Considering the common interests of an insurer and a reinsurer, the optimal investment-reinsurance problem with derivatives trading is studied. Suppose that both parties would invest a stock and a risk-free asset for capital appreciation, the insurer could purchase reinsurance and trade derivatives, the optimization problem is formulated by maximizing the expected exponential utility of two parties' wealth processes. The corresponding HJB equations are built for optimal strategy through the dynamic programming principle. In addition, derivatives trading is evaluated based on the certainty-equivalence principle. A numerical study directly illustrates how model parameters influence optimal strategies.
Citation: Xia Zhao, Mengjie Li, Qinrui Si. Optimal investment-reinsurance strategy with derivatives trading under the joint interests of an insurer and a reinsurer[J]. Electronic Research Archive, 2022, 30(12): 4619-4634. doi: 10.3934/era.2022234
Considering the common interests of an insurer and a reinsurer, the optimal investment-reinsurance problem with derivatives trading is studied. Suppose that both parties would invest a stock and a risk-free asset for capital appreciation, the insurer could purchase reinsurance and trade derivatives, the optimization problem is formulated by maximizing the expected exponential utility of two parties' wealth processes. The corresponding HJB equations are built for optimal strategy through the dynamic programming principle. In addition, derivatives trading is evaluated based on the certainty-equivalence principle. A numerical study directly illustrates how model parameters influence optimal strategies.
[1] | M. Junaid, Y. Xue, M. W. Syed, M. Ziaullah, N. Riffat, Corporate governance mechanism and performance of insurers in Pakistan, Green Finance, 2 (2020), 243–262. https://doi.org/10.3934/GF.2020014 doi: 10.3934/GF.2020014 |
[2] | T. Latunde, L. S. Akinola, D. D. Dare, Analysis of capital asset pricing model on Deutsche bank energy commodity, Green Finance, 2 (2020), 20–34. https://doi.org/10.3934/ GF.2020002 doi: 10.3934/GF.2020002 |
[3] | D. Peng, F. Zhang, Mean-variance optimal reinsurance-investment strategy in continuous time, Quant. Finance Econ., 1 (2017), 320–333. https://doi.org/10.3934/QFE.2017.3.320 doi: 10.3934/QFE.2017.3.320 |
[4] | H. Wang, R. Wang, J. Wei, Time-consistent investment-proportional reinsurance strategy with random coefficients for mean-variance insurers, Insur. Math. Econ., 85 (2019), 104–114. https://doi.org/10.1016/j.insmatheco.2019.01.002 doi: 10.1016/j.insmatheco.2019.01.002 |
[5] | T. Yan, H. Y. Wong, Open-loop equilibrium reinsurance-investment strategy under mean-variance criterion with stochastic volatility, Insur. Math. Econ., 90 (2020), 105–119. https://doi.org/10.1016/j.insmatheco.2019.11.003 doi: 10.1016/j.insmatheco.2019.11.003 |
[6] | X. Liang, V. R. Young, Minimizing the probability of ruin: Optimal per-loss reinsurance, Insur. Math. Econ., 82 (2018), 181–190. https://doi.org/10.1016/j.insmatheco.2018.07.005 doi: 10.1016/j.insmatheco.2018.07.005 |
[7] | K. S. Tan, P. Wei, W. Wei, S. C. Zhuang, Optimal dynamic reinsurance policies under a generalized Denneberg's absolute deviation principle, Eur. J. Oper. Res., 282 (2020), 345–362. https://doi.org/10.1016/j.ejor.2019.08.053 doi: 10.1016/j.ejor.2019.08.053 |
[8] | X. Han, Z. Liang, K. C. Yuen, Minimizing the probability of absolute ruin under the mean-variance premium principle, Optim. Control. Appl. Methods, 42 (2021), 786–806. https://doi.org/10.1002/oca.2702 doi: 10.1002/oca.2702 |
[9] | A. Gu, F. G. Viens, H. Yao, Optimal robust reinsurance-investment strategies for insurers with mean reversion and mispricing, Insur. Math. Econ., 80 (2018), 93–109. https://doi.org/10.1016/j.insmatheco.2018.03.004 doi: 10.1016/j.insmatheco.2018.03.004 |
[10] | J. Bi, K. Chen, Optimal investment-reinsurance problems with common shock dependent risks under two kinds of premium principles, RAIRO Oper. Res., 53 (2019), 179–206. https://doi.org/10.1051/ro/2019010 doi: 10.1051/ro/2019010 |
[11] | L. Mao, Y. Zhang, Robust optimal excess-of-loss reinsurance and investment problem with p-thinning dependent risks under CEV model, Quant. Finance Econ., 5 (2021), 134–162. https://doi.org/10.3934/QFE.2021007 doi: 10.3934/QFE.2021007 |
[12] | M. Brachetta, C. Ceci, A BSDE-based approach for the optimal reinsurance problem under partial information, Insur. Math. Econ., 95 (2020), 1–16. https://doi.org/10.1016/j.insmatheco.2020.07.009 doi: 10.1016/j.insmatheco.2020.07.009 |
[13] | X. Peng, F. Chen, W. Wang, Robust optimal investment and reinsurance for an insurer with inside information, Insur. Math. Econ., 96 (2021), 15–30. https://doi.org/10.1016/j.insmatheco.2020.10.004 doi: 10.1016/j.insmatheco.2020.10.004 |
[14] | J. Zhou, X. Yang, Y. Huang, Robust optimal investment and proportional reinsurance toward joint interests of the insurer and the reinsurer, Commun. Stat. Theor. Methods, 46 (2017), 10733–10757. https://doi.org/10.1080/03610926.2016.1242734 doi: 10.1080/03610926.2016.1242734 |
[15] | H. Zhao, C. Weng, Y. Shen, Y. Zeng, Time-consistent investment-reinsurance strategies towards joint interests of the insurer and the reinsurer under CEV models, Sci. China Math., 60 (2017), 317–344. https://doi.org/10.1007/s11425-015-0542-7 doi: 10.1007/s11425-015-0542-7 |
[16] | D. Li, X. Rong, H. Zhao, Optimal reinsurance-investment problem for maximizing the product of the insurer's and the reinsurer's utilities under a CEV model, J. Comput. Appl. Math., 255 (2014), 671–683. https://doi.org/10.1016/j.cam.2013.06.033 doi: 10.1016/j.cam.2013.06.033 |
[17] | Y. Huang, Y. Ouyang, L. Tang, J. Zhou, Robust optimal investment and reinsurance problem for the product of the insurer's and the reinsurer's utilities, J. Comput. Appl. Math., 344 (2018), 532–552. https://doi.org/10.1016/j.cam.2018.05.060 doi: 10.1016/j.cam.2018.05.060 |
[18] | D. Li, X. Rong, Y. Wang, H. Zhao, Equilibrium excess-of-loss reinsurance and investment strategies for an insurer and a reinsurer, Commun. Stat. Theor. Methods, 51 (2021), 1–32. https://doi.org/10.1080/03610926.2021.1873379 doi: 10.1080/03610926.2021.1873379 |
[19] | D. Li, X. Rong, H. Zhao, Time-consistent reinsurance-investment strategy for an insurer and a reinsurer with mean-variance criterion under the CEV model, J. Comput. Appl. Math., 283 (2015), 142–162. https://doi.org/10.1016/j.cam.2015.01.038 doi: 10.1016/j.cam.2015.01.038 |
[20] | Y. Zhang, P. Zhao, X. Teng, L. Mao, Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform, J. Ind. Manage. Optim., 17 (2021), 2139. https://doi.org/10.3934/jimo.2020062 doi: 10.3934/jimo.2020062 |
[21] | D. Taşkın, G. Sarıyer, Use of derivatives, financial stability and performance in Turkish banking sector, Quant. Finance Econ., 4 (2020), 252–273. https://doi.org/10.3934/QFE.2020012 doi: 10.3934/QFE.2020012 |
[22] | J. Liu, J. Pan, Dynamic derivative strategies, J. Financ. Econ., 69 (2003), 401–430. https://doi.org/10.1016/S0304-405X(03)00118-1 doi: 10.1016/S0304-405X(03)00118-1 |
[23] | Y. H. Hsuku, Dynamic consumption and asset allocation with derivative securities, Quant. Finance, 7 (2007), 137–149. https://doi.org/10.1080/14697680601077959 doi: 10.1080/14697680601077959 |
[24] | J. Fu, J. Wei, H. Yang, Portfolio optimization in a regime-switching market with derivatives, Eur. J. Oper. Res., 233 (2014), 184–192. https://doi.org/10.1016/j.ejor.2013.08.033 doi: 10.1016/j.ejor.2013.08.033 |
[25] | M. Escobar, S. Ferrando, A. Rubtsov, Dynamic derivative strategies with stochastic interest rates and model uncertainty, J. Econ. Dyn. Control, 86 (2018), 49–71. https://doi.org/10.1016/j.jedc.2017.09.007 doi: 10.1016/j.jedc.2017.09.007 |
[26] | Y. Zeng, D. Li, Z. Chen, Z. Yang, Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility, J. Econ. Dyn. Control, 88 (2018), 70–103. https://doi.org/10.1016/j.jedc.2018.01.023 doi: 10.1016/j.jedc.2018.01.023 |
[27] | D. Li, Y. Shen, Y. Zeng, Dynamic derivative-based investment strategy for mean-variance asset-liability management with stochastic volatility, Insur. Math. Econ., 78 (2018), 72–86. https://doi.org/10.1016/j.insmatheco.2017.11.006 doi: 10.1016/j.insmatheco.2017.11.006 |
[28] | E. G. Baranoff, P. Brockett, T. W. Sager, B. Shi, Was the US life insurance industry in danger of systemic risk by using derivative hedging prior to the 2008 financial crisis, Quant. Finance Econ., 3 (2019), 145–164. https://doi.org/10.3934/QFE.2019.1.145 doi: 10.3934/QFE.2019.1.145 |
[29] | L. Wang, M. Gu, Proportional reinsurance and investment strategies: maximizing the terminal wealth and hedging, J. Syst. Manage., 22 (2013), 783–790. https://doi.org/10.3969/j.issn.1005–2542.2013.06.005 doi: 10.3969/j.issn.1005–2542.2013.06.005 |
[30] | X. Xue, P. Wei, C. Weng, Derivatives trading for insurers, Insur. Math. Econ., 84 (2019), 40–53. https://doi.org/10.1016/j.insmatheco.2018.11.001 doi: 10.1016/j.insmatheco.2018.11.001 |
[31] | H. U. Gerber, An introduction to mathematical risk theory, in SS Huebner Foundation Monograph, 8 (1979). |