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Abstract: For solving a block lower triangular Toeplitz linear system arising from the time-space
fractional diffusion equations more effectively, a single-parameter two-step split iterative method
(TSS) is introduced, its convergence theory is established and the corresponding preconditioner is
also presented. Theoretical analysis shows that the original coefficient matrix after preconditioned can
be expressed as the sum of the identity matrix, a low-rank matrix, and a small norm matrix. Numerical
experiments show that the preconditioner improve the calculation efficiency of the Krylov subspace
iteration method.
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1. Introduction

In recent decades, the application of the fractional diffusion equation (FDE) in many fields has
become more and more extensive [1-3]. FDE has become an indispensable tool for describing many
of phenomena in mechanics and physics [4—6]. It has also attracted a lot of attention in biology [7],
finance [8], image processing [9] and many other fields. In addition, FDE also has some very unique
properties. For example, the spatial fractional diffusion equation can provide a sufficient and accurate
description of the abnormal diffusion process, while the classic second-order diffusion equation often
cannot accurately simulate this process. Therefore, more and more scholars have begun to study such
important equations, and have obtained many excellent results [10-14].

For the fractional diffusion equations, analytical solutions are usually not available, so numerical
approximate solutions have become the main method. However, due to the non-local nature of
fractional operators, the use of simple discretization, even if it is implicit, will lead to unconditional
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instability [15, 16]. In addition, most FDE numerical methods tend to generate the full coefficient
matrix, which requires the computational cost of O(n*) and storage of O(n?) at each time step, where
n represents the number of spatial grids.

Recently, Meerschaet and Tadjeran [15, 16] proposed that the fractional diffusion equation was
discretized by using the implicit finite difference scheme of the Griinwald formula with displacement
to overcome the difficulty of stability. Their approach has proven to be unconditional and stable.
Later, Wang and Sircar [17] found that the coefficient matrix obtained by the Meerschaet-Tadjeran
method has a Toeplitz-like structure, which can be expressed as the combination of diagonal matrix
and Toeplitz matrix. Since the Toeplitz matrix has many good properties, such as it can be completely
determined by 2n — 1 elements in line 1 and column 1, the storage requirements are greatly reduced
from O(n?) to O(n). In addition, as a special Toeplitz matrix, circulant matrix can be diagonalized by
fast Fourier transform (FFT), while a Toeplitz matrix of n order can be extended to a circular matrix
of 2n order, so the matrix-vector multiplication for the Toeplitz-like can be obtained in O(nlogn)
operations by the FFT [18-20]. With this advantage, some scholars used the Conjugate Gradient
Normal Residual (CGNR) method [21] to solve the linear system discretized by Meerschaet-Tadjeran
method. Because its structure is similar to Toeplitz, the cost of each iteration of CGNR method is
O(nlogn). However, the numerical results show that the convergence effect of the CGNR method
is good only when the diffusion coefficient function is small. To solve the above problems, Pang
and Sun [22] proposed to use the multigrid method to solve the discretized FDE system obtained by
the Meerschaet-Tadjeran method. This algorithm can keep the calculation cost of each iteration to
O(nlogn). The numerical results show that the multigrid method converges quickly even under the
ill-condition cases. Although in very simple cases, the linear convergence of the multigrid method
has not been proved in theoretical. The fast algorithm based on FFT and preprocessing technology
has developed rapidly and constructing accelerated iteration of preprocessing has become a common
method to solve these linear systems [10,23-26, 28, 29].

2. Discretization of time-space FDE

In this paper, we consider the time-space fractional diffusion equation as follows:

COMu(x, 1) = (e)gDhu(x, 1) + (€2), Diu(x, 1) + f(x,1), 0<t<T,0<x<L,
u(x, 0) = uo(x), 0<x<L 2.1)
u(0,1) = u(L,1) = 0, 0<t<T

where 0 < @ < 1, 1 < 8 < 2 is the order of the fractional derivative, f(x, ) is the source term, and the
diffusion coefficient e;, e; > 0, the definition of Caputo fractional derivative as follows:

1 " Ou(x, s)
C _ > I
o Diulx, 1) = - j(: 3 (t—s5)%s.

