Research article Special Issues

The S-asymptotically $ \omega $-periodic solutions for stochastic fractional differential equations with piecewise constant arguments

  • Received: 10 July 2023 Revised: 25 October 2023 Accepted: 26 October 2023 Published: 08 November 2023
  • In this paper, two kinds of stochastic differential equations with piecewise constant arguments are investigated. Sufficient conditions for the existence of the square-mean S-asymptotically $ \omega $-periodic solutions of these two type equations are derived where $ \omega $ is an integer. Then, the global asymptotic stability for one of them is considered by using the comparative approach. In order to show the theoretical results, we give two examples.

    Citation: Shufen Zhao. The S-asymptotically $ \omega $-periodic solutions for stochastic fractional differential equations with piecewise constant arguments[J]. Electronic Research Archive, 2023, 31(12): 7125-7141. doi: 10.3934/era.2023361

    Related Papers:

  • In this paper, two kinds of stochastic differential equations with piecewise constant arguments are investigated. Sufficient conditions for the existence of the square-mean S-asymptotically $ \omega $-periodic solutions of these two type equations are derived where $ \omega $ is an integer. Then, the global asymptotic stability for one of them is considered by using the comparative approach. In order to show the theoretical results, we give two examples.



    加载中


    [1] S. Zhao, M. Song, Stochastic impulsive fractional differential evolution equations with infinite delay, FILOMAT, 34 (2017), 4261–4274. https://doi.org/10.2298/FIL1713261Z doi: 10.2298/FIL1713261Z
    [2] X. Shu, J. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465–476. http://dx.doi.org/10.1016/j.amc.2015.10.020 doi: 10.1016/j.amc.2015.10.020
    [3] S. M. Shah, J. Wiener, Advanced differential equations with piecewise constant argument deviations, Int. J. Math. Math. Sci., 6 (1983), 671–703. http://doi:10.1155/s0161171283000599 doi: 10.1155/s0161171283000599
    [4] K. S. Chiu, T. Li, New stability results for bidirectional associative memory neural networks model involving generalized piecewise constant delay, Math Comput. Simulat., 194 (2022), 719–743. https://doi.org/10.1016/j.matcom.2021.12.016 doi: 10.1016/j.matcom.2021.12.016
    [5] K. S. Chiu, Existence and global exponential stability of periodic solution for Cohen-Grossberg neural networks model with piecewise constant argument, Hacet. J. Math. Stat., 51 (2022), 1219–1236. https://doi.10.15672/hujms.1001754 doi: 10.15672/hujms.1001754
    [6] L. Liu, A. Wu, Z. Zeng, T. Huang, Global mean square exponential stability of stochastic neural networks with retarded and advanced argument, Neurocomputing, 247 (2017), 719–743. https://doi.10.1016/j.neucom.2017.03.057 doi: 10.1016/j.neucom.2017.03.057
    [7] M. Milošvić, The Euler-Maruyama approximation of solutions to stochastic differential equations with piecewise constant arguments, J. Comput. Appl. Math., 298 (2017), 1–12. https://doi:10.1016/j.cam.2015.11.019 doi: 10.1016/j.cam.2015.11.019
    [8] W. Dimbour, S. Manou-Abi, Asymptotically $\omega$-periodic function in the Stepanov sense and its applications for an advanced differential equation with piecewise constant argument in a Banach space, Mediterr. J. Math., 15 (2018), 25. https://doi.org/10.1007/s00009-018-1071-6 doi: 10.1007/s00009-018-1071-6
    [9] H. Henríquez, C. Cuevas, A. Caicedo, Almost periodic solutions of partial differential equations with delay, Adv. Differ. Equations, 2015 (2015), 1–15. https://doi.org/10.1186/s13662-015-0388-8 doi: 10.1186/s13662-015-0388-8
    [10] C. Cuevas, J. C. de Souza, S-asymptotically $\omega$-periodic solutions of semilinear fractional integro-differential equations, Appl. Math. Lett., 22 (2009), 865–870. https://doi.org/10.1016/j.aml.2008.07.013 doi: 10.1016/j.aml.2008.07.013
    [11] H. Henríquez, M. Pierri, P. Táboas, On S-asymptotically $\omega$-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 343 (2008), 1119–1130. https://doi.org/10.1016/j.jmaa.2008.02.023 doi: 10.1016/j.jmaa.2008.02.023
    [12] S. H. Nicola, M. Pierri, A note on S-asymptotically periodic functions, Nonlinear Anal. Real., 10 (2009), 2937–2938. https://doi.org/10.1016/j.nonrwa.2008.09.011 doi: 10.1016/j.nonrwa.2008.09.011
    [13] C. Cuevas, J.C. de Souza, Existence of S-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal. Theory Methods Appl., 72 (2010), 1683–1689. https://doi.org/10.1016/j.na.2009.09.007 doi: 10.1016/j.na.2009.09.007
    [14] W. Dimbour, J.C. Mado, S-asymptotically $\omega$-periodic solution for a nonlinear differential equation with piecewise constant argument in a Banach space, Cubo (Temuco), 16 (2014), 55–65.
    [15] J. Smoller, Lévy Processes and Stochastic Calculus, Cambridge, 2009.
    [16] S. Rong, Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analytical Techniques with Applications to Engineering, Berlin & Heidelberg & New York, 2006.
    [17] Z. Liu, K. Sun, Almost automorphic solutions for stochastic differential equations driven by Lévy noise, J. Funct. Anal., 266 (2014), 1115–1149. http://dx.doi.org/10.1016/j.jfa.2013.11.011 doi: 10.1016/j.jfa.2013.11.011
    [18] S. Zhao, X. Li, J. Zhang, S-asymptotically $\omega$-periodic solutions in distribution for a class of stochastic fractional functional differential equations, Electron. Res. Arch., 31 (2022), 599–614. http://dx.doi.org/10.3934/era.2023029 doi: 10.3934/era.2023029
    [19] S. Peszat, J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, Cambridge University Press, 2007.
    [20] S. H. Holden, B. Øksendal, J. Ubøe, T. Zhang, Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach, New York, 2009.
    [21] S. S. Albeverio, B. Rüdiger, Stochastic Integrals and Lévy-Ito Decomposition on Separable Banach Spaces, 2nd edition, MaPhySto Lévy Conference, 2002.
    [22] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge university press, 2014.
    [23] M. Haase, The Functional Calculus for Sectorial Operators, Springer, New York, 2006.
    [24] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Springer, New York, 2012.
    [25] J. P. C. Dos Santos, C. Cuevas, Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations, Appl. Math. Lett., 23 (2010), 960–965. https://doi.org/10.1016/j.aml.2010.04.016 doi: 10.1016/j.aml.2010.04.016
    [26] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph.D thesis, Eindhoven University of Technology, Citeseer, 2001.
    [27] E. Cuesta, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations, Discrete Contin. Dyn. Syst., (2007), 277–285.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(752) PDF downloads(88) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog