For solving a block lower triangular Toeplitz linear system arising from the time-space fractional diffusion equations more effectively, a single-parameter two-step split iterative method (TSS) is introduced, its convergence theory is established and the corresponding preconditioner is also presented. Theoretical analysis shows that the original coefficient matrix after preconditioned can be expressed as the sum of the identity matrix, a low-rank matrix, and a small norm matrix. Numerical experiments show that the preconditioner improve the calculation efficiency of the Krylov subspace iteration method.
Citation: Jia-Min Luo, Hou-Biao Li, Wei-Bo Wei. Block splitting preconditioner for time-space fractional diffusion equations[J]. Electronic Research Archive, 2022, 30(3): 780-797. doi: 10.3934/era.2022041
For solving a block lower triangular Toeplitz linear system arising from the time-space fractional diffusion equations more effectively, a single-parameter two-step split iterative method (TSS) is introduced, its convergence theory is established and the corresponding preconditioner is also presented. Theoretical analysis shows that the original coefficient matrix after preconditioned can be expressed as the sum of the identity matrix, a low-rank matrix, and a small norm matrix. Numerical experiments show that the preconditioner improve the calculation efficiency of the Krylov subspace iteration method.
[1] | A. Hanyga, Multidimensional solutions of space-time-fractional diffusion equations, Proc. R. Soc. A., 458 (2002), 429–450. https://doi.org/10.1098/rspa.2001.0893 doi: 10.1098/rspa.2001.0893 |
[2] | Y. Povstenko, Linear Fractional Diffusion-Wave Equation for Scientists and Engineers, Birkh$\ddot{a}$user, Cham, 2015. https://doi.org/10.1007/978-3-319-17954-4-12 |
[3] | Y. Povstenko, Fractional Thermoelasticity, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-15335-3 |
[4] | T. Gao, J. Q. Duan, Quantifying model uncertainty in dynamical systems driven by non-Gaussian L$\acute{e}$vy stable noise with observations on mean exit time or escape probability, Commun. Nonlinear Sci. Numer. Simul., 39 (2016), 1–6. https://doi.org/10.1016/j.cnsns.2016.02.019 doi: 10.1016/j.cnsns.2016.02.019 |
[5] | G. M. Zaslavsky, D. Stevens, H. Weitzner, Selfsimilar transport in incomplete chaos, Phys. Rev. E, 48 (1993), 1683. https://doi.org/10.1103/PhysRevE.48.1683 doi: 10.1103/PhysRevE.48.1683 |
[6] | J. A. Tenreiro Machado, Implementing discrete-time fractional-order controllers, Fract. Calc. Appl. Anal., 4 (2001), 47–66. http://dx.doi.org/10.20965/jaciii.2001.p0279 doi: 10.20965/jaciii.2001.p0279 |
[7] | R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/CritRevBiomedEng.v32.i2.10 doi: 10.1615/CritRevBiomedEng.v32.i2.10 |
[8] | D. Valenti, B. Spagnolo, G. Bonanno, Hitting time distributions in financial markets, Physica A, 382 (2007), 311–320. https://doi.org/10.1016/j.physa.2007.03.044 doi: 10.1016/j.physa.2007.03.044 |
[9] | J. Bai, X. C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16 (2007), 2492–2502. https://doi.org/10.1109/TIP.2007.904971 doi: 10.1109/TIP.2007.904971 |
[10] | P. F. Dai, Q. B. Wu, S. F. Zhu, An efficient matrix splitting preconditioning technique for two-dimensional unsteady space-fractional diffusion equations, J. Comput. Appl. Math., 371 (2020), 112673. https://doi.org/10.1016/j.cam.2019.112673 doi: 10.1016/j.cam.2019.112673 |
[11] | X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576 |
[12] | X. M. Gu, Y. L. Zhao, X. L. Zhao, B. Carpentieri, Y. Y. Huang, A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 14 (2021), 893–919. https://doi.org/10.4208/nmtma.OA-2020-0020 doi: 10.4208/nmtma.OA-2020-0020 |
[13] | Y. L. Zhao, X. M. Gu, M. Li, H. Y. Jian, Preconditioners for all-at-once system from the fractional mobile/immobile advection-diffusion model, J. Appl. Math. Comput., 65 (2021), 669–691. https://doi.org/10.1007/s12190-020-01410-y doi: 10.1007/s12190-020-01410-y |
[14] | Y. L. Zhao, X. M. Gu, A. Ostermann, A preconditioning technique for an all-at-once system from Volterra subdiffusion equations with graded time steps, J. Sci. Comput., 88 (2021), 1–22. https://doi.org/10.1007/s10915-021-01527-7 doi: 10.1007/s10915-021-01527-7 |
[15] | M. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection dispersion flow equations, J. Comput. Appl. Math., 172 (2004), 65–77. https://doi.org/10.1016/j.cam.2004.01.033 doi: 10.1016/j.cam.2004.01.033 |
[16] | M. M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80–90. https://doi.org/10.1016/j.apnum.2005.02.008 doi: 10.1016/j.apnum.2005.02.008 |
[17] | H. Wang, K. X. Wang, T. Sircar, A direct ${\mathrm O}(N{{\log }^{2}}N)$ finite difference method for fractional diffusion equations, J. Comput. Phys., 229 (2010), 8095–8104. https://doi.org/10.1016/j.jcp.2010.07.011 doi: 10.1016/j.jcp.2010.07.011 |
[18] | R. H. Chan, M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1995), 427–482. https://doi.org/10.1137/S0036144594276474 doi: 10.1137/S0036144594276474 |
[19] | M. K. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, 2004. https://doi.org/10.5555/1121576 |
[20] | R. Chan, X. Q. Jin, An Introduction to Iterative Toeplitz Solvers, Portland, Ringgold, Inc., 2008. https://doi.org/10.1137/1.9780898718850 |
[21] | K. X. Wang, H. Wang, A fast characteristic finite difference method for fractional advection diffusion equations, Adv. Water Resour., 34 (2011), 810–816. https://doi.org/10.1016/j.advwatres.2010.11.003 doi: 10.1016/j.advwatres.2010.11.003 |
[22] | H. K. Pang, H. W. Sun, Multigrid method for fractional diffusion equations, J. Comput. Phys., 231 (2012), 693–703. https://doi.org/10.1016/j.jcp.2011.10.005 doi: 10.1016/j.jcp.2011.10.005 |
[23] | S. L. Lei, H. W. Sun, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 242 (2013), 715–725. https://doi.org/10.1016/j.jcp.2013.02.025 doi: 10.1016/j.jcp.2013.02.025 |
[24] | F. R. Lin, S. W. Yang, X. Q. Jin, Preconditioned iterative methods for fractional diffusion equation, J. Comput. Phys., 256 (2014), 109–117. https://doi.org/10.1016/j.jcp.2013.07.040 doi: 10.1016/j.jcp.2013.07.040 |
[25] | Y. L. Zhao, P. Y. Zhu, X. M. Gu, A limited-memory block bi-diagonal Toeplitz preconditioner for block lower triangular Toeplitz system from time-space fractional diffusion equation, J. Comput. Appl. Math., 362 (2019), 99–115. https://doi.org/10.1016/j.cam.2019.05.019 doi: 10.1016/j.cam.2019.05.019 |
[26] | Z. Z. Bai, K. Y. Lu, J. Y. Pan, Diagonal and Toeplitz splitting iteration methods for Diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations, Numer. Linear Algebra Appl., 24 (2017), e2093. https://doi.org/10.1002/nla.2093 doi: 10.1002/nla.2093 |
[27] | K. Y. Lu, Diagonal and circulant or skew-circulant splitting preconditioners for spatial fractional diffusion equations, Comput. Appl. Math., 37 (2018), 1–23. https://doi.org/10.1007/s40314-017-0570-6 doi: 10.1007/s40314-017-0570-6 |
[28] | P. F. Dai, Q. B. Wu, S. F. Zhu, Quasi-Toeplitz splitting iteration methods for unsteady space-fractional diffusion equations, Numer. Methods Partial Differ. Equations, 35 (2019), 699–715. https://doi.org/10.1002/num.22320 doi: 10.1002/num.22320 |
[29] | M. K. Ng, J. Y. Pan, Approximate inverse circulant-plus-diagonal preconditioners for Toeplitz-plus-diagonal matrices. SIAM J. Sci. Comput., 32 (2010), 1442–1464. https://doi.org/10.1137/080720280 |
[30] | I. Podlubny, Fractional Differential Equations, Academic Press, 1999. http://www.gbv.de/dms/ilmenau/toc/25279799X.PDF |
[31] | O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1994. https://doi.org/10.1017/CBO9780511624100 |
[32] | R. S. Varga, Matrix Iterative Analysis, Springer, Berlin, Heidelberg, 1962. https://doi.org/10.1007/978-3-642-05156-2 |
[33] | A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424–438. https://doi.org/10.1016/j.jcp.2014.09.031 doi: 10.1016/j.jcp.2014.09.031 |
[34] | T. Huckle, Circulant and skewcirculant matrices for solving Toeplitz matrix problems, SIAM J. Matrix Anal. Appl., 13 (1992), 767–777. https://doi.org/10.1137/0613048 doi: 10.1137/0613048 |
[35] | S. Hon, Circulant preconditioners for functions of Hermitian Toeplitz matrices, J. Comput. Appl. Math., 352 (2019), 328–340. https://doi.org/10.1016/j.cam.2018.11.011 doi: 10.1016/j.cam.2018.11.011 |
[36] | S. T. Lee, H. K. Pang, H. W. Sun, Shift-invert Arnoldi approximation to the Toeplitz matrix exponential, SIAM J. Sci. Comput., 32 (2010), 774–792. https://doi.org/10.1137/090758064 doi: 10.1137/090758064 |
[37] | X. Lu, H. K. Pang, H. W. Sun, et al. Approximate inversion method for time-fractional subdiffusion equations: Approximate inversion method for time-fractional equations, Numer. Linear Algebra Appl., 25 (2017), e2132. https://doi.org/10.1002/nla.2132 doi: 10.1002/nla.2132 |
[38] | R. S. Varga, Ger$\check{s}$gorin and His Circles, Springer, Berlin, Heidelberg, 2004. https://doi.org/10.1007/978-3-642-17798-9 |
[39] | M. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection dispersion equations, J. Comput. Appl. Math., 172 (2004), 65–77. https://doi.org/10.1016/j.cam.2004.01.033 doi: 10.1016/j.cam.2004.01.033 |
[40] | M. M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80–90. https://doi.org/10.5555/1126893.1642837 doi: 10.5555/1126893.1642837 |
[41] | H. Li, J. Cheng, H. B. Li, et al., Stability analysis of fractional-order linear system with time delay described by the Caputo-Fabrizio derivative, Adv. Differ. Equations, 86 (2019), 1–8. https://doi.org/10.1007/s12555-012-0164-4 doi: 10.1007/s12555-012-0164-4 |
[42] | C. F. Lorenzo, T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dyn., 29 (2002), 57–98. https://doi.org/10.1023/A:1016586905654 doi: 10.1023/A:1016586905654 |
[43] | X. Zheng, H. Wang, An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes, SIAM J. Numer. Anal., 58 (2020), 330–352. https://doi.org/10.1137/19M1245621 doi: 10.1137/19M1245621 |
[44] | X. Zheng, H. Wang, An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation, SIAM J. Numer. Anal., 58 (2020), 2492–2514. https://doi.org/10.1137/20M132420X doi: 10.1137/20M132420X |
[45] | X. Zheng, H. Wang, A hidden-memory variable-order time-fractional optimal control model: analysis and approximation, SIAM J. Control Optim., 59 (2021), 1851–1880. https://doi.org/10.1137/20M1344962 doi: 10.1137/20M1344962 |