I'(-) is the gamma function, aDﬁ and fo are the left and right Riemann-Liouville fractional
derivatives, respectively

T uE
r2-pox*J, (x—f)ﬂ“df’

LDlu(x, 1) =
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R A ()
DD = Bae ), ot

Fix two positive integers N and M, and divide the space domain [0, L] and the time domain [0, T']
as follows:

L
xi=ih, h=—,1=0,1,...,N,
N

T
tw=mt, 7=—,m=0,1,...,M.
mT, T = o m

Then use the shifted Griinwald approximations to discretize the left and right fractional derivatives
in the space [15, 16]

i+1 N—i+1

o DRu(x, D]y, ~ W ng i, DU Dy, W Z 8¢ k-1, (2.2)

The alternate fractional binomial coefficient g,(f) is given as follows:

g =1,

2.3)
w_ 1 1)ﬁ(ﬁ_1) B-k+1), k=1,2,...,

and has the following properties [30]:

g =1,d"=8<0P>¢">...>0,

) k
®B) ®B)
7 =0, 7 <0, Vk=x=1,
ng ;g] (2.4)

Z 1 =

Then put the formula (2.2) into the Eq (2.1) to get the semi-discrete format in matrix-vector form

W SDM() = —-Ku(t) + (), 0<t<T, (2.5)

where u(?) = [uy,uy, ..., uy-11", Sﬂfu(t) = [Sﬂful,g Diuy, . .. ,g @?MN—l]T, £(t) = [fi, fo- s fa]”
with f; = f(x;,)) 0 <i < N), K = ;T + ezTﬁT , Toeplitz matrix T is given as follows:

’g(lﬁ) go(ﬁ) 0O --- 0

gy &l &)
: ® -, .. .

Tg=-| ©= & & o (2.6)

P e 0

® . e BB

gN_)l ® ' . g3ﬁ> go

L8y 8y T T & gl I v-Dxv-1)
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On the time step, let ul’ ~ u(x;, ;) be the approximate solution. By using the L2 — 1, formula [33],
the temporal fractional derivative OCZ)? u(x,t) can be discretized as:

J

C (a,0 ) s+1 s 3—a
EAC = ) u) +0 () 2.7)
s=0
with o = 1 - ¢, and for j = 0, c(“‘T) F(ZQa) a™, for j > 1,
B )
g(l ) _ F(; ) aga ,0) b(a,o-) _ bg(z,(r)’ 1 <s< ] _ 1’
a .
ai.a o) b;a,(r)’ s=j

with
ay” =0 A" =1+ -(-1+0)"U> 1),

b = 2% [+ oy = -1+0)|- % [+ —-1+0)"|a 2 D).

Bring (2.7) into (2.5), the following discrete format can be obtained
hﬁz @O (0 —w) + Ko = E T = 0,1, M~ (2.8)

with initial conditions u? = uy (x;) (0 < i < N), where w/* = guw/*'+(1-0)u/, v/ = [u{, ué, L “{v_1] ’
— Jto Jto Jjro jto _ .
fjw_[fl AT N—l] and f; _f(xi’tjﬂr)(OSlSN).

Let 0 and 7 represent the zero matrix and the identity matrix, respectively. Ag = hﬁcg”g)l + 0K,
by = Bu’ + Wt 7,

T L@ TN 4@
LW jenriok B=—" @91 _(1- K,
TTe-a)® 7 TQ—a)® 1 -0)

Ay =17 =N+ (1=K, A=W (¢ = "P) 1@ <k<M=-2).

(o) _ _17° (@,0) _ p(a,0)
Letv;™ = 550 (aj bj ), then

by = — [# (W7 = ") T+ (1 = K |l + W (V7 + £ 1+7),
b = =1 (V™7 = 7 )ul + 1 (VT + £H) 2 <k < M- ).

Finally, put it into formula (2.8) to get

Wu = b, (2.9)
where b = [by, by, ..., by 117,
X [ A 0O 0 --- 0]
u
. A A
u= , W= : )
aM Ay 0
Ayz Ap-s Ap
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For the above discrete linear system, we introduce the Kronecker product, and the Eq (2.9) can be
expressed equivalently as [25]:

Wu = b, (2.10)
where
W=rAIl +B®K, (2.11)
(a,0)
Cy 0 o --- 0 0
(a,0) (a,0) (a,0)
= C 0 0 e 0
(@,0) _ (,0) (a,0)
A= ¢ 0 0
: o |
(a,0) (a,0) .. .. .. (a,0)
6?43)_6?4_4) @) (@) . o (50 (@.0) <0>
a,0 a,0 ,0 a,0 ,0 a,0 a,0
Cv—2 " Cyusz Cy3 " Cysa 0 T G TG 0

l-0c o

According to the above steps, Eq (2.1) is discretized a block lower triangular linear system (2.10).
3. Two-Step Split (TSS) iteration method

In this section, we will be working on the block lower triangle Toeplitz linear system (2.10)

Wu = b.
Let
T1 = B®€1Tﬁ, (31)
T, =HAQI+Be,T], (3.2)

then W = T, + T, constitutes a split of the coefficient matrix W. The matrix 7 is a block bi-diagonal
matrix, with each block is a Toeplitz matrix. 73 is a block lower triangular Toeplitz matrix, the form is
the same as the matrix W. Next, we use the matrix splitting iteration method TSS to deal with the
system (2.10).

(The TSS Iteration Method.) Given an initial guess u® € C", for k = 0, 1,2, ..., until the iteration
sequence {u®} € C" converges