In this article, some sufficient conditions for the existence of positive periodic solutions of a more general indefinite singular differential equation are established. The results are applicable to strong singularities as well as weak singularities. Some results in literature are generalized.
Citation: Zaitao Liang, Xiuqiang Zhang, Shengjun Li, Ziqing Zhou. Periodic solutions of a class of indefinite singular differential equations[J]. Electronic Research Archive, 2023, 31(4): 2139-2148. doi: 10.3934/era.2023110
In this article, some sufficient conditions for the existence of positive periodic solutions of a more general indefinite singular differential equation are established. The results are applicable to strong singularities as well as weak singularities. Some results in literature are generalized.
[1] | P. Hess, T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Commun. Partial Differ. Equations, 5 (1980), 999–1030. https://doi.org/10.1080/03605308008820162 doi: 10.1080/03605308008820162 |
[2] | J. F. Chu, J. T. Sun, P. J. Y. Wong, Existence for singular periodic problems: a survey of recent results, Abstr. Appl. Anal., 2013 (2013), 420835. https://doi.org/10.1155/2013/420835 doi: 10.1155/2013/420835 |
[3] | I. Rachunková, S. Staněk, M. Tvrdý, Solvability of nonlinear singular problems for ordinary differential equations, contemporary mathematics and its applications, Hindawi Publishing Corporation, New York, USA, 2008. https://doi.org/10.1155/9789774540400 |
[4] | P. J. Torres, Mathematical models with singularities-A zoo of singular creatures, Atlantis Press, Paris, France, 2015. https://doi.org/10.2991/978-94-6239-106-2 |
[5] | J. Godoy, M. Zamora, Periodic solutions for a second-order differential equation with indefinite weak singularity, Proc. R. Soc. Edinburgh Sect. A: Math., 149 (2019), 1135–1152. https://doi.org/10.1017/prm.2018.79 doi: 10.1017/prm.2018.79 |
[6] | J. Godoy, M. Zamora, A general result to the existence of a periodic solution to an indefinite equation with a weak singularity, J. Dyn. Differ. Equations, 31 (2019), 451–468. https://doi.org/10.1007/s10884-018-9704-9 doi: 10.1007/s10884-018-9704-9 |
[7] | J. Godoy, N. Morales, M. Zamora, Existence and multiplicity of periodic solutions to an indefinite singular equation with two singularities. The degenerate case, Discrete Contin. Dyn. Syst., 39 (2019), 4137–4156. https://doi.org/10.3934/dcds.2019167 doi: 10.3934/dcds.2019167 |
[8] | A. Boscaggin, G. Feltrin, F. Zanolin, Uniqueness of positive solutions for boundary value problems associated with indefinite $\phi$-Laplacian-type equations, Open Math., 19 (2021), 163–183. https://doi.org/10.1515/math-2021-0003 doi: 10.1515/math-2021-0003 |
[9] | S. P. Lu, X. C. Yu, Existence of positive periodic solutions for Liénard equations with an indefinite singularity of attractive type, Boundary Value Probl., 2018 (2018), 101. https://doi.org/10.1186/s13661-018-1020-0 doi: 10.1186/s13661-018-1020-0 |
[10] | S. P. Lu, Y. Z. Guo, L. J. Chen, Periodic solutions for Liénard equation with an indefinite singularity, Nonlinear Anal. Real World Appl., 45 (2019), 542–556. https://doi.org/10.1016/j.nonrwa.2018.07.024 doi: 10.1016/j.nonrwa.2018.07.024 |
[11] | S. P. Lu, R. Y. Xue, Periodic solutions for a singular Liénard equation with indefinite weight, Topol. Methods Nonlinear Anal., 54 (2019), 203–218. https://doi.org/10.12775/TMNA.2019.037 doi: 10.12775/TMNA.2019.037 |
[12] | S. P. Lu, X. C. Yu, Periodic solutions for second order differential equations with indefinite singularities, Adv. Nonlinear Anal., 9 (2020), 994–1007. https://doi.org/10.1515/anona-2020-0037 doi: 10.1515/anona-2020-0037 |
[13] | W. X. Chen, $L_p$ Minkowski problem with not necessarily positive data, Adv. Math., 201 (2006), 77–89. https://doi.org/10.1016/j.aim.2004.11.007 doi: 10.1016/j.aim.2004.11.007 |
[14] | J. B. Dou, M. J. Zhu, The two dimensional $L_{p}$ Minkowski problem and nonlinear equations with negative exponents, Adv. Math., 230 (2012), 1209–1221. https://doi.org/10.1016/j.aim.2012.02.027 doi: 10.1016/j.aim.2012.02.027 |
[15] | M. Y. Jiang, Remarks on the $2$-dimensional $L_p$-Minkowski problem, Adv. Nonlinear Stud., 10 (2010), 297–313. https://doi.org/10.1515/ans-2010-0204 doi: 10.1515/ans-2010-0204 |
[16] | P. J. Torres, M. Zamora, On the planar $L_{p}$ Minkowski problem with sign-changing data, Proc. Am. Math. Soc., 149 (2021), 3077–3088. https://doi.org/10.1090/proc/15378 doi: 10.1090/proc/15378 |
[17] | Z. B. Cheng, X. X. Cui, Positive periodic solution to an indefinite singular equation, Appl. Math. Lett., 112 (2021), 106740. https://doi.org/10.1016/j.aml.2020.106740 doi: 10.1016/j.aml.2020.106740 |
[18] | X. F. Han, Z. B. Cheng, Positive periodic solutions to a second-order singular differential equation with indefinite weights, Qual. Theory Dyn. Syst., 21 (2022), 1–16. https://doi.org/10.1007/s12346-022-00583-0 doi: 10.1007/s12346-022-00583-0 |
[19] | Z. B. Cheng, J. Song, Y. Xin, Positive periodic solutions for a second-order singular differential equation with two indefinite weights, preprint, (2022), https://doi.org/10.21203/rs.3.rs-2174315/v1 doi: 10.21203/rs.3.rs-2174315/v1 |
[20] | J. L. Bravo, P. J. Torres, Periodic solutions of a singular equation with indefinite weight, Adv. Nonlinear Stud., 10 (2010), 927–938. https://doi.org/10.1515/ans-2010-0410 doi: 10.1515/ans-2010-0410 |
[21] | A. J. Ureña, A counterexample for singular equations with indefinite weight, Adv. Nonlinear Stud., 17 (2017), 497–516. https://doi.org/10.1515/ans-2016-6017 doi: 10.1515/ans-2016-6017 |
[22] | R. Hakl, M. Zamora, Existence and uniqueness of a periodic solution to an indefinite attractive singular equation, Ann. Mat. Pura Appl., 195 (2016), 995–1009. https://doi.org/10.1007/s10231-015-0501-3 doi: 10.1007/s10231-015-0501-3 |
[23] | R. Hakl, M. Zamora, Periodic solutions to second-order indefinite singular equations, J. Differ. Equations, 263 (2017), 451–469. https://doi.org/10.1016/j.jde.2017.02.044 doi: 10.1016/j.jde.2017.02.044 |
[24] | R. Hakl, M. Zamora, Periodic solutions of an indefinite singular equation arising from the Kepler problem on the sphere, Can. J. Math., 70 (2018), 173–190. https://doi.org/10.4153/CJM-2016-050-1 doi: 10.4153/CJM-2016-050-1 |
[25] | Z. T. Liang, X. Q. Zhang, S. J. Li, Periodic solutions of an indefinite singular planar differential system, Mediterr. J. Math., 20 (2023), 41. https://doi.org/10.1007/s00009-022-02237-6 doi: 10.1007/s00009-022-02237-6 |
[26] | E. Zeidler, Nonlinear functional analysis and its applications, Springer, New York, USA, 1990. https://doi.org/10.1007/978-1-4612-0985-0 |
[27] | P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Differ. Equations, 190 (2003), 643–662. https://doi.org/10.1016/S0022-0396(02)00152-3 doi: 10.1016/S0022-0396(02)00152-3 |
[28] | K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, Germany, 1985. https://doi.org/10.1007/978-3-662-00547-7 |