Research article

Refined matrix completion for spectrum estimation of heart rate variability


  • Received: 01 March 2024 Revised: 17 June 2024 Accepted: 28 June 2024 Published: 02 August 2024
  • Heart rate variability (HRV) is an important metric in cardiovascular health monitoring. Spectral analysis of HRV provides essential insights into the functioning of the cardiac autonomic nervous system. However, data artefacts could degrade signal quality, potentially leading to unreliable assessments of cardiac activities. In this study, we introduced a novel approach for estimating uncertainties in HRV spectrum based on matrix completion. The proposed method utilises the low-rank characteristic of HRV spectrum matrix to efficiently estimate data uncertainties. In addition, we developed a refined matrix completion technique to enhance the estimation accuracy and computational cost. Benchmarking on five public datasets, our model shows effectiveness and reliability in estimating uncertainties in HRV spectrum, and has superior performance against five deep learning models. The results underscore the potential of our developed matrix completion-based statistical machine learning model in providing reliable HRV spectrum uncertainty estimation.

    Citation: Lei Lu, Tingting Zhu, Ying Tan, Jiandong Zhou, Jenny Yang, Lei Clifton, Yuan-Ting Zhang, David A. Clifton. Refined matrix completion for spectrum estimation of heart rate variability[J]. Mathematical Biosciences and Engineering, 2024, 21(8): 6758-6782. doi: 10.3934/mbe.2024296

    Related Papers:

  • Heart rate variability (HRV) is an important metric in cardiovascular health monitoring. Spectral analysis of HRV provides essential insights into the functioning of the cardiac autonomic nervous system. However, data artefacts could degrade signal quality, potentially leading to unreliable assessments of cardiac activities. In this study, we introduced a novel approach for estimating uncertainties in HRV spectrum based on matrix completion. The proposed method utilises the low-rank characteristic of HRV spectrum matrix to efficiently estimate data uncertainties. In addition, we developed a refined matrix completion technique to enhance the estimation accuracy and computational cost. Benchmarking on five public datasets, our model shows effectiveness and reliability in estimating uncertainties in HRV spectrum, and has superior performance against five deep learning models. The results underscore the potential of our developed matrix completion-based statistical machine learning model in providing reliable HRV spectrum uncertainty estimation.



    加载中


    [1] L. Lu, T. Zhu, D. Morelli, A. Creagh, Z. Liu, J. Yang, et al., Uncertainties in the analysis of heart rate variability: A systematic review, IEEE Rev. Biomed. Eng., 17 (2023), 180–196. https://doi.org/10.1109/RBME.2023.3271595 doi: 10.1109/RBME.2023.3271595
    [2] S. Roy, D. P. Goswami, A. Sengupta, Geometry of the Poincaré plot can segregate the two arms of autonomic nervous system–a hypothesis, Med. Hypotheses, 138 (2020), 109574. https://doi.org/10.1016/j.mehy.2020.109574 doi: 10.1016/j.mehy.2020.109574
    [3] L. Vazquez, J. D. Blood, J. Wu, T. M. Chaplin, R. E. Hommer, H. J. Rutherford, et al., High frequency heart-rate variability predicts adolescent depressive symptoms, particularly anhedonia, across one year, J. Affect. Disorders, 196 (2016), 243–247. https://doi.org/10.1016/j.jad.2016.02.040 doi: 10.1016/j.jad.2016.02.040
    [4] S. Hillebrand, K. B. Gast, R. de Mutsert, C. A. Swenne, J. W. Jukema, S. Middeldorp, et al., Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: Meta-analysis and dose–response meta-regression, Europace, 15 (2013), 742–749. https://doi.org/10.1093/europace/eus341 doi: 10.1093/europace/eus341
