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Abstract: Heart rate variability (HRV) is an important metric in cardiovascular health monitoring.
Spectral analysis of HRV provides essential insights into the functioning of the cardiac autonomic
nervous system. However, data artefacts could degrade signal quality, potentially leading to unreliable
assessments of cardiac activities. In this study, we introduced a novel approach for estimating
uncertainties in HRV spectrum based on matrix completion. The proposed method utilises the low-
rank characteristic of HRV spectrum matrix to efficiently estimate data uncertainties. In addition, we
developed a refined matrix completion technique to enhance the estimation accuracy and computational
cost. Benchmarking on five public datasets, our model shows effectiveness and reliability in estimating
uncertainties in HRV spectrum, and has superior performance against five deep learning models. The
results underscore the potential of our developed matrix completion-based statistical machine learning
model in providing reliable HRV spectrum uncertainty estimation.
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1. Introduction

Heart rate variability (HRV) is the measure of fluctuations between successive heartbeats, reflecting
the interplay between the sympathetic and parasympathetic branches of the autonomic nervous system
(ANS) [1]. These fluctuations are critical markers of the physiological factors influencing heart rhythm,
serving as indicators of an individual’s health status [2]. Studies have shown that higher HRV levels are
indicative of robust health, suggesting a well-balanced autonomic regulation. In contrast, reduced HRV is
associated with an imbalance in autonomic function, leaning towards either diminished parasympathetic
activity or heightened sympathetic drive, which correlates with an increased risk of adverse health
outcomes [3, 4]. The relevance of HRV extends to its application in diagnosing and monitoring
cardiovascular conditions, which are leading contributors to global mortality [5]. This underscores the
importance of HRV as an important parameter in the evaluation of both physiological well-being and
the presence of pathological conditions, particularly those related to cardiovascular health.

HRV data analysis can be implemented through various signal processing techniques. In the time
domain, HRV is assessed by calculating statistical measures such as the average of normal-to-normal
(NN) intervals, the root mean square of successive differences between NN intervals (RMSSD), and
the standard deviation of NN intervals (SDNN) [6]. These metrics provide insights into the heart
rhythm and its variability over time. On the other hand, frequency domain analysis of HRV offers a
perspective on the distribution of power across different frequency bands within the HRV data, serving
as a more detailed reflection of autonomic nervous system activity. Spectral analysis has proven effective
in distinguishing between sympathetic and parasympathetic nervous system influences on heart rate
variability [7]. Specifically, the low-frequency (LF) component of the HRV spectrum is influenced
by both sympathetic and parasympathetic activities, whereas the high-frequency (HF) component is
predominantly a result of parasympathetic activity. Consequently, the LF/HF ratio is commonly utilised
as a measure of the balance between sympathetic and parasympathetic influences, offering valuable
insights into autonomic nervous system dynamics [8].

The most commonly used method to derive HRV data is via electrocardiogram (ECG) signals. With
appropriate QRS detectors, R-peaks in the ECG morphology can be identified, and then the HRV data
can be obtained by computing the RR intervals [9]. Other than using ECGs, some studies suggest using
photoplethysmography (PPG) signals to derive the HRV data, where PPG is a non-invasive technique
that utilises optical principles to obtain pulse waves from the microcirculation in peripheral tissue [10].
In particular, the utilisation of PPG signals for detecting pulse-wave related HRV, known as pulse rate
variability (PRV), has attracted considerable attention in recent years [11]. This is primarily attributed
to the convenience and affordability of acquiring PPG signals through wearable devices.

While electrocardiogram (ECG) or photoplethysmography (PPG) signals are commonly
employed for HRV analysis, ensuring the reliability of HRV data extracted from these signals presents
significant challenges. These difficulties are largely due to uncertainties inherent in data collection and
computational methodologies, which may compromise data integrity. In particular, motion artefacts
represent a substantial challenge, often overlapping in frequency with legitimate HRV signals (0.5
to 5 Hz) as they typically manifest within a 0.01 to 10 Hz range [12]. This overlap complicates the task
of artefact removal without inadvertently altering the PPG signal. Moreover, the processes involved in
HRV data analysis, such as the identification of R-peaks, interpolation of RR intervals, and data
resampling, introduce additional complexity. These steps are crucial for accurate HRV measurement but
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can potentially distort the HRV data, highlighting the intricate balance required in processing and
analysing HRV signals.

A variety of computational methods have been devised to mitigate uncertainties or inaccuracies in
HRV data analysis, including adaptive filtering, blind source separation, and advanced deep learning
techniques [13–15]. Despite the sophistication of these approaches, they often overlook the unique
properties of the HRV spectrum’s frequency bands, which limits their effectiveness in accurately
estimating uncertainties. For instance, the low-frequency (LF) component of the HRV spectrum is
influenced by both sympathetic and parasympathetic nervous system activities, whereas the high-
frequency (HF) component is primarily regulated by the parasympathetic nervous system (PNS) [8].
Research has shown that measurement noise impacts these frequency bands; for example, the LF
component exhibits substantial sensitivity to increasing noise levels, while the impact is not obvious
in the HF component of the HRV spectrum [16]. This differential impact highlights the necessity of
accounting for the distinct characteristics of HRV frequency bands in the development and application
of computational techniques for HRV data analysis.

In this study, we introduce a novel approach for estimating uncertainties in the HRV spectrum by
leveraging a refined low-rank matrix completion (MC) technique, which incorporates the distinct
characteristics of HRV frequency components to improve the precision of uncertainty estimation. The
concept of low-rank MC emerges as a powerful strategy for reconstructing missing or imprecise entries
in observed data, grounded in the principle that many real-world datasets exhibit a low-rank structure
due to their inherent low-dimensional characteristics or underlying patterns [17, 18]. The application of
low-rank properties to data is widely recognised in various domains, indicating the existence of
underlying trends or dimensions within extensive datasets [19]. The MC method has demonstrated its
efficacy in various fields, including enhancing image quality in compressive sampling photoacoustic
microscopy [20], optimising signal channel selection in electroencephalogram analysis [21], and
facilitating the identification of protein-protein interactions [22]. While there have been initial
explorations of MC techniques in analysing HRV data [23, 24], its potential in healthcare remains
largely untapped, with a significant gap in detailed model development and comprehensive validation of
its performance in medical applications.

By leveraging the low-rank characteristic of HRV data, we demonstrated the effective inference
of uncertainties within the HRV spectrum using partial entries from the data matrix. This approach
is further enhanced by a detailed analysis of HRV data characteristics, particularly focusing on the
low-frequency (LF) and high-frequency (HF) components of the spectrum. Drawing on these insights,
we developed a refined matrix completion (RMC) framework specifically designed to improve the
estimation of uncertainties. This framework prioritises critical data entries within the HRV matrix,
thereby enhancing the method’s efficiency and robustness in estimating uncertainties. To assess the
efficacy of our proposed RMC method in HRV spectrum estimation, we conducted comprehensive
experimental studies across five benchmark datasets. Our method was evaluated against both the
traditional MC approach and five regression-based machine learning models. The findings from these
experiments and comparative analyses underscore the superior performance and robustness of our RMC
method in HRV spectrum estimation. The key contributions of this study include:

• The introduction of an innovative method for estimating uncertainties in the HRV spectrum,
utilising the matrix completion technique to exploit the low-rank nature of the HRV data.
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• The development of an advanced matrix completion framework that enhances estimation accuracy
and computational efficiency by focusing on the modelled spectrum of HRV data.

• The implementation of extensive experimental validation on five renowned benchmark datasets to
evaluate the effectiveness of our model in HRV spectrum estimation.

• A series of comparative analyses with various neural network models and the traditional MC
method, illustrating the significant advantages of our approach in the context of uncertainty
estimation.

The remainder of this paper is organised as follows. Section 2 formulates the problem of HRV
spectrum estimation. Section 3 develops the MC method and refinement. Section 4 performs the analysis
of HRV data. The results of spectrum estimation and comparison study are presented in Section 5 and,
finally, conclusions are drawn in Section 6.

2. Problem formulation

2.1. Notations

In this paper, we denote the set of real numbers by R and the set of natural numbers by N . A
matrix is represented by a bold uppercase letter A, which consists of elements ai, j for i = 1, . . . , n and
j = 1, . . . , p, and belongs to the space Rn×p, indicating it has n rows and p columns. The Frobenius
norm of matrix A is expressed as ||A||F =

(∑n
i=1
∑p

j=1 |ai j|
2
)1/2

, encapsulating the square root of the sum
of the absolute squares of its elements. The nuclear norm of matrix A is defined as ||A||∗ =

∑
i σi(A),

where σi(A) represents the ith singular value of A. The 2-norm of A is denoted as ||A||2 = σmax(A), with
σmax being its largest singular value.

2.2. Problem formulation

Assuming that z(t) ∈ R, for t ∈ [0,Ts], represents the preprocessed HRV data over a time span of Ts,
its frequency components can be delineated as follows:

P
(

f , f̃
)
= F (z(t)), (2.1)

where f̃ = [ fl, fr] specifies the frequency range of interest within the HRV data, with fl and fr denoting
the left and right boundaries, respectively. Here, F (·) symbolises the spectrum operation tailored to
the selected frequency range f̃ , and P( f , f̃ ) represents the power spectral density (PSD) function of the
HRV data, where various frequency-related HRV metrics can be extracted. More precisely,

hk

(
f , f̃k

)
= ϕk

(
f̃k, P( f , f̃ )

)
, (2.2)

where k = 1, 2, · · · ,Nk indicates different types of HRV variables, such as the power of LF or HF, or the
ratio between the LF and HF. The nonlinear mapping ϕk(·, ·) computes frequency variable hk from the
spectrum P(·, ·) for the kth type of HRV variables in the f̃k frequency range.

It is important to note that the accuracy of HRV measurements is influenced by various uncertainties,
including noise and missing values. Additional factors, such as respiration rate, circadian rhythms, and
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physiological states, can also affect the data quality, therefore impacting the frequency analysis of HRV
data. Consequently, these uncertainties pose challenges in precisely estimating the HRV spectrum.

Given data collected from Ns subjects, we construct a matrix H =
{
hi,k
}
i=1,...,Ns,k=1,...,Nk

∈ RNs×Nk ,
derived from the measurements, where each element is defined by

hi,k

(
f , f̃k

)
= ϕk

(
f̃k, Pi( f , f̃ )

)
, (2.3)

where Pi is the PSD of the ith subject.
The PSD often reveals predominant frequency components, with many of the non-dominant

frequencies having samll amplitudes that are considered negligible, resulting in a sparse matrix. In
addition, the HRV spectrum matrix is derived from the time series of intervals between heartbeats. As
the ECG waveform has similar repeating patterns [25], the different spectral components derived from
ECG data would not be completely independent. This leads to the rank of the matrix being lower than
the dimensions of the matrix, suggesting the low-rank characteristic of the HRV spectrum matrix. This
observation underpins our motivation to apply low-rank MC for approximating the matrix and
estimating uncertainties. This motivates us to introduce the RMC approach aiming at more effectively
estimating the uncertainties within the spectrum. This step represents an advancement in our
methodology, leveraging the foundational concept of low-rank MC while incorporating adjustments to
enhance the precision and efficiency of uncertainty estimation in HRV spectrum analysis.

3. Methodology

This section delves into the application of low-rank MC technique for handling sparse matrices. The
core principle revolves around identifying an effective approximation for the matrix that aligns with
certain predefined cost functions. One common approach involves seeking an optimal approximation
that minimises the matrix rank. The section starts with a revisit of low-rank MC, followed by the matrix
approximation with the interested zone, and then the introduction of the RMC approach.

3.1. Low-rank matrix completion

Assuming matrix H ∈ RNs×Nk is sparse, i.e., only a limited number of entries in the matrix are non-
zero, we denote the set Ω as the collection of non-zero entries of the matrix H, which is represented as

Ω =
{
(i, k)
∣∣∣hi,k , 0 , i = 1, . . .Ns, k = 1, . . . ,Nk

}
. (3.1)

The spectra H, derived from segmenting HRV data sequences, often contain redundant information
due to the recursive slicing approach used to generate these segments. This redundancy suggests that
not all information within the matrix is equally valuable for analysis. To address this, we employ a
low-rank matrix completion technique, which is particularly adept at preserving essential information
while minimising redundancy [17, 26]. It can be formulated by approximating matrix H in terms of the
smallest rank, i.e.,

min rank(X)
s.t. xi,k = hi,k, for (i, k) ∈ Ω,

(3.2)

where matrix X =
{
xi,k
}
i=1,...,Ns,k=1,...,Nk

∈ RNs×Nk is an optimal approximation matrix that can keep the
majority information of H.
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The optimisation of rank-minimization problem in Eq (3.2) is generally computationally intractable.
Instead of solving the original problem of the rank norm, a convex relaxation based on the nuclear norm
is given by [17],

min ||X||∗
s.t. xi,k = hi,k, for (i, k) ∈ Ω,

(3.3)

where, || · ||∗ indicates the nuclear norm of matrix X, which is defined as the summation of its singular
values. In particular, it is demonstrated that a smaller nuclear norm indicates the lower rank of the
matrix [17]. However, it is generally too harsh to force the estimation of all observed entries in the
matrix, so alternatively, a more practical approximation of Eq (3.3) can be formulated by relaxing the
constraint [27, 28].

min ||X||∗
s.t. ||AΩ,H(X) −AΩ,H(H)||F ≤ δ,

(3.4)

where || · ||F denotes the Frobenius norm, δ is a small value to constrain the estimation, andAΩ,H(·) is a
projection operator that is defined as

AΩ,H(X) =

xi,k = hi,k (i, k) ∈ Ω
0 otherwise.

(3.5)

It is noted that Eq (3.4) can be formulated as a penalised least-squares convex program [29], which
can be solved by the singular value thresholding (SVT) technique as described in [30].

3.2. Matrix approximation with interested zone

The method previously outlined operates under the assumption that the observed entries, including
those missing, are random variables that follow a uniform distribution [17]. This assumption does
not fully account for the effects of measurement uncertainties on different frequency components of
the data, which often deviate from a uniform distribution pattern [16]. Therefore, the traditional low-
rank MC techniques mentioned above could not be applied directly. Alternatively, the interest-zone
matrix-approximation (IZMA) method [26] is proposed to solve the low-rank MC problem when some
columns/sub-columns or rows/sub-rows are missing. More specifically, the IZMA tries to solve the
following optimisation problem,

min ||AΩ,H(X) −AΩ,H(H)||F
s.t. p(X) ≤ 0,

(3.6)

where the nonlinear mapping p(·) : RNs×Nk → Rn is a smooth function for some n ∈ N . For example,
p(X) can be some constraints with respect to the estimated matrix, such as p(X) = ||X||2 − λ, λ > 0.
Another example of this nonlinear mapping is p(X) = ||X||∗ − λ for some λ > 0, as described in [26].
The optimisation problem in Eq (3.6) can be solved by the following steps.

It first approximates the following optimisation for the constrained full matrix,

min ||X −H||F
s.t. p(X) ≤ 0.

(3.7)
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The solution to the optimisation in Eq (3.7) with the spectral norm constraint can be estimated byX̃ = UΣ̃V∗,
Σ̃ = diag(σ̃i),

(3.8)

where matrices U and V are calculated by H = UΣV∗, with Σ = diag(σ1, σ2, · · · , σn). Next, the
diagonal matrix is obtained as σ̃i = min(σi, λ), i = 1, 2, · · · , k, and the approximation X̃ can be obtained
by the data reconstruction.

Then, the estimation of matrix H with entries in the interested zone can be updated as follows,

H(X) := I(X̃) −AΩ,H(X̃) +AΩ,H(H), (3.9)

where I is an identity operator, and H(·) denotes the updating process, which combines the known
entries in matrix H and the estimated entries in matrix X̃.

Next, the estimated matrix is replaced withH(X) and the iteration is repeated starting from Eq (3.7).
The estimation is evaluated by ϵ(X) ≜ ||AΩ,H(X) − AΩ,H(H)||F , and missing entries in matrix H
can be approximated until ϵ(X) converges. For convenience, we denote the whole iteration process
of the constrained approximation as T (H, λ), which will be used in the next section for the HRV
spectrum estimation.

It is noted that the matrix approximation in Eq (3.6) is different from the low-rank MC as presented
in Eq (3.2), where the low-rank MC requires fixing the known entries for the estimation, while the
matrix approximation in Eq (3.6) minimises the objective function with Frobenius norm to the constraint
function. In particular, the technique of matrix approximation with an interested zone can also be
extended as matrix completion, which develops a new iteration process separate from the traditional
SVT technique; more details of the iteration process can be found in [26] and will also be discussed in
Section 3.3.

The process of approximating missing entries in this context is driven by the data itself through an
iterative approach. It is important to acknowledge that in HRV data analysis, certain mathematical
models can be leveraged to represent the spectrum effectively. One such model, the Gaussian
model [31], has been highlighted for its capability to accurately characterise HRV spectra and elucidate
the relationships between various spectrum components. In the subsequent subsection, we will apply
the Gaussian model to refine the RMC process by constructing a new matrix that possesses significantly
reduced dimensions. This approach is anticipated to not only enhance the efficiency of the estimation
process, but also to improve its overall performance by providing a more focused and computationally
manageable framework for addressing missing data within the HRV spectrum analysis.

3.3. Model-based refined MC for HRV spectrum estimation

The HRV data spectrum is characterised by distinct frequency bands, each with unique physiological
implications. As illustrated in Figure 1, the HF band captures the influence of respiration on heart rate,
a phenomenon known as respiratory sinus arrhythmia (RSA); conversely, the LF band encompasses
oscillations associated with blood pressure regulation and vasomotor tone, often referred to as Mayer
waves. These distinctions provide a foundation for modelling the HRV spectrum, allowing for a nuanced
understanding of the underlying physiological processes. With these considerations, we model the
spectrum of HRV data as follows.
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We assume the matrix S = {si,ℓ}i=1,...,nr , ℓ=1,...,n fr
∈ Rnr×n fr consists of nr spectra that are derived from

the HRV data, where si =
[

si,1, · · · , si,n fr

]T
∈ Rn fr is a vector of the spectrum. In particular, for each

si ∈ S, it can be modelled with Gaussian functions [31], and the entry si,ℓ can be represented as,

sm
i,ℓ( f , Ai,ℓ, σi,ℓ, fi,ℓ) =

Ai,ℓ
√

2πσi,ℓ

exp

− ( f− fi,ℓ)
2

2σ2
i,ℓ


, (3.10)

where f ∈
[
fl,i, fr,i

]
indicates the interval of the frequency band of interests, i.e., LF or HF spectrum.

Consequently, Ai,ℓ > 0 is the weight of amplitude, fi,ℓ > 0 is the peak position of frequencies in the
spectrum, and σi,ℓ > 0 is its standard deviation for this frequency. For simplicity of notations, sm

i,ℓ
is used to represent sm

i,ℓ( f , Ai,ℓ, σi,ℓ, fi,ℓ) when no confusion arises, and s̃m
i = {s

m
i,ℓ}ℓ=1,...,n fr

indicates the
modelled spectrum.

It is noted that the HRV spectrum can be characterised with different frequency components, and
they can be simulated by changing the frequency intervals of the modelling, after which the complete
spectrum can be obtained by combining these different frequency components. Next, we use the
modelled information to define a new matrix for the estimation of missing entries. For the convenience
of presentation, it is assumed that some entries of matrix S are missing, and the set Sm =

{
s j

}
j=1,...,nq

contains the rows in S with missing values.
For any s j ∈ Sm, we model the spectrum and obtain s̃m

j with Eq (3.10), and then calculate the
correlation between s̃m

j and s̃m
q spectra, where s̃m

q is the modelled information of spectrum in S, and the
correlation is computed as follows,

γ(sm
j,ℓt , s

m
q,ℓt)=

N1∑
ℓt=1

(sm
j,ℓt − s̄m

j )(sm
q,ℓt − s̄m

q )√√ N1∑
ℓt=1

(sm
j,ℓt− s̄m

j )2

√√ N1∑
ℓt=1

(sm
q,ℓt− s̄m

q )2

, (3.11)

where s̄m
j =

1
N1

N1∑
ℓt=1

sm
j,ℓt and s̄m

q =
1

N1

N1∑
ℓt=1

sm
q,ℓt are means of the two spectra, respectively, ℓt = 1, . . . ,N1,

N1 ≤ n fr is the index of known components of the spectrum, and γ j,q = γ(sm
j,ℓt
, sm

q,ℓt
) indicates the

relationship between the two spectra.
After calculating γ j,q for the s j spectrum, a new vector t j =

[
γ j,1 · · · γ j,nr−1

]
can be obtained, we

sort t j and select the K highest-ranked elements for s j, and then a set that contains the identified indices
can be formed as,

GK(s j) =
{
gk |t j,gk ∈ t j, gk ∈ J , k = 1, . . . ,K

}
, (3.12)

where J = 1, . . . , nr − 1 denotes the index of spectrum in matrix S.
Next, a refined matrix SGK ∈ R

K×n fr can be formulated by combining s j and the identified HRV
spectra. Consequently, the optimisation in Eq (3.6) can be updated as

min ||AΩ̃,SGK
(XGK ) −AΩ̃,SGK

(SGK )||F

s.t. p(XGK ) ≤ 0,
(3.13)
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where Ω̃ is the set of observed entries in the refined matrix,AΩ̃,SGK
(·) is the updated operator to model

the missing values, XGK indicates the estimated matrix, and the spectral norm p(XGK ) = ||XGK ||2 − λ can
be used for the constraint.

For the estimation of missing entries in the refined matrix, we first approximate the following
constrained full matrix,

min ||XGK − SGK ||F

s.t. p(XGK ) ≤ 0,
(3.14)

where the soft imputing method as described in Eq (3.8) can be used to solve the estimation in Eq (3.14).
Then, by updating the parameter λ in the constraint function, missing entries in the refined matrix can
be estimated using the iteration process as described in Section 3.2. Algorithm 1 presents the pseudo
code of the proposed RMC method. The hyperparameters tolerance etol and λtol are set as 10-8 and 10
according to the configuration in [26].

As an illustration, Figure 1 demonstrates the concept of estimating HRV spectrum using the RMC
technique, where the matrix is constructed with m spectra that are derived from HRV data segments.
The x-axis of the matrix indicates the frequency band of interests, and y-axis shows the indices of data
segments. Suppose the HF band of s3 spectrum is affected by measurement uncertainties, which will be
estimated using the LF band. By using the RMC model, we model the spectra in the matrix, such as
the Mayer wave and the RSA component and use the LF spectrum as a reference to identify relevant
elements in the matrix. Then, these identified spectra, such as vectors s2, s5, and sm, along with s3 form
a new matrix, where the HF band of s3 can be estimated using the RMC method described in the above
iteration procedures.

Figure 1. Illustration of MC and RMC using model information for HRV spectrum estimation.
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Algorithm 1: Estimation of HRV spectrum using our developed RMC method.
Input : Matrix S ∈ Rnr×n fr ,AΩ,H, Sm,

tolerance etol and λtol.
Output : Estimated spectrum matrix X.

1 Initialisation: s j ∈ Sm, λ← 0, λprev ← 106;
2 for i← 1 to nr − 1 do
3 Compute sm

i ( f ) by modelling si( f ) ∈ S;
4 Calculate γ(sm

i,ℓt
, sm

j,ℓt
) between the spectra;

5 end
6 Sort γ(sm

i,ℓt
, sm

j,ℓt
) and obtain GK(s j);

7 Update S← SGK , andAΩ,H ← AΩ̃,GK
;

8 Assign S← AΩ,HS, λmin ← 0, λmax ← ||S||∗;
9 while ϵ(X) > etol or |λ − λprev| > λtol do

10 Update λprev ← λ;
11 Compute and update λ← (λmin + λmax)/2;
12 Estimate and update X← T (S, λ);
13 Compute the estimation error ϵ(X);

14 if ϵ(X) > etol then
15 Update λmin ← λ;
16 else
17 Update λmax ← λ;
18 end
19 end
20 Output the estimated matrix X.

3.4. Evaluation of estimation performance

The developed RMC method for HRV spectrum estimation is used to analyse a variety of datasets, as
discussed in the next section. To evaluate the model performance on spectrum estimation across different
subjects and datasets, we use the normalised root mean square error (NRMSE) as the performance
indicator. For the estimation of missing entries in the s j spectrum, the NRMSE index can be calculated
as follows [23],

NRMSE =

√√√√ 1
N f

∑N f

k=1(ŝ j,k − s j,k)2

1
N f−1

∑N f

k=1(s j,k − s̄ j)2
, (3.15)

where, s j,k ∈ S is the original spectrum, j = 1, 2, · · · , nr is the index of the spectrum, and k = 1, 2, · · · ,N f

indicates the data points of missing entries in the spectrum. ŝ j,k is the estimated spectrum, and s̄ j =
1

N f

∑N f

k=1 s j,k is the mean value of the spectrum. The calculation of this index normalises the root
mean square error with the standard deviation of the spectrum, which enables to evaluate the model
performance across different ECG datasets using an indicator with the same scale.
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4. Data analysis

4.1. Datasets

Generally, HRV data can be derived from ECG signals, and in the current study, we retrieved five
widely used benchmark ECG datasets to evaluate the performance of our developed RMC model. These
datasets are summarised as follows.

(i) Combined measurement of ECG, breathing and seismocardiograms (CEBSDB) [32]: This dataset
consists of ECG recordings sampled from 20 healthy volunteers. After excluding a low-quality
recording (‘m018’) due to the issue of electrode contact, the ECG signals collected from 19
subjects were used for the study, which have a sampling duration of approximately 50 minutes.

(ii) Supraventricular arrhythmia database (SADB) [33]: This dataset includes 78 ECG recordings
sampled from subjects with supraventricular arrhythmias, and each signal has a recording time
duration of 30 minutes.

(iii) St Petersburg INCART 12-lead Arrhythmia Database (SPIADB) [34]: This dataset consists of 75
ECG recordings with a duration of 30 minutes, which were collected from patients undergoing
tests for coronary artery disease.

(iv) European ST-T Database (ESTDB) [35]: This database is widely used for the evaluation of ST and
T-wave changes in the ECG morphologies, and includes 90 annotated excerpts of ambulatory ECG
recordings with two-hour sampling durations.

(v) Apnea-ECG Database (APEDB) [36]: This data consists of 70 ECG recordings with a set of apnea
annotations, and each of the recordings has an approximate duration of 7 to 10 hours.

These datasets include ECG recordings with diverse characteristics, such as data sampled from
healthy volunteers, patients with arrhythmias, coronary artery disease, ST and T-wave changes, and
apnea. Therefore, the five ECG datasets will generate different types of HRV data, and in combination
allow a comprehensive evaluation of our developed method for spectrum estimation. It is noted that the
ECG signals in these datasets have varied lengths of sampling durations, and we use the first hour of the
signal only in instances of a long-time sampling duration.

4.2. Signal processing

To generate HRV data for this study, we first identify R-peaks from these ECG recordings by
analysing the QRS complex. Figure 2(a) shows the identified R-peaks in the ECG recording using the
QRS detector as developed in [37]. After identifying the R-peaks, a sequence of RR intervals can be
calculated from timestamps of the consecutive peak values. Next, we implement outlier detection in the
derived RR intervals using an open-source benchmarked toolbox [38], where the outliers are defined as
data points that are too close together, or large RR intervals caused by gaps, or artefact annotations of
the signal. Figure 2(c) illustrates the detected outliers, which are processed by removal and interpolated
to generate the preprocessed sequence.

We note that although a variety of techniques have been developed to detect the R-peaks [39, 40],
it is still challenging to accurately identify the peak values for different types of ECG recordings. For

Mathematical Biosciences and Engineering Volume 21, Issue 8, 6758–6782.



6769

example, as shown in Figure 2(a), the R-peaks are correctly identified for the ECG signal that is sampled
from a healthy subject. However, as shown in Figure 2(b), the R peaks in waves A and B are wrongly
identified for the ECG signal that is collected from an abnormal subject. The comparison of R-peak
detection indicates that it may not always be reliable to use the technique to identify peak values for
different types of ECGs.

Figure 2. ECG signal processing and signal quality analysis of HRV data. (a) R-peaks
identification for ECG recordings sampled from a healthy subject. (b) R-peaks identification
for ECG recording sampled from an abnormal subject. (c) Outlier detection in RR intervals.
(d) Signal quality analysis for the HRV data.

To obtain high-quality HRV data, this study utilises two widely recognised detectors for identifying
peak values: the ‘jqrs’ detector [37] and the ‘wqrs’ detector [40]. Subsequently, a signal quality
index (SQI) is computed for each detected R-peak by contrasting annotations from both detectors [41].
Following this, the average SQI value of R-peaks within 5-minute HRV data segments is calculated,
serving as a quality indicator for each segment. For instance, a segment is deemed high-quality if its

Mathematical Biosciences and Engineering Volume 21, Issue 8, 6758–6782.



6770

SQI indicator exceeds 0.9; otherwise, it is considered low-quality. As illustrated in Figure 2(d), two
data segments exhibit SQI values of 0.813 and 0.737, categorising them as low-quality. By calculating
the average SQI values, the low-quality and high-quality data segments can be efficiently identified, and
the low-quality segments will not be used for further analysis.

4.3. Calculation of the PSD spectrum

The preprocessed HRV data is then resampled with a frequency of 4 Hz, and a 4th order Butterworth
filter is used to remove noises with the pass band of 0.03 to 0.9 Hz [42]. The filtered data is used
to derive HRV spectrum in the frequency domain, and Welch’s algorithm with an overlap of 50% is
used for the calculation [42]. Next, the HRV spectrum matrix can be obtained by stacking all the
calculated spectra. Figure 3(a) shows the three-dimensional plots of PSD spectra that are derived from
different data segments. It can be seen from Figure 3(a) that the PSD spectra have similar patterns in the
waveforms, i.e., LF and HF components, indicating the low-rank property of the HRV matrix derived
from the PSD spectra.

Figure 3. HRV spectrum and the cumulative ratios. (a) PSD spectra of different data segments.
(b) Distributions of cumulative ratios between singular values of the nuclear norm.

In a further step, we calculate the singular values of the derived HRV matrix, and compute the ratio
between singular values and the nuclear norm of the spectrum matrix, which is used as an indicator of
the rank property of the matrix [23]. As shown in Figure 3(b), we demonstrate the low-rank property of
the HRV data by calculating the cumulative ratios of singular values. It can be seen from Figure 3(b)
that the summation of the top ten singular values accounts for approximately 80% of the nuclear
norm, indicating the low-rank properties of the HRV spectrum matrices that are derived from these five
ECG datasets.
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5. Results and discussion

5.1. Uncertainty estimation for PSD spectrum

The derived HRV matrix is then used to evaluate the performance of our developed model for
uncertainty estimation. We note that the uncertainties or distortions of HRV spectrum can result
from many different factors, such as noises, artefacts, missing values, and a variety of computational
approaches (e.g., QRS detection and data interpolation). Without loss of generality, we simulate the
uncertainties as missing values in the HRV spectrum, and evaluate the performance of our developed
method for the uncertainties estimation. As an example in Figure 4, we show the estimation of
uncertainty in HRV spectrum, which is represented as missing values and is mostly in the HF of the
spectrum. Then, we use the rest of the spectrum (i.e., LF band) to estimate the HF band. It can be seen
from Figure 4 that the estimated HF spectrum matches well with the original PSD spectrum, which
efficiently estimated the waveform of the HF in the spectrum, but the estimation with the MC model
introduced large variations around the frequency of 0.25 Hz.

Figure 4. Comparison of HRV spectrum estimation using different methods.

We use the developed RMC method to estimate uncertainties in the spectrum. We simulate the
spectrum with the model described in Eq (3.10), and then use the modelled signal to identify relevant
data segments in the HRV matrix. As an illustration in Figure 4, we show the signal modelling for the
PSD spectrum of 31st data segment of the matrix. It can be seen that the modelled signal efficiently
represents the characteristics of the spectrum, such as the LF and HF.

Next, we calculate correlation coefficients between different data segments using the modelled
signals, and select the data with high coefficients to reconstruct the HRV matrix. Figure 5(a) shows the
calculated coefficients for segments in the original data matrix, and Figure 5(b) illustrates estimation
errors for different combinations of selected data segments. It can be seen from Figure 5(b) that the
RMC model obtains the least estimation error of 0.222 when using nine data segments, and it is smaller
than the estimation error of 0.830 using the traditional MC method. As shown in Figure 5(a), we
highlight the selected data segments with square markers. It can be seen from Figure 5(a) that the
selected important data elements include five neighbours of the target data segment; this is consistent
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with the rational approach that missing values can be generally imputed using nearest neighbours. We
also note that the model identifies four segments as important data, which are not the neighbours of the
target segment, indicating that some data with far distances in the sequence may also provide valuable
information for the estimation of missing entries.

Figure 5. HRV spectrum estimation using matrix completion. (a) The correlation coefficients
of different HRV segments. (b) Estimation errors for different combinations of data segments.

Figure 6. Uncertainty estimation of HRV spectrum using different models with the masking
ratio of 30%: (a) The GRU model, (b) the LSTM model, (c) the BiLSTM model, (d)
the CNN LSTM 3 model, (e) the CNN LSTM 5 model, (f) the MC method, and (g) the
RMC method.
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Figure 7. Uncertainty estimation of HRV spectrum using different models with the masking
ratio of 70%: (a) The GRU model, (b) the LSTM model, (c) the BiLSTM model, (d)
the CNN LSTM 3 model, (e) the CNN LSTM 5 model, (f) the MC method, and (g) the
RMC method.

In a further step, we evaluate the model performance on uncertainty estimation in different conditions,
and we apply different masking ratios on the HRV spectrum. As shown in Figures 6 and 7, our developed
RMC method efficiently estimates missing values for the PSD spectra with masking ratios of 30%
(Figure 6(g)), and 70% (Figure 7(g)), which have estimation errors of 0.221 and 0.426 separately. The
two experiments show the robustness of our developed RMC method for uncertainty estimation in the
HRV spectrum.

5.2. Comparison methods and results

The current study focused on estimating uncertainties of the HRV spectrum, and we compared
our developed methods with different types of regression machine learning models; in particular, the
deep recurrent neural networks have been demonstrated with excellent performance on prediction
or regression analysis. To be specific, we used the gated recurrent units (GRU), the long short-term
memory (LSTM) model, and the bidirectional LSTM (BiLSTM) for the comparison study. We note
that convolutional neural networks (CNN) have shown efficiency in extracting features from data
sequences [43]. Therefore, other than the GRU, LSTM, and BiLSTM, we used two hybrid models for
the comparison study.

For the three types of recurrent neural networks, i.e., the GRU, LSTM, and BiLSTM, they have 120
hidden units for the regression analysis [44]. For the two types of hybrid models, the hyperparameters are
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tuned with trial-and-error search; the first one (CNN LSTM 3) uses three 1D-CNN layers with 32, 64,
and 64 filters, each filter with a size of 3 [45]. Each convolutional layer is followed by a rectified
linear unit (ReLU) function, and a bath normalisation layer, which is then flattened and connected
with a LSTM layer for the regression analysis. The second type of hybrid models (CNN LSTM 5)
consists of five CNN layers, which have 32, 32, 64, 64, and 64 filters, and also uses a LSTM layer
for the regression analysis. The deep learning models are trained with Adam optimizer with an initial
learning rate of 0.005, the maximum epoch size is 100, and the batch size is set as 20. For the prediction
analysis, we use data points from previous steps, i.e., 10 steps [46], to predict the current value in the
data sequence.

The estimation results of these regression models are demonstrated in Figures 6 and 7, which
correspond to the masking ratios of 30% and 70%, respectively. As a comparison study, we also include
the estimation results from the traditional MC method. It can be seen from Figures 6 and 7 that these
machine learning models have small errors on the spectrum estimation; in particular, the BiLSTM and
hybrid models efficiently estimate the peak values around 0.3 Hz for the two masking ratios. Compared
with the deep learning models and the MC method, our developed RMC method has more efficient
estimation performance, which obtains the least estimation errors of 0.221 and 0.426 for the 30%
and 70% masking ratios, respectively.

5.3. Statistical results

We implement the estimation of missing entries for all ECG recordings in the five benchmark
datasets using our developed RMC method and the regression models. Tables 1–3 show the mean value
and standard deviation of estimation errors for the five benchmark datasets with 30%, 50%, and 70%
masking ratios. The minimum estimation error for each dataset is bold-faced. It can be seen from
Tables 1–3 that, compared with the five machine learning models and the traditional MC method, our
developed RMC method obtains the least estimation error for all of the five ECG datasets, and the
increased masks ratios occurred alongside an increase in the estimation errors, which have the values
of 0.286 ± 0.194, 0.312 ± 0.203, and 0.379 ± 0.228 for the CEBSDB with the three masking ratios.

Table 1. Comparison of estimation errors for different methods on benchmark datasets
with 30% masking ratio.

Datasets GRU LSTM BiLSTM CNN LSTM 3 CNN LSTM 5 MC RMC

CEBSDB 1.379 ± 1.112 1.346 ± 0.970 0.671 ± 0.355 0.672 ± 0.459 0.770 ± 0.692 0.393 ± 0.291 0.286 ± 0.194

SADB 1.389 ± 1.751 1.318 ± 1.280 0.733 ± 0.901 0.746 ± 0.902 0.902 ± 1.808 0.332 ± 0.253 0.304 ± 0.199

SPIADB 1.241 ± 0.776 1.211 ± 0.609 0.647 ± 0.289 0.655 ± 0.375 0.709 ± 0.378 0.361 ± 0.539 0.305 ± 0.327

ESTDB 1.317 ± 1.096 1.297 ± 1.043 0.687 ± 0.430 0.691 ± 0.456 0.753 ± 0.549 0.494 ± 0.464 0.329 ± 0.251

APEADB 1.283 ± 0.740 1.268 ± 0.646 0.644 ± 0.263 0.663 ± 0.337 0.727 ± 0.392 0.426 ± 0.357 0.290 ± 0.228
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Table 2. Comparison of estimation errors for different methods on benchmark datasets
with 50% masking ratio.

Datasets GRU LSTM BiLSTM CNN LSTM 3 CNN LSTM 5 MC RMC

CEBSDB 1.061 ± 0.234 1.091 ± 0.275 0.621 ± 0.163 0.619 ± 0.164 0.663 ± 0.175 0.432 ± 0.192 0.312 ± 0.203

SADB 1.067 ± 0.149 1.093 ± 0.190 0.670 ± 0.153 0.673 ± 0.129 0.714 ± 0.136 0.386 ± 0.254 0.338 ± 0.226

SPIADB 1.076 ± 0.168 1.097 ± 0.201 0.657 ± 0.150 0.662 ± 0.115 0.706 ± 0.128 0.388 ± 0.529 0.310 ± 0.290

ESTDB 1.113 ± 0.707 1.138 ± 0.692 0.680 ± 0.306 0.704 ± 0.427 0.745 ± 0.443 0.590 ± 0.446 0.336 ± 0.276

APEADB 1.059 ± 0.292 1.085 ± 0.334 0.642 ± 0.216 0.648 ± 0.168 0.687 ± 0.175 0.547 ± 0.422 0.312 ± 0.256

Table 3. Comparison of estimation errors for different methods on benchmark datasets
with 70% masking ratio.

Datasets GRU LSTM BiLSTM CNN LSTM 3 CNN LSTM 5 MC RMC

CEBSDB 1.350 ± 0.591 1.446 ± 0.676 0.926 ± 0.563 0.906 ± 0.451 1.030 ± 0.622 0.633 ± 0.202 0.379 ± 0.228

SADB 1.131 ± 0.361 1.247 ± 0.422 0.983 ± 0.652 0.819 ± 0.238 0.873 ± 0.284 0.539 ± 0.318 0.397 ± 0.262

SPIADB 1.179 ± 0.398 1.325 ± 0.544 1.019 ± 0.674 0.828 ± 0.230 0.890 ± 0.308 0.502 ± 0.406 0.338 ± 0.247

ESTDB 1.193 ± 0.418 1.335 ± 0.543 1.028 ± 0.743 0.849 ± 0.304 0.903 ± 0.369 0.728 ± 0.356 0.337 ± 0.252

APEADB 1.144 ± 0.368 1.266 ± 0.470 0.958 ± 0.689 0.811 ± 0.256 0.864 ± 0.315 0.694 ± 0.409 0.315 ± 0.246

Figure 8. Distributions of estimation errors of different methods on five ECG benchmark
datasets, (a) CEBSDB, (b) SADB, (c) SPIADB, (d) ESTDB, and (e) APEADB.
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Additionally, we provide violin plots as shown in Figure 8 to demonstrate the distributions of
estimation errors for the seven models. It can be seen from Figure 8 that our developed RMC method
obtains the least estimation errors with median values of 0.330, 0.337, 0.260, 0.259, and 0.235 for the
five benchmark datasets. In particular, we note that compared with the five machine learning models
and the traditional MC method, the RMC method has much smaller variations of the estimation errors
for all the ECG datasets, which indicate the stability and robustness of our developed RMC method for
the spectrum estimation.

5.4. Comparison of computational costs

We calculate the computation cost for missing entry estimation using the RMC method and the other
six methods. All of the estimation tasks are implemented with Matlab R2022a, Intel(R) Core(TM)
i7-1165G7@2.8 GHz, and 32 GB RAM. We calculate the mean value and standard deviation of
computation time for all HRV data segments in the benchmark dataset. Table 4 presents the comparison
of computation cost for all the estimation methods. We note that the five deep learning models have
an increasing trend of computation cost with the increasing model complexity. From Table 4 it can
be seen that among these deep learning models, the GRU model has the least computation time
with 1.117 ± 0.460 s. Compared with the deep learning models and the MC method, our developed
RMC method has the least computation time with 0.105 ± 0.096 s. The results demonstrate the efficiency
of our developed RMC method for HRV spectrum estimation.

Table 4. Comparison of computation time for different estimation methods.

Methods Computation cost (s)
GRU 1.117 ± 0.460

LSTM 1.357 ± 0.704

BiLSTM 2.298 ± 2.091

CNN LSTM 3 2.484 ± 2.218

CNN LSTM 5 2.889 ± 0.909

MC 0.669 ± 0.340

RMC 0.105 ± 0.096

5.5. Discussion

Spectrum metrics of HRV data are important indicators for monitoring physiological and pathological
conditions. However, HRV data are sensitive to a variety of uncertainties in the measurements, such
as motion artefacts and missing values. Although numerous methods have been developed to address
uncertainties of HRV analysis, it is difficult to remove artefacts without affecting the signal waveforms.
We propose to estimate uncertainties of HRV data from a new view in the spectrum analysis; in particular,
we consider the characteristics of LF and HF bands of HRV spectrum. With extensive experimental
studies, we show that the PSD data demonstrate similarities between spectrum waveforms, indicating
the low-rank property of the spectrum matrix, which enables us to use the MC technique for the
uncertainty estimation.
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A variety of computational techniques have been developed for missing value estimation, for
example, different types of interpolation methods [47] and machine learning models [48], including
linear interpolation, k-nearest neighbour (kNN), multiple imputation by chained equation (MICE), neural
networks, and random forest. However, we note that deep neural networks (DNNs), particularly with
recent advancements, have shown superior performance in estimating sequential data [49]. Therefore,
we compared our proposed RMC method with different types of DNNs. We also acknowledge more
advanced predictive models that have been developed recently, such as Transformer [50], Informer [51],
and TimesNet [52], which have not been used for HRV uncertainty estimation, motivating us to
implement more comprehensive comparisons in our future study.

It is a challenging task of estimating missing entries for sparse matrices. We note the performance of
low-rank MC method in handling sparse matrices, which has been demonstrated in previous
literature [53–55]. In this study, we proposed a refined version of the traditional MC method, and our
developed RMC method was used for HRV uncertainty estimation. The results indicated that compared
with different types of DNN models, our RMC method demonstrated promising performance across all
benchmark datasets. The improved model performance can be attributed to the incorporation of specific
characteristics of the HRV spectrum into our modelling approach. For instance, the LF of the HRV
spectrum exhibits a peaked Mayer waveform, while the HF displays a dominant RSA waveform. These
peaked waveforms, observed within a limited number of data points, can pose challenges for DNN
models in uncertainty estimation, and therefore lead to reduced performance.

There are many different types of uncertainties in the analysis of HRV data, such as measurement
noises and artefacts in data acquisition and computational uncertainties in data processing (e.g., data
interpolation, and data resampling). Without loss of generality, we simulate the uncertainties of HRV
spectrum as missing values, which can also be used to indicate the distorted entries affected by motion
artefacts or data interpolation. We show the advantages and robustness of our developed RMC method
for uncertainty estimation on a range of benchmark datasets. To perform a fair comparison, the NRMSE
indicator was used to evaluate the performance of different models on five ECG datasets; we will explore
other metrics for evaluating different types of uncertainties in our future studies. In addition, we note
that HRV spectrum is derived from NN intervals of ECG signals. However, NN interval outliers, caused
by missed or false beat detections, could impact the HRV spectrum. Our next step research aims to
thoroughly investigate these uncertainties and develop robust MC with other advanced techniques, such
as ℓp minimisation [27] and adaptive weighting strategy [56] to mitigate the effects of outliers.

6. Conclusions

This paper presents a new approach to address the challenges of uncertainty estimation in the HRV
spectrum using the low-rank MC method. In particular, we propose a new RMC method that takes
into account the characteristics of frequency components in the HRV spectrum for more accurate
uncertainty modelling. We evaluate the performance of our developed RMC method on five benchmark
datasets with varying masking ratios. To assess its effectiveness, we compare our method with five
deep regression models and the traditional MC method. The results demonstrate that our RMC method
achieves the lowest estimation error while maintaining the minimal computational cost, which highlights
the advantages and efficiency of our developed model for HRV spectrum estimation.
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11. B. E. Ajtay, S. Béres, L. Hejjel, The oscillating pulse arrival time as a physiological
explanation regarding the difference between ECG-and photoplethysmogram-derived
heart rate variability parameters, Biomed. Signal Process. Control, 79 (2023), 104033.
https://doi.org/10.1016/j.bspc.2022.104033

12. J. Lee, M. Kim, H. K. Park, I. Y. Kim, Motion artifact reduction in wearable photoplethysmography
based on multi-channel sensors with multiple wavelengths, Sensors, 20 (2020), 1493.
https://doi.org/10.3390/s20051493

13. F. Xiong, D. Chen, Z. Chen, S. Dai, Cancellation of motion artifacts in ambulatory ECG signals
using TD-LMS adaptive filtering techniques, J. Visual Commun. Image Represent., 58 (2019),
606–618. https://doi.org/10.1016/j.jvcir.2018.12.030

14. P. Guyot, P. Voiriot, E. H. Djermoune, S. Papelier, C. Lessard, M. Felices, et al., R-peak detection
in Holter ECG signals using non-negative matrix factorization, in 2018 Computing in Cardiology
Conference (CinC), IEEE, (2018), 1–4. https://doi.org/10.22489/CinC.2018.123

15. Y. I. Jang, J. Y. Sim, J. R. Yang, N. K. Kwon, Improving heart rate variability information
consistency in Doppler cardiogram using signal reconstruction system with deep learning
for contact-free heartbeat monitoring, Biomed. Signal Process. Control, 76 (2022), 103691.
https://doi.org/10.1016/j.bspc.2022.103691

16. G. S. Lee, M. L. Chen, G. Y. Wang, Evoked response of heart rate variability using short-duration
white noise, Auton. Neurosci., 155 (2010), 94–97. https://doi.org/10.1016/j.autneu.2009.12.008

17. E. J. Candès, B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., 9
(2009), 717–772. https://doi.org/10.1007/s10208-009-9045-5

18. X. P. Li, L. Huang, H. C. So, B. Zhao, A survey on matrix completion: Perspective of signal
processing, preprint, arXiv:1901.10885.

19. L. Lu, Y. Tan, M. Klaic, M. P. Galea, F. Khan, A. Oliver, et al., Evaluating rehabilitation progress
using motion features identified by machine learning, IEEE Trans. Biomed. Eng., 68 (2020),
1417–1428. https://doi.org/10.1109/TBME.2020.3036095

Mathematical Biosciences and Engineering Volume 21, Issue 8, 6758–6782.

http://dx.doi.org/https://doi.org/10.1109/TBME.2021.3060867
http://dx.doi.org/https://doi.org/10.1016/j.bspc.2019.04.006
http://dx.doi.org/https://doi.org/10.1016/j.bspc.2020.102291
http://dx.doi.org/https://doi.org/10.1109/JTEHM.2023.3236393
http://dx.doi.org/https://doi.org/10.1016/j.bspc.2022.104033
http://dx.doi.org/https://doi.org/10.3390/s20051493
http://dx.doi.org/https://doi.org/10.1016/j.jvcir.2018.12.030
http://dx.doi.org/https://doi.org/10.22489/CinC.2018.123
http://dx.doi.org/https://doi.org/10.1016/j.bspc.2022.103691
http://dx.doi.org/https://doi.org/10.1016/j.autneu.2009.12.008
http://dx.doi.org/https://doi.org/10.1007/s10208-009-9045-5
http://dx.doi.org/https://doi.org/10.1109/TBME.2020.3036095


6780

20. T. Liu, M. Sun, J. Meng, Z. Wu, Y. Shen, N. Feng, Compressive sampling photoacoustic microscope
system based on low rank matrix completion, Biomed. Signal Process. Control, 26 (2016), 58–63.
https://doi.org/10.1016/j.bspc.2015.12.008

21. L. Xu, M. E. Chavez-Echeagaray, V. Berisha, Unsupervised EEG channel selection based
on nonnegative matrix factorization, Biomed. Signal Process. Control, 76 (2022), 103700.
https://doi.org/10.1016/j.bspc.2022.103700

22. E. Nasiri, K. Berahmand, M. Rostami, M. Dabiri, A novel link prediction algorithm for protein-
protein interaction networks by attributed graph embedding, Comput. Biol. Med., 137 (2021),
104772. https://doi.org/10.1016/j.compbiomed.2021.104772

23. S. Nousias, C. Tselios, D. Bitzas, A. S. Lalos, K. Moustakas, I. Chatzigiannakis, Uncertainty
management for wearable IoT wristband sensors using Laplacian-based matrix completion, in 2018
IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD), IEEE, (2018), 1–6. https://doi.org/10.1109/CAMAD.2018.8515001

24. L. Lu, T. Zhu, Y. T. Zhang, D. A. Clifton, Spectrum estimation of heart rate variability using
low-rank matrix completion, in 2022 IEEE-EMBS International Conference on Biomedical and
Health Informatics (BHI), IEEE, (2022), 01–04. https://doi.org/10.1109/BHI56158.2022.9926897

25. W. S. Chen, L. Hsieh, S. Y. Yuan, High performance data compression method with pattern
matching for biomedical ecg and arterial pulse waveforms, Comput. Methods Programs Biomed.,
74 (2004), 11–27. https://doi.org/10.1016/S0169-2607(03)00022-1

26. G. Shabat, A. Averbuch, Interest zone matrix approximation, Electron. J. Linear Algebra, 23 (2012),
678–702.

27. W. J. Zeng, H. C. So, Outlier-robust matrix completion via ℓp-minimization, IEEE Trans. Signal
Process., 66 (2017), 1125–1140. https://doi.org/10.1109/TSP.2017.2784361

28. T. Hastie, R. Tibshirani, M. Wainwright, Statistical learning with sparsity, Monogr. Stat. Appl.
Probab., 143 (2015), 8.

29. R. Mazumder, T. Hastie, R. Tibshirani, Spectral regularization algorithms for learning large
incomplete matrices, J. Mach. Learn. Res., 11 (2010), 2287–2322.

30. T. Hastie, R. Mazumder, J. D. Lee, R. Zadeh, Matrix completion and low-rank SVD via fast
alternating least squares, J. Mach. Learn. Res., 16 (2015), 3367–3402.

31. M. Daoud, P. Ravier, R. Harba, M. Jabloun, B. Yagoubi, O. Buttelli, HRV spectral estimation based
on constrained Gaussian modeling in the nonstationary case, Biomed. Signal Process. Control, 8
(2013), 483–490. https://doi.org/10.1016/j.bspc.2013.04.007
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