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Abstract: In this paper, two kinds of stochastic differential equations with piecewise constant
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1. Introduction

For the applications in many practical dynamical phenomena arising in engineering, physics,
economy and science, the differential equations of fractional order have been widely studied by many
authors [1, 2]. It is normal for things to be influenced by the past, as the past events are important for
the present current behavior. Shah and Wiener [3] considered the differential equations containing
piecewise constant argument which is a constant delay of generalized type [4]. This type of system
attracts a lot of attention in control theory and neural networks [5, 6]. The differential systems with
piecewise constant argument have the structure of continuous dynamical systems within intervals of
certain lengths, so these kind of systems have properties of both differential and difference equations.
It is difficult to obtain the exact solutions of the differential systems with piecewise constant
argument, so the numerical solutions are required in practice, especially, Milos̆vić [7] investigated the
strong convergence and stability of the Euler-Maruyama method for stochastic differential equations
with piecewise constant arguments.

The periodic development of things is an important phenomenon in nature, which is valued and
deeply studied by the majority of scientific and technological workers, there have been many papers
dealing with the properties about almost automorphic, asymptotically almost automorphic, almost
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periodic and S-asymptotically ω-periodic solutions of various deterministic differential systems
according to their different applications in different areas [8, 9]. The papers [10–12] deal with the
properties of the S-asymptotically ω-periodic solutions of the determinate systems in finite
dimension, and [11, 13] deal the S-asymptotically ω-periodic solutions of the determinate systems in
infinite dimension. Especially in [13], Cuevas et al. considered the S-asymptotically ω-periodic
solution of the following form, x′(t) =

∫ t

0
(t−s)α−2

Γ(α−1) Ax(s)ds + f (t, xt),
x0 = ψ0 ∈ B,

where B is some abstract phase space, and in [14], Dimbour et al. considered the same question of the
differential equations of the form{

x′(t) = Ax(t) + A0x([t]) + g(t, x(t)),
x(0) = c0.

Note that the effect of noise is unavoidable in the study of some natural sciences as well as
man-made phenomena such as ecology, biology, finance markets, engineering and other fields. Since
the properties of the Lévy processes have useful information in explaining some drastic changes in
nature and various scientific fields [15, 16], it is worth studying the stochastic fractional differential
equations with Lévy noise [17–19]. It is natural to extend the known results from deterministic
systems to stochastic systems. So in this work, the properties of a class of stochastic fractional
differential equations driven by Lévy noise with piecewise constant argument of the following form

dx(t) =
∫ t

0
(t−s)α−2

Γ(α−1) Ax(s)dsdt + f (t, x([t]), x(t))dt + g(t, x([t]), x(t))dw(t)
+
∫
|u|U<1

F(t, x(t−), u)Ñ(dt, du) +
∫
|u|U≥1

G(t, x(t−), u)N(dt, du),
x(0) = c0,

(1.1)

where x(·) takes value in a real separable Hilbert space H, 1 < α < 2 and A is a linear densely defined
sectorial operator on H, with domain D(A). The convolution integral in (1.1) is the Riemann-Liouville
fractional integral. w(t) is an U-valued Wiener process with covariance operator Q, the so-called Q-
Wiener process. Ñ(dt, du) and N(dt, du) are introduced in the second section. Properties about the
mild solution and the square-mean S-asymptotically ω-periodic solution of the Cauchy problem (1.1)
are presented in this work. Furthermore, we also analyze about the following system

dx(t) = Ax(t)dt + f (t, x([t]), x(t))dt + g(t, x([t]), x(t))dw(t)
+
∫
|u|U<1

F(t, x(t−), u)Ñ(dt, du) +
∫
|u|U≥1

G(t, x(t−), u)N(dt, du),
x(0) = c0,

(1.2)

and the operator A : D(A) ⊂ H → H is the generator of a bounded linear operator semigroup S (t) with
S (t) ≤ M0e−γt for any t ≥ 0 and M0 > 0 is a positive number.

The concept of the Poisson square-mean S-asymptoticallyω-periodic process was presented in [18].
In this work, we show the existence results of the square-mean S-asymptotically ω-periodic solution
of (1.1) and (1.2) with piecewise constant arguments, and we will show that when ω ∈ Z+ the system
(1.1) and (1.2) may have the square-mean S -asymptotically ω-periodic solution.
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This article is composed of seven sections. In Section 2, we introduce notation, definitions and
preliminary facts. In Section 3, the results about the mild solutions for problems (1.1) and (1.2) are
obtainted using the successive approximation. In Section 4, we show the existence and uniqueness of
the square-mean S -asymptotically ω-periodic solution for (1.1) and (1.2) using the Banach contraction
mapping principle. In Section 5, we give sufficient conditions for the globally asymptotically stable of
the square-mean S -asymptotically ω-periodic solution of (1.2). In Section 6, two examples are given
to illustrate the theoretical results. Some conclusions are given in the last section.

2. Preliminaries

Let (Ω,F , P) be a complete probability space equipped with a filtration {Ft}t≥0 which satisfy the
usual conditions, (H, | · |) and (U, | · |) are real separable Hilbert spaces. L(U,H) denote the space of
all bounded linear operators from U to H which with the usual operator norm ∥ · ∥L(U,H) is a Banach
space. L2(P,H) is the space of all H-valued random variables X such that E|X|2 =

∫
Ω
|X|2dP < ∞

where the expectation E is defined as Ex =
∫
Ω

x(ω)dP for any random variable x defined on (Ω,F , P).
For X ∈ L2(P,H), let ∥X∥ := (

∫
Ω
|X|2dP)1/2, it is well known that (L2(P,H), ∥ · ∥) is a Hilbert space.

We denote by M2([0,T ],H) for the collection of stochastic processes x(t) : [0,T ] → L2(P,H) such
that E

∫ T

0
|x(s)|ds < ∞. In the following discussion, we always consider the Lévy processes that are

U-valued, and first we recall the definition of Lévy process.
Definition A U-valued stochastic process L = (L(t), t ≥ 0) is called Lévy process if

(1) L(0) = 0 almost surely;
(2) L has independent and stationary increments;
(3) L is stochastically continuous, i.e. for all ϵ > 0 and all s > 0, limt→s P(|L(t) − L(s)|U > ϵ) = 0.

Let L is a Lévy process on U, we write ∆L(t) = L(t) − L(t−) for all t ≥ 0. We define a counting
Poisson random measure N on (U − {0}) through

N(t,O) = ♯{0 ≤ s ≤ t : ∆L(s)(ω′) ∈ O} = Σ0≤s≤tχO(∆L(s)(ω′))

for any Borel set O in (U − {0}), χO is the indicator function. We write ν(·) = E(N(1, ·)) and call it
the intensity measure associated with L. We say that a Borel set O in (U − {0}), is bounded below if
0 ∈ Ō where Ō is closure of O. If O is bounded below, then N(t,O) < ∞ almost surely for all t ≥ 0 and
(N(t,O), t ≥ 0) is a Poisson process with intensity ν(O). So N is called Poisson random measure. For
each t ≥ 0 and O bounded below, the associated compensated Poisson random measure Ñ is defined
by Ñ(t,O) = N(t,O) − tν(O) (see [15, 20]).

Proposition 2.1. (see [15]) (Lévy-Itô decomposition). If L is a U-valued Lévy process, then there exist
a ∈ U, a U-valued Wiener process w with covariance operator Q, the so-called Q-wiener process, and
an independent Poisson random measure N on R+ × (U − {0}) such that, for each t ≥ 0,

L(t) = at + w(t) +
∫
|u|U<1

uÑ(t, du) +
∫
|u|U≥1

uN(t, du), (2.1)

where the Poisson random measure N has the intensity measure ν which satisfies
∫

U
(|y|2U ∧1)ν(dy) < ∞

and Ñ is the compensated Poisson random measure of N.
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For detailed properties of Lévy process and Q-Wiener processes, we refer the readers to [15,20–22].
In this work, the covariance operator Q of w satisfying TrQ < ∞ and the Lévy process L is defined on
the filtered probability space (Ω,F , P, (Ft)t∈R+), and b :=

∫
|y|U≥1

ν(dx) throughout the paper.

Definition 2.1. (see [17]) A stochastic process x : R→ L2(P,H) is said to be L2-continuous if for any
s ∈ R, limt→s ∥x(t) − x(s)∥2 = 0. It is L2-bounded if supt∈R ∥x(t)∥ < ∞.

Definition 2.2. (see [18])

(1) An L2-continuous stochastic process x : R+ → L2(P,H) is said to be square-mean
S-asymptotically ω-periodic if there exists ω > 0 such that limt→∞ ∥x(t + ω) − x(t)∥ = 0. We
denote the collection of such process by S APω(L2(P,H)).

(2) A function g : R+ × L2(P,H) → L(U, L2(P,H)), (t, X) 7→ g(t, X) is said to be square-mean
S-asymptotically ω-periodic in t for each X ∈ L2(P,H) if g satisfies

∥g(t, X) − g(t′, X′)∥2
L(U,L2(P,H)) → 0 as (t′, X′)→ (t, X)

and
lim
t→∞
∥(g(t + ω, X) − g(t, X))Q1/2∥2

L(U,L2(P,H)) = 0, ∀X ∈ L2(P,H).

(3) A function F : R+ × L2(P,H) × U → L2(P,H), (t, X, u) 7→ F(t, X, u) with∫
U
∥F(t, ϕ, u)∥2ν(du) < ∞

is said to be Poisson square-mean S-asymptotically ω-periodic in t for each X ∈ L2(P,H) if F
satisfies ∫

U
∥F(t, X, u) − F(t′, X′, u)∥2ν(du)→ 0 as (t′, X′)→ (t, X)

and that
lim
t→∞

∫
U
∥F(t + ω, X, u) − F(t, X, u)∥2ν(du) = 0 ∀X ∈ L2(P,H).

Remark 2.1. Any square-mean S-asymptotically ω-periodic process x(t) is L2-bounded and, by [11],
S APω(L2(P,H)) with the norm

∥x∥∞ := sup
t∈R+
∥x(t)∥ = sup

t∈R+
(E|x(t)|2)

1
2

is a Banach space.