    [5] N. Townsend, D. Kazakiewicz, F. L. Wright, A. Timmis, R. Huculeci, A. Torbica, et al., Epidemiology of cardiovascular disease in Europe, Nat. Rev. Cardiol., 19 (2022), 133–143. https://doi.org/10.1038/s41569-021-00607-3 doi: 10.1038/s41569-021-00607-3
    [6] T. Xiang, N. Ji, D. A. Clifton, L. Lu, Y. T. Zhang, Interactive effects of HRV and P-QRS-T on the power density spectra of ECG signals, IEEE J. Biomed. Health. Inf., 25 (2021), 4163–4174. https://doi.org/10.1109/JBHI.2021.3100425 doi: 10.1109/JBHI.2021.3100425
    [7] A. L. Callara, L. Sebastiani, N. Vanello, E. P. Scilingo, A. Greco, Parasympathetic-sympathetic causal interactions assessed by time-varying multivariate autoregressive modeling of electrodermal activity and heart-rate-variability, IEEE Trans. Biomed. Eng., 68 (2021), 3019–3028. https://doi.org/10.1109/TBME.2021.3060867 doi: 10.1109/TBME.2021.3060867
    [8] L. Rodríguez-Liñares, D. Simpson, Spectral estimation of HRV in signals with gaps, Biomed. Signal Process. Control, 52 (2019), 187–197. https://doi.org/10.1016/j.bspc.2019.04.006 doi: 10.1016/j.bspc.2019.04.006
    [9] T. W. Bae, K. K. Kwon, ECG PQRST complex detector and heart rate variability analysis using temporal characteristics of fiducial points, Biomed. Signal Process. Control, 66 (2021), 102291. https://doi.org/10.1016/j.bspc.2020.102291 doi: 10.1016/j.bspc.2020.102291
    [10] F. Massie, S. Vits, A. Khachatryan, B. Van Pee, J. Verbraecken, J. Bergmann, Central sleep apnea detection by means of finger photoplethysmography, IEEE J. Transl. Eng. Health Med., 11 (2023), 126–136. https://doi.org/10.1109/JTEHM.2023.3236393 doi: 10.1109/JTEHM.2023.3236393
    [11] B. E. Ajtay, S. Béres, L. Hejjel, The oscillating pulse arrival time as a physiological explanation regarding the difference between ECG-and photoplethysmogram-derived heart rate variability parameters, Biomed. Signal Process. Control, 79 (2023), 104033. https://doi.org/10.1016/j.bspc.2022.104033 doi: 10.1016/j.bspc.2022.104033
    [12] J. Lee, M. Kim, H. K. Park, I. Y. Kim, Motion artifact reduction in wearable photoplethysmography based on multi-channel sensors with multiple wavelengths, Sensors, 20 (2020), 1493. https://doi.org/10.3390/s20051493 doi: 10.3390/s20051493
    [13] F. Xiong, D. Chen, Z. Chen, S. Dai, Cancellation of motion artifacts in ambulatory ECG signals using TD-LMS adaptive filtering techniques, J. Visual Commun. Image Represent., 58 (2019), 606–618. https://doi.org/10.1016/j.jvcir.2018.12.030 doi: 10.1016/j.jvcir.2018.12.030
    [14] P. Guyot, P. Voiriot, E. H. Djermoune, S. Papelier, C. Lessard, M. Felices, et al., R-peak detection in Holter ECG signals using non-negative matrix factorization, in 2018 Computing in Cardiology Conference (CinC), IEEE, (2018), 1–4. https://doi.org/10.22489/CinC.2018.123
    [15] Y. I. Jang, J. Y. Sim, J. R. Yang, N. K. Kwon, Improving heart rate variability information consistency in Doppler cardiogram using signal reconstruction system with deep learning for contact-free heartbeat monitoring, Biomed. Signal Process. Control, 76 (2022), 103691. https://doi.org/10.1016/j.bspc.2022.103691 doi: 10.1016/j.bspc.2022.103691
    [16] G. S. Lee, M. L. Chen, G. Y. Wang, Evoked response of heart rate variability using short-duration white noise, Auton. Neurosci., 155 (2010), 94–97. https://doi.org/10.1016/j.autneu.2009.12.008 doi: 10.1016/j.autneu.2009.12.008
    [17] E. J. Candès, B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., 9 (2009), 717–772. https://doi.org/10.1007/s10208-009-9045-5 doi: 10.1007/s10208-009-9045-5
    [18] X. P. Li, L. Huang, H. C. So, B. Zhao, A survey on matrix completion: Perspective of signal processing, preprint, arXiv: 1901.10885.
    [19] L. Lu, Y. Tan, M. Klaic, M. P. Galea, F. Khan, A. Oliver, et al., Evaluating rehabilitation progress using motion features identified by machine learning, IEEE Trans. Biomed. Eng., 68 (2020), 1417–1428. https://doi.org/10.1109/TBME.2020.3036095 doi: 10.1109/TBME.2020.3036095
    [20] T. Liu, M. Sun, J. Meng, Z. Wu, Y. Shen, N. Feng, Compressive sampling photoacoustic microscope system based on low rank matrix completion, Biomed. Signal Process. Control, 26 (2016), 58–63. https://doi.org/10.1016/j.bspc.2015.12.008 doi: 10.1016/j.bspc.2015.12.008
    [21] L. Xu, M. E. Chavez-Echeagaray, V. Berisha, Unsupervised EEG channel selection based on nonnegative matrix factorization, Biomed. Signal Process. Control, 76 (2022), 103700. https://doi.org/10.1016/j.bspc.2022.103700 doi: 10.1016/j.bspc.2022.103700
    [22] E. Nasiri, K. Berahmand, M. Rostami, M. Dabiri, A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding, Comput. Biol. Med., 137 (2021), 104772. https://doi.org/10.1016/j.compbiomed.2021.104772 doi: 10.1016/j.compbiomed.2021.104772
    [23] S. Nousias, C. Tselios, D. Bitzas, A. S. Lalos, K. Moustakas, I. Chatzigiannakis, Uncertainty management for wearable IoT wristband sensors using Laplacian-based matrix completion, in 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), IEEE, (2018), 1–6. https://doi.org/10.1109/CAMAD.2018.8515001
    [24] L. Lu, T. Zhu, Y. T. Zhang, D. A. Clifton, Spectrum estimation of heart rate variability using low-rank matrix completion, in 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), IEEE, (2022), 01–04. https://doi.org/10.1109/BHI56158.2022.9926897
    [25] W. S. Chen, L. Hsieh, S. Y. Yuan, High performance data compression method with pattern matching for biomedical ecg and arterial pulse waveforms, Comput. Methods Programs Biomed., 74 (2004), 11–27. https://doi.org/10.1016/S0169-2607(03)00022-1 doi: 10.1016/S0169-2607(03)00022-1
    [26] G. Shabat, A. Averbuch, Interest zone matrix approximation, Electron. J. Linear Algebra, 23 (2012), 678–702.
    [27] W. J. Zeng, H. C. So, Outlier-robust matrix completion via $\ell_p $-minimization, IEEE Trans. Signal Process., 66 (2017), 1125–1140. https://doi.org/10.1109/TSP.2017.2784361 doi: 10.1109/TSP.2017.2784361
    [28] T. Hastie, R. Tibshirani, M. Wainwright, Statistical learning with sparsity, Monogr. Stat. Appl. Probab., 143 (2015), 8.
    [29] R. Mazumder, T. Hastie, R. Tibshirani, Spectral regularization algorithms for learning large incomplete matrices, J. Mach. Learn. Res., 11 (2010), 2287–2322.
    [30] T. Hastie, R. Mazumder, J. D. Lee, R. Zadeh, Matrix completion and low-rank SVD via fast alternating least squares, J. Mach. Learn. Res., 16 (2015), 3367–3402.
    [31] M. Daoud, P. Ravier, R. Harba, M. Jabloun, B. Yagoubi, O. Buttelli, HRV spectral estimation based on constrained Gaussian modeling in the nonstationary case, Biomed. Signal Process. Control, 8 (2013), 483–490. https://doi.org/10.1016/j.bspc.2013.04.007 doi: 10.1016/j.bspc.2013.04.007
    [32] M. A. García-González, A. Argelagós-Palau, M. Fernández-Chimeno, J. Ramos-Castro, A comparison of heartbeat detectors for the seismocardiogram, in Computing in Cardiology 2013, IEEE, (2013), 461–464.
    [33] S. Greenwald, Improved Detection and Classification of Arrhythmias in Noise-corrupted Electrocardiograms Using Contextual Information, Ph.D. thesis, Harvard-MIT Division of Health Sciences and Technology, 1990.
    [34] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, et al., PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, Circulation, 101 (2000), e215–e220. https://doi.org/10.1161/01.CIR.101.23.e215 doi: 10.1161/01.CIR.101.23.e215
    [35] A. Taddei, G. Distante, M. Emdin, P. Pisani, G. Moody, C. Zeelenberg, et al., The European ST-T database: Standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography, Eur. Heart J., 13 (1992), 1164–1172. https://doi.org/10.1093/oxfordjournals.eurheartj.a060332 doi: 10.1093/oxfordjournals.eurheartj.a060332
    [36] T. Penzel, G. B. Moody, R. G. Mark, A. L. Goldberger, J. H. Peter, The Apnea-ECG database, in Computers in Cardiology 2000, IEEE, (2000), 255–258. https://doi.org/10.1109/CIC.2000.898505
    [37] A. E. Johnson, J. Behar, F. Andreotti, G. D. Clifford, J. Oster, R-peak estimation using multimodal lead switching, in Computing in Cardiology 2014, IEEE, (2014), 281–284.
    [38] A. N. Vest, G. Da Poian, Q. Li, C. Liu, S. Nemati, A. J. Shah, et al., An open source benchmarked toolbox for cardiovascular waveform and interval analysis, Physiol. Meas., 39 (2018), 105004. https://doi.org/10.1088/1361-6579/aae021 doi: 10.1088/1361-6579/aae021
    [39] J. Rahul, M. Sora, L. D. Sharma, A novel and lightweight P, QRS, and T peaks detector using adaptive thresholding and template waveform, Comput. Biol. Med., 132 (2021), 104307. https://doi.org/10.1016/j.compbiomed.2021.104307 doi: 10.1016/j.compbiomed.2021.104307
    [40] W. Zong, G. Moody, D. Jiang, A robust open-source algorithm to detect onset and duration of QRS complexes, in Computers in Cardiology 2003, IEEE, (2003), 737–740. https://doi.org/10.1109/CIC.2003.1291261
    [41] J. Behar, J. Oster, Q. Li, G. D. Clifford, ECG signal quality during arrhythmia and its application to false alarm reduction, IEEE Trans. Biomed. Eng., 60 (2013), 1660–1666. https://doi.org/10.1109/TBME.2013.2240452 doi: 10.1109/TBME.2013.2240452
    [42] C. Varon, J. Lázaro, J. Bolea, A. Hernando, J. Aguiló, E. Gil, et al., Unconstrained estimation of HRV indices after removing respiratory influences from heart rate, IEEE J. Biomed. Health. Inf., 23 (2018), 2386–2397. https://doi.org/10.1109/JBHI.2018.2884644 doi: 10.1109/JBHI.2018.2884644
    [43] L. Lu, Y. Tan, D. Oetomo, I. Mareels, E. Zhao, S. An, On model-guided neural networks for system identification, in 2019 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, (2019), 610–616. https://doi.org/10.1109/SSCI44817.2019.9002703
    [44] Y. Hu, H. Wang, Y. Zhang, B. Wen, Frequency prediction model combining isfr model and LSTM network, Int. J. Electr. Power Energy Syst., 139 (2022), 108001. https://doi.org/10.1016/j.ijepes.2022.108001 doi: 10.1016/j.ijepes.2022.108001
    [45] A. Ameri, M. A. Akhaee, E. Scheme, K. Englehart, Regression convolutional neural network for improved simultaneous EMG control, J. Neural Eng., 16 (2019), 036015. https://doi.org/10.1088/1741-2552/ab0e2e doi: 10.1088/1741-2552/ab0e2e
    [46] A. Veloz, R. Salas, H. Allende-Cid, H. Allende, C. Moraga, Identification of lags in nonlinear autoregressive time series using a flexible fuzzy model, Neural Process. Lett., 43 (2016), 641–666. https://doi.org/10.1007/s11063-015-9438-1 doi: 10.1007/s11063-015-9438-1
    [47] M. Benchekroun, B. Chevallier, V. Zalc, D. Istrate, D. Lenne, N. Vera, The impact of missing data on heart rate variability features: A comparative study of interpolation methods for ambulatory health monitoring, IRBM, 44 (2023), 100776. https://doi.org/10.1016/j.irbm.2023.100776 doi: 10.1016/j.irbm.2023.100776
    [48] M. Alkhodari, H. F. Jelinek, S. Saleem, L. J. Hadjileontiadis, A. H. Khandoker, Revisiting left ventricular ejection fraction levels: A circadian heart rate variability-based approach, IEEE Access, 9 (2021), 130111–130126. https://doi.org/10.1109/ACCESS.2021.3114029 doi: 10.1109/ACCESS.2021.3114029
    [49] L. Lu, T. Zhu, A. H. Ribeiro, L. Clifton, E. Zhao, J. Zhou, et al., Decoding 2.3 million ECGs: Interpretable deep learning for advancing cardiovascular diagnosis and mortality risk stratification, Eur. Heart J., Digit. Health., 5 (2024), 247–259. https://doi.org/10.1093/ehjdh/ztae014 doi: 10.1093/ehjdh/ztae014
    [50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need, in Advances in Neural Information Processing Systems 30, Curran Associates, Inc., 2017.
    [51] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, et al., Informer: Beyond efficient transformer for long sequence time-series forecasting, in Proceedings of the AAAI Conference on Artificial Intelligence, AAAI Press, (2021), 11106–11115. https://doi.org/10.1609/aaai.v35i12.17325
    [52] H. Wu, T. Hu, Y. Liu, H. Zhou, J. Wang, M. Long, Timesnet: Temporal 2D-variation modeling for general time series analysis, in The Eleventh International Conference on Learning Representations, 2023.
    [53] J. Fan, T. W. Chow, Matrix completion by least-square, low-rank, and sparse self-representations, Pattern Recognit., 71 (2017), 290–305. https://doi.org/10.1016/j.patcog.2017.05.013 doi: 10.1016/j.patcog.2017.05.013
    [54] J. Zhao, L. Zhao, Low-rank and sparse matrices fitting algorithm for low-rank representation, Comput. Math. Appl., 79 (2020), 407–425. https://doi.org/10.1016/j.camwa.2019.07.012 doi: 10.1016/j.camwa.2019.07.012
    [55] A. Waters, A. Sankaranarayanan, R. Baraniuk, Sparcs: Recovering low-rank and sparse matrices from compressive measurements, in Advances in Neural Information Processing Systems 24, Curran Associates, Inc., 2011.
    [56] F. Nie, Z. Li, Z. Hu, R. Wang, X. Li, Robust matrix completion with column outliers, IEEE Trans. Cybern., 52 (2021), 12042–12055. https://doi.org/10.1109/TCYB.2021.3072896 doi: 10.1109/TCYB.2021.3072896
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(258) PDF downloads(26) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog