L. Cheng, Extended grey GM (1, 1) models and their application:A case study of Suzhou GDP, J. Suzhou Univ. Sci. Tech. (Nat. Sci. Ed.), 39 (2022), 15–22. |
[32] | M. C. Şahingil, R. Yurttaş, The determination of flare launching programs to use against pulse width modulating guided missile seekers via hidden Markov models, in 2012 20th Signal Processing and Communications Applications Conference (SIU), (2012), 1–4. https://doi.org/10.1109/SIU.2012.6204715 |
[33] | A. Krogh, B. Larsson, G. H. Von, E. L. L. Sonnhammer, Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes, J. Mol. Biol., 305 (2001), 567–580. https://doi.org/10.1006/jmbi.2000.4315 doi: 10.1006/jmbi.2000.4315 |
[34] | M. Thyer, G. Kuczera, Modeling long-term persistence in hydroclimatic time series using a hidden state Markov model, Water Resour. Res., 36 (2000), 3301–3310. https://doi.org/10.1029/2000WR900157 doi: 10.1029/2000WR900157 |
[35] | M. Gao, H. Yang, Q. Xiao, M. Goh, A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: evidence from American industrial sector, Renewable Energy, 181 (2022), 803–819. https://doi.org/10.1016/j.renene.2021.09.072 doi: 10.1016/j.renene.2021.09.072 |
[36] | S. Mirjalili, P. Jangir, S. Saremi, Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems, Appl. Intell., 46 (2017), 79–95. https://doi.org/10.1007/s10489-016-0825-8 doi: 10.1007/s10489-016-0825-8 |
[37] | S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw., 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007 |
[38] | S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw., 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008 |
[39] | D. W. Li, M. L. Qiu, J. M. Jiang, S. P. Yang, The application of an optimized fractional order accumulated grey model with variable parameters in the total energy consumption of Jiangsu province and the consumption level of Chinese residents, Electron. Res. Arch., 30 (2022), 798–812. https://doi.org/10.3934/era.2022042 doi: 10.3934/era.2022042 |
[40] | Y. X. Kang, S. H. Mao, Y. H. Zhang, Fractional time-varying grey traffic flow model based on viscoelastic fluid and its application, Trans. Res. Part B, 157 (2022), 149–174. https://doi.org/10.1016/j.trb.2022.01.007 doi: 10.1016/j.trb.2022.01.007 |