To simplify the text, for definitions about square-mean S-asymptotically ω-periodic functions with
parameters we refer the readers to [18]. Now let’s recall some definition about sectorial operators, for
details, see [23–25].

Definition 2.3. Let X be an Banach space, A : D(A) ⊆ X → X is a closed linear operator . A is
said to be sectorial operator of type µ and angle θ if there exist 0 < θ < π/2, M > 0 and µ ∈ R
such that the resolvent ρ(A) of A exists outside the sector µ + S θ = {µ + λ : λ ∈ C, |arg(−λ)| < θ} and
∥(λ − A)−1∥ ≤ M

|λ−µ|
, when λ does not belong to µ + S θ.
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If A is sectorial of type µ with 1 < θ < π(1 − α
2 ), then A is the generator of a solution operator given

by S α(t) = 1
2πi

∫
γ

eλtλα−1(λα − A)−1dλ, where γ is a suitable path lying outside the sector µ + S θ [26].
We now directly give the definitions of mild solution of (1.1) and (1.2) which are based on the works

of [17] and [25].

Definition 2.4. A stochastic process {x(t), t ∈ [0,T ]}, 0 ≤ T < ∞ is said to be a mild solution to (1.1)
if

(1) x(t) is Ft-adapted, t ≥ 0 and has Càdlàg paths on t ≥ 0 almost surely and
(2) x(t) satisfies the following stochastic integral equation

x(t) = S α(t)c0 +

∫ t

0
S α(t − s) f (s, x([s]), x(s))ds

+

∫ t

0
S α(t − s)g(s, x([s]), x(s))dw(s)

+

∫ t

0

∫
|u|<1

S α(t − s)F(s, x(s−), u)Ñ(ds, du)

+

∫ t

0

∫
|u|≥1

S α(t − s)G(s, x(s−), u)N(ds, du).

Definition 2.5. A stochastic process {x(t), t ∈ [0,T ]}, 0 ≤ T < ∞ is said to be a mild solution to (1.2)
if

(1) x(t) is Ft-adapted, t ≥ 0 and has Càdlàg paths on t ≥ 0 almost surely and
(2) x(t) satisfies the following stochastic integral equation

x(t) = S (t)c0 +

∫ t

0
S (t − s) f (s, x([s]), x(s))ds

+

∫ t

0
S (t − s)g(s, x([s]), x(s))dw(s)

+

∫ t

0

∫
|u|<1

S (t − s)F(s, x(s−), u)Ñ(ds, du)

+

∫ t

0

∫
|u|≥1

S (t − s)G(s, x(s−), u)N(ds, du).

3. The mild solutions of (1.1) and (1.2)

In the remainder of this article, the following conditions are considered to hold.

(H1) The operator A in (1.1) is a sectorial operator, Cuesta [27] showed that, if A is a sectorial operator
of the type µ < 0, for some M > 0 and 0 < θ < π(1 − π

2 ), there is C > 0 such that

∥S α(t)∥ ≤
CM

1 + |µ|tα
, t ≥ 0. (3.1)

(H2) f : R+×L2(P,H)×L2(P,H)→ L2(P,H), g : R+×L2(P,H)×L2(P,H)→ L(U, L2(P,H)) are jointly
measurable and Ft adapted. F : R+×L2(P,H)×U → L2(P,H),G : R+×L2(P,H)×U → L2(P,H)
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are jointly measurable, Ft adapted and Ft-predictable. ∀t ∈ R+, ∃L > 0 which is independent of
t, such that

∥ f (t, x, y) − f (t, x1, y1)∥2 ≤ L(∥x − x1∥
2 + ∥y − y1∥

2),
∥(g(t, x, y) − g(t, x1, y1))Q1/2∥2

L(U,L2(P,H)) ≤ L(∥x − x1∥
2 + ∥y − y1∥

2),∫
|u|U<1

∥F(t, x, u) − F(t, z, u)∥2ν(du) ≤ L∥x − z∥2,∫
|u|U≥1

∥G(t, y, u) −G(t, z, u)∥2ν(du) ≤ L∥y − z∥2

and

f (t, 0, 0) = 0, g(t, 0, 0) = 0, F(t, 0, u) = 0, G(t, 0, u) = 0. (3.2)

Theorem 3.1. If (H1) and (H2) hold, the system (1.1) has a unique mild solution.

Proof. Set x0 ≡ S α(t)c0, and n = 1, 2, ..., ∀ T ∈ (0,∞), the Picard iterations are defined as follows:

xn(t) = S α(t)c0 +

∫ t

0
S α(t − s) f (s, xn−1([s]), xn−1(s))ds

+

∫ t

0
S α(t − s)g(s, xn−1([s]), xn−1(s))dw(s)

+

∫ t

0

∫
|u|<1

S α(t − s)F(s, xn(s−), u)Ñ(ds, du) (3.3)

+

∫ t

0

∫
|u|≥1

S α(t − s)G(s, xn(s−), u)N(ds, du)

for t ∈ [0,T ]. Obviously, x0(·) ∈ L2(P,H). By using the Cauchy inequality

∥xn(t)∥2

= ∥S α(t)c0 +

∫ t

0
S α(t − s) f (s, xn−1([s]), xn−1(s))ds

+

∫ t

0
S α(t − s)g(s, xn−1([s]), xn−1(s))dw(s)

+

∫ t

0

∫
|u|<1

S α(t − s)F(s, xn−1(s−), u)Ñ(ds, du)

+

∫ t

0

∫
|u|≥1

S α(t − s)G(s, xn−1(s−), u)N(ds, du)∥2

≤ 5(CM)2∥c0∥
2 + 5∥

∫ t

0
S α(t − s) f (s, xn−1([s]), xn−1(s))ds∥2

+ 5
∫ t

0
∥S α(t − s)∥2∥g(s, xn−1([s]), xn−1(s))Q1/2∥2

L(U,L2(P,H))ds

+ 5∥
∫ t

0

∫
|u|U<1

S α(t − s)F(s, xn−1(s−), u)Ñ(ds, du)∥2
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+ 5∥
∫ t

0

∫
|u|≥1

S α(t − s)G(s, xn−1(s−), u)N(ds, du)

+

∫ t

0

∫
|u|≥1

S α(t − s)G(s, xn−1(s−), u)ν(du)ds∥2

= Λ1 + Λ2 + Λ3 + Λ4 + Λ5

Note the inequality (3.1), we get the estimation Λ1 ≤ 5(CM)2∥c0∥
2. Using the Hölder inequality, and

the conditions for mapping f : R+ × L2(P,H) × L2(P,H)→ L2(P,H), we get

Λ2 ≤ 5(CM)2
∫ t

0

1
1 + |µ|(t − s)α

ds ×
∫ t

0

1
1 + |µ|(t − s)α

L(∥xn−1([s])∥2 + ∥xn−1(s)∥2)ds

≤ 5(CM)2
∫ t

0

1
1 + |µ|(t − s)α

ds ×
∫ t

0

1
1 + |µ|(t − s)α

L(∥xn−1([s])∥2 + ∥xn−1(s)∥2)ds

≤ 5(CM)2L[
|µ|−1/απ

α sin(π/α)
] ×
∫ t

0
(∥xn−1([s])∥2 + ∥xn−1(s)∥2)ds

By using a similar estimate toΛ2, combined the Itô’s isometry, the B-D-G inequality and the properties
of integrals for Poisson random measures, we get

Λ3 + Λ4 + Λ5

≤ +5(CM)2
∫ t

0

1
1 + |µ|2(t − s)2α L(∥xn−1([s])∥2 + ∥xn−1(s)∥2)ds

+ 5(CM)2L
∫ t

0
∥xn−1(s−)∥2ds + 10(CM)2L

∫ t

0
∥xn−1(s)∥2ds

+ 10(CM)2 |µ|
−1/απ

α sin(π/α)
bL
∫ t

0
∥xn−1(s−)∥2ds

so we get

sup
0≤s≤t
∥xn(s)∥2

≤ 5(CM)2∥c0∥
2 + 5(CM)2L(2

|µ|−1/απ

α sin(π/α)

+5 + 2b
|µ|−1/απ

α sin(π/α)
)
∫ t

0
sup

0≤θ≤s
∥xn−1(θ)∥2ds,

then ∀ k̃ ∈ Z+, the following inequality holds.

max
1≤n≤k̃

sup
0≤s≤t
∥xn(s)∥2

≤ 3(CM)2∥c0∥
2 + 5(CM)2L(2

|µ|−1/απ

α sin(π/α)
+ 5

+2b
|µ|−1/απ

α sin(π/α)
) ×
∫ t

0
max
1≤n≤k̃

sup
0≤θ≤s
∥xn−1(θ)∥2ds.
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If we let c1 = 5(CM)2∥c0∥
2, c2 = 5(CM)2L(2 |µ|−1/απ

α sin(π/α) +5+2b |µ|−1/απ

α sin(π/α) ), then by the Gronwall inequality,

max
1≤n≤k̃

sup
0≤s≤t
∥xn(s)∥2 ≤ c1ec2t.

Due to the arbitrariness of k̃, we have

sup
0≤s≤t
∥xn(s)∥2 ≤ c1ec2T . (3.4)

For

∥x1(t) − x0(t)∥2 (3.5)

= ∥

∫ t

0
S α(t − s) f (s, x0([s]), xn−1(s))ds +

∫ t

0
S α(t − s)g(s, x0([s]), x0(s))dw(s)

+

∫ t

0

∫
|u|<1

S α(t − s)F(s, x0(s−), u)Ñ(ds, du) (3.6)

+

∫ t

0

∫
|u|≥1

S α(t − s)G(s, x0(s−), u)N(ds, du)∥2

= ∥

∫ t

0
S α(t − s)[ f (s, c0, c0) − f (s, 0, 0)]ds

+

∫ t

0
S α(t − s)[g(s, c0, c0) − g(s, 0, 0)]dw(s)

+

∫ t

0

∫
|u|<1

S α(t − s)[F(s, c0, u) − F(s, 0, u)]Ñ(ds, du) (3.7)

+

∫ t

0

∫
|u|≥1

S α(t − s)[G(s, c0, u) −G(s, 0, u)]N(ds, du)∥2

≤ 4(CM)2∥c0∥
2L(
|µ|−1/απ

α sin(π/α)
)2

+16(CM)2∥c0∥
2L(

|µ|−2/απ

2α sin(π/2α)
) + 8(CM)2∥c0∥

2L(
|µ|−1/απ

α sin(π/α)
)2b, (3.8)

and let

C̃ = 4(CM)2∥c0∥
2L(
|µ|−1/απ

α sin(π/α)
)2

+16(CM)2∥c0∥
2L(

|µ|−2/απ

2α sin(π/2α)
) + 8(CM)2∥c0∥

2L(
|µ|−1/απ

α sin(π/α)
)2b

we claim that for n ≥ 0,

∥xn+1(t) − xn(t)∥2 ≤
C̃(M̃t)n

n!
, for 0 ≤ t ≤ T, (3.9)

where M̃ = 4(CM)2L[ 2|µ|−1/απ

α sin(π/α) + 5+ 2b |µ|−1/απ

α sin(π/α) ], we will show this claim by induction. Obviously, (3.9)
holds when n = 0. We assume that (3.9) holds for some n > 0, we now prove that (3.9) still holds for
n + 1. Note that

∥xn+2(t) − xn+1(t)∥2
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≤ 4∥
∫ t

0
S α(t − s)[ f (s, xn+1([s]), xn+1(s)) − f (s, xn([s]), xn(s))]ds∥2

+ 4∥
∫ t

0
S α(t − s)[g(s, xn+1([s]), xn+1(s)) − g(s, xn([s]), xn(s))]dw(s)∥2

+ 4∥
∫ t

0

∫
|u|<1

S α[F(s, xn+1(s−), u) − F(s, xn(s−), u)]Ñ(ds, du)∥2

+ 4∥
∫ t

0

∫
|u|≥1

S α[G(s, xn+1(s−), u) −G(s, xn(s−), u)]N(ds, du)∥2

≤ 4(CM)2L(
|µ|−1/απ

α sin(π/α)
+ 1) ×

∫ t

0
[∥xn+1([s]) − xn([s])∥2 + ∥xn+1(s) − xn(s)∥2]ds

+ 4(CM)2L
∫ t

0

1
1 + |µ|2(t − s)2α ∥xn+1(s−) − xn(s−)∥2ds

+ 8∥
∫ t

0

∫
|u|≥1

S α(t − s)[G(s, xn+1(s−), u) −G(s, xn(s−), u)]Ñ(ds, du)∥2

+ 8∥
∫ t

0

∫
|u|≥1

S α(t − s)[G(s, xn+1(s−), u) −G(s, xn(s−), u)]ν(du)ds∥2

≤ 4(CM)2L(
|µ|−1/απ

α sin(π/α)
+ 1)[

∫ t

0

C̃(M̃[s])n

n!
ds +

∫ t

0

C̃(M̃s)n

n!
ds]

+ 12(CM)2L
∫ t

0

1
1 + |µ|2(t − s)2α

C̃(M̃s)n

n!
ds

+ 8(CM)2b
∫ t

0

1
1 + |µ|(t − s)α

ds
∫ t

0
∥xn+1(s−) − xn(s−)∥2ds

≤ 8(CM)2L(
|µ|−1/απ

α sin(π/α)
+ 1)
∫ t

0

C̃(M̃s)n

n!
ds

+ 12(CM)2L
∫ t

0

C̃(M̃s)n

n!
ds

+ 8(CM)2bL
|µ|−1/απ

α sin(π/α)

∫ t

0

C̃(M̃s)n

n!
ds

≤ 4(CM)2L[
2|µ|−1/απ

α sin(π/α)
+ 5 + 2b

|µ|−1/απ

α sin(π/α)
]
∫ t

0

C̃(M̃s)n

n!
ds

=
C̃(M̃t)n+1

(n + 1)!
.

That is, (3.9) holds for n + 1. By induction, we get that (3.9) holds for all n ≥ 0. Furthermore, we find
that

E sup
0≤t≤T
|xn+1 − xn(t)|2 ≤ M̃

∫ T

0
∥xn(s) − xn−1(s)∥2ds

≤ 4M̃
∫ T

0

C[M̃s]n−1

(n − 1)!
ds

= 4
C[M̃T ]n

n!
.
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Hence

P{ sup
0≤t≤T
|xn+1(t) − xn(t)| >

1
2n } ≤ 4

C̃[M̃T ]n

n!
.

Note that
∑∞

n=0 4 C̃[M̃T ]n

n! < ∞, by using the Borel-Cantelli lemma, we can get a stochastic process x(t)
on [0,T ] such that xn(t) uniformly converges to x(t) as n → ∞ almost surely. It is easy to check that
x(t) is the unique mild solution of (1.1). The proof of the theorem is complete. □

Remark 3.1. The conclusion of Theorem 3.1 holds for the Cauchy problem (1.2).

4. The square-mean S -asymptotically ω-periodic solution of (1.1) and (1.2)

Lemma 4.1. If x(t) ∈ S APω(L2(P,H)) and ω ∈ Z+, then x([t]) ∈ S APω(L2(P,H)).

The proof process of Lemma 4.1 is similar to that of Lemma 2 of [14].

Proof. Since x(t) ∈ S APω(L2(P,H)), then for any ϵ > 0, ∃ T 0
ϵ ∈ R+, such that ∀ t > Tϵ , we have

∥x(t + ω) − x(t)∥ < ϵ. Let Tϵ = [T 0
ϵ ] + 1. For t > Tϵ , [t] ≥ Tϵ for Tϵ is an integer. Then we deduce that

for the above ϵ, ∃ Tϵ ∈ R+, such that ∥x([t + ω]) − x([t])∥ = ∥x([t] + ω) − x([t])∥ < ϵ. □

Theorem 4.1. Assume (H1)-(H2) are satisfied and f : R+ × L2(P,H) × L2(P,H) → L2(P,H),
g : R+ × L2(P,H) × L2(P,H) → L(U, L2(P,H)) are uniformly square-mean S-asymptotically
ω-periodic on bounded sets of L2(P,H) × L2(P,H). Let ω ∈ Z+. Then (1.1) has a unique square-mean
S-asymptotically ω-periodic solution if

2CM{L
(
2
|µ|−1/απ

α sin(π/α)
+ 5

|µ|−2/απ

2α sin(π/2α)
+ 2b(

|µ|−1/απ

α sin(π/α)
)2)} 1

2 < 1.

Proof. Define an operator Γ̃ : S APω(L2(P,H)) 7→ S APω(L2(P,H))

(Γ̃x)(t)

= S α(t)c0 +

∫ t

0
S α(t − s) f (s, x([s]), x(s))ds +

∫ t

0
S α(t − s)g(s, x([s]), x(s))dw(s)

+

∫ t

0

∫
|u|<1

S α(t − s)F(s, x(s−), u)Ñ(du, ds)

+

∫ t

0

∫
|u|≥1

S α(t − s)G(s, x(s−), u)N(du, ds).

for every x ∈ S APω(L2(P,H)). By (H1) and (3.1), we get that the operator Γ̃ is well defined. By
Lemma 4.1, and the Lemma 4.2, Lemma 4.3 in [18], we get (Γ̃x)(t) ∈ S APω(L2(P,H)). For every
x, y ∈ S APω(L2(P,H)),

∥(Γ̃x)(t) − (Γ̃y)(t)∥2

= ∥

∫ t

0
S α(t − s)

(
f (s, x([s]), x(s)) − f (s, y([s]), y(s))

)
ds

+

∫ t

0
S α(t − s)

(
g(s, x([s]), x(s)) − g(s, y([s]), y(s))

)
dw(s)
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+

∫ t

0

∫
|u|<1

S α(t − s)
(
F(s, x(s−), u) − F(s, y(s−), u)

)
Ñ(du, ds)

+

∫ t

0

∫
|u|<1

S α(t − s)
(
G(s, x(s−), u) −G(s, y(s−), u)

)
N(du, ds)∥2

≤ 4(CM)2 |µ|
−1/απ

α sin(π/α)

∫ t

0

1
1 + |µ|(t − s)α

∥[ f (s, x([s]), x(s)) − f (s, y([s]), y(s))]∥2ds

+4
∫ t

0

(CM)2

1 + |µ|2(t − s)2α ∥(g(s, x([s]), x(s)) − g(s, y([s]), y(s)))Q1/2∥2
L(U,L2(P,H))ds

+4(CM)2L
∫ t

0

∫
|u|U<1

1
1 + |µ|2(t − s)2α ∥F(s, x(s−), u) − F(s, y(s−), u)∥2ν(du)ds

+8∥
∫ t

0

∫
|u|U≥1

S α(t − s)
(
G(s, x(s−), u) −G(s, y(s−), u)

)
Ñ(du, ds)∥2

+8∥
∫ t

0

∫
|u|U≥1

S α(t − s)
(
G(s, x(s−), u) −G(s, y(s−), u)

)
ν(du)ds∥2

≤ 4(CM)2 |µ|
−1/απ

α sin π/α

∫ t

0

1
1 + |µ|(t − s)α

L(∥x([s]) − y([s])∥2 + ∥x(s) − y(s)∥2)ds

+ 4(CM)2
∫ t

0

1
1 + |µ|2(t − s)2α L(∥x([s]) − y([s])∥2 + ∥x(s) − y(s)∥2)ds

+ 4(CM)2L
∫ t

0

1
1 + |µ|2(t − s)2αds sup

s∈R+
∥x(s) − y(s)∥2

+ 8(CM)2L
∫ t

0

1
1 + |µ|2(t − s)2αds sup

s∈R+
∥x(s) − y(s)∥2

+ 8(CM)2b
∫ t

0

1
1 + |µ|(t − s)α

ds

×

∫ t

0

∫
|u|≥1

1
1 + |µ|(t − s)α

∥G(s, x(s−), u) −G(s, y(s−), u)∥2ν(du)ds

≤ 4(CM)2L
(
2
|µ|−1/απ

α sin(π/α)
+ 5

|µ|−2/απ

2α sin(π/2α)
+ 2b(

|µ|−1/απ

α sin(π/α)
)2) sup

s∈R+
∥x(s) − y(s)∥2

Since 2CM{L
(
2 |µ|−1/απ

α sin(π/α) + 5 |µ|−2/απ

2α sin(π/2α) + 2b( |µ|
−1/απ

α sin(π/α) )
2)} 1

2 < 1, we obtain the result by the Banach
contraction mapping principle. □

Similar discussion on (1.2), we get the following conclusion.

Theorem 4.2. Assume (H1)and (H2) hold, the functions f : R+ × L2(P,H) × L2(P,H) → L2(P,H),
g : R+ × L2(P,H) × L2(P,H) → L(U, L2(P,H)) are uniformly square-mean S-asymptotically ω-
periodic on any bounded set K where K ⊂ L2(P,H) × L2(P,H). Let ω ∈ Z+. Then (1.2) has a unique
square-mean S-asymptotically ω-periodic solution if 2[L(2 M0

γ
+ 5 M2

0
2γ + 2b M2

0
γ2 )]

1
2 < 1.
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5. Stability of solutions

In this section, the stability of the square-mean S-asymptotically ω-periodic solution of (1.2) is
discussed. We first give the definition about globally asymptotically stable in the square-mean sense.

Definition 5.1. ∀d ∈ L2(P,H), and let xd(t) be the mild solution of the cauchy problem (1.2) with initial
value d. x∗(t) is the unique square-mean S-asymptotically ω-periodic solution of (1.2). x∗(t) is called
globally asymptotically stable in square-mean sense if

lim
t→∞
∥xd(t) − x∗(t)∥2 = 0

Theorem 5.1. Assume the conditions of Theorem 4.1 are satisfied, −γ + 5LM2
0( 1+2b

γ
+ 4) < 0 and

e−γ+5LM2
0 ( 1+2b

γ +4) + (e−γ+5LM2
0 ( 1+2b

γ +4)
− 1)

5LM2
0( 1

γ
+ 1)

−γ + 5LM2
0( 1+2b

γ
+ 4)

< 1,

then the square-mean S-asymptotically ω-periodic solution x∗(t) of (1.1) is globally asymptotically
stable in square-mean sense.

Proof. Suppose x(t) is the mild solution of the cauchy problem (1.2) with initial value x0, then

∥x(t) − x∗(t)∥2

≤ 5∥S (t)(x0 − c0)∥2 + 5∥
∫ t

0
S (t − s)[ f (s, x([s]), x(s)) − f (s, x∗([s]), x∗(s))]ds∥2

+5∥
∫ t

0
S (t − s)[g(s, x([s]), x(s)) − g(s, x∗([s]), x∗(s))]dw(s)∥2

+5∥
∫ t

0

∫
|u|<1

S (t − s)[F(s, x(s), u) − F(s, x∗(s), u)]Ñ(ds, du)∥2

+5∥
∫ t

0

∫
|u|≥1

S (t − s)[G(s, x(s), u) −G(s, x∗(s), u)]N(ds, du)∥2

= 5
5∑

i=1

Ii

Obviously I1 = ∥S (t)(x0 − c0)∥2 ≤ M2
0e−2γt∥x0 − c0∥

2,

I2 ≤

∫ t

0
S (t − s)ds

∫ t

0
S (t − s)∥ f (s, x([s]), x(s)) − f (s, x∗([s]), x∗(s))∥2ds

≤ L
M2

0

γ

∫ t

0
e−γ(t−s)[∥x(s) − x∗(s)∥2 + ∥x([s]) − x∗([s])∥2]ds,

I3 ≤

∫ t

0
S 2(t − s)∥g(s, x([s]), x(s)) − g(s, x∗([s]), x∗(s))∥2ds

≤ L
∫ t

0
S 2(t − s)[∥x(s) − x∗(s)∥2 + ∥x([s]) − x∗([s])∥2]ds
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≤ LM2
0

∫ t

0
e−2γ(t−s)[∥x(s) − x∗(s)∥2 + ∥x([s]) − x∗([s])∥2]ds,

I4 ≤ L
∫ t

0
S 2(t − s)∥x(s) − x∗(s)∥2ds ≤ LM2

0

∫ t

0
e−2γ(t−s)∥x(s) − x∗(s)∥2ds,

I5 ≤ 2∥
∫ t

0

∫
|u|≥1

S (t − s)[G(s, x(s), u) −G(s, x∗(s), u)]Ñ(ds, du)∥2

+ 2∥
∫ t

0

∫
|u|≥1

S (t − s)[G(s, x(s), u) −G(s, x∗(s), u)]ν(du)ds∥2

≤ 2L
∫ t

0
S 2(t − s)∥x(s) − x∗(s)∥2ds + 2b

∫ t

0
S (t − s)ds

∫ t

0
S (t − s)∥x(s) − x∗(s)∥2ds

≤ 2LM2
0

∫ t

0
e−2γ(t−s)∥x(s) − x∗(s)∥2ds

+2b
M2

0

γ

∫ t

0
e−γ(t−s)∥x(s) − x∗(s)∥2ds,

then

∥x(t) − x∗(t)∥2 (5.1)

≤ 5M2
0e−γt∥x0 − c0∥ + 5LM2

0(
1 + 2b
γ
+ 4)
∫ t

0
e−γ(t−s)∥x(s) − x∗(s)∥2ds

+5LM2
0(

1
γ
+ 1)
∫ t

0
e−γ(t−s)∥x([s]) − x∗([s])∥2ds.

Set D(t) = ∥x(t) − x∗(t)∥2, a1 = 5LM0(1+2b
γ
+ 4) and a2 = 5LM0( 1

γ
+ 1). By the inequality (5.1),

D(t) ≤ D̃(t)

where D̃(t) is the solution of the following system{
(D̃(t))′ = −γD̃(t) + a1D̃(t) + a2D̃([t]),
D̃(0) = 5M2

0 D(0).
(5.2)

Let m0(t) = e−γ+a1t + (e(−γ+a1)t − 1) a2
−γ+a1

and b0 = m(1). Note that the solution of (5.2) is

D̃(t) = 5M2
0 D(0)m({t})b[t]

0

where {t} is the decimal place of t. When −γ + a1 < 0 and e−γ+a1 + (e−γ+a1 − 1) a2
−γ+a1

< 1,

lim
t→∞

D̃(t) = 0,

then we get the conclusion. □
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6. Applications

Now, we provide two examples to illustrate the results obtained in the previous two sections. In the
following, let H = L2([0, π]) and we first consider the following initial problem.

dx(t, ξ) =
∫ t

0
(t−s)

3
2 −2

Γ( 3
2−1)

( ∂2

∂ξ2 − v)x(s, ξ)dsdt

+(sin ln(t + 1) + cos t)x([t], ξ)dt + (sin ln(t + 1) + sin t)x(t, ξ)dw(t)
+
∫
|u|<1

x(t, ξ)(cos t + 1
t )Ñ(dt, du) +

∫
|u|≥1

(cos t + 1
t )N(dt, du),

(t, ξ) ∈ (0,+∞) × [0, π],
x(t, π) = x(t, 0) = 0, x(0, ξ) = ϱ(ξ)

(6.1)

where v > 0 is a positive number, and w(t) is a Q-Wiener process on H. Obviously, the operator
A : H → H is gaven by A = ∂2

∂ξ2 − v with domain D(x) = {x ∈ H : x′′ ∈ H, x(0) = x(π) = 0}, and A
satisfies the (H1). Let H = U, then

f (t, x([t]), x(t)) = (sin ln(t + 1) + cos t)x([t], ξ),

g(t, x([t]), x(t)) = (sin ln(t + 1) + sin t)x(t, ξ),

F(t, x(t−), u) = G(t, x(t−), u) = x(t, ξ)(cos t +
ln(t + 1)

t
).

We take L = max{4, 4∥Q∥L(U,U), 4ν(B1(0)), 4b} where B1(0) is the unit ball of U, so f , g, F,G satisfies
the (H2). According to Theorem 3.1, problem (6.1) has a unique mild solution on [0,+∞). Next, let’s
consider the following Cauchy Problem,

dx(t, ξ) = ( ∂2

∂ξ2 − v)x(s, ξ)dt
+(sin ln(t + 1) + cos t)x([t], ξ)dt + (sin ln(t + 1) + sin t)x(t, ξ)dw(t)
+
∫
|u|<1

x(t, ξ)(cos t + 1
t )Ñ(dt, du)

+
∫
|u|≥1

(cos t + 1
t )N(dt, du) (t, ξ) ∈ (0,+∞) × [0, π],

x(t, π) = x(t, 0) = 0, x(0, ξ) = ϱ(ξ).

(6.2)

When

6L(
8|v|−

3
2π

3
√

3
+

10
3
|v|−

4
3π +

32
27

b|v|−
4
9π2) < 1,

according to the Theorem 5.1, the square-mean S-asymptotically ω-periodic solution of problem (6.2)
is globally asymptotically stable on [0,+∞)in the square-mean sense, where ω is an integer.

Remark 6.1. To the best of our knowlege, this is the first time that the square-mean S-asymptotically
ω-periodic solutions of stochastic systems with piecewise constant arguments have been discussed. In
the work [18], the authors obtained sufficient conditions for the existence and the uniqueness of the
S-asymptotically ω-periodic solution in distribution for a class of stochastic fractional functional
differential equations in an abstract space. However, the stochastic system with piecewise constant
arguments is a special stochastic differential delay system, we only study the square-mean
S-asymptotically ω-periodic solution in this work. Actually, the theoretical frame work of this paper is
able to branch out to other types stochastic systems.
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7. Conclusions

In this paper, we first established the existence and the uniqueness of the mild solution of two
kinds of stochastic differential equations driven by Lévy noise with piecewise constant arguments in a
Banach space. Then, we give sufficient conditions for the existence and the stability of the square-mean
S-asymptotically ω-periodic solution of system (1.1) and system (1.2), where ω is an integer. It would
be of great interest to extend these results to the case when the systems with other different noises and
we will report our research in future work.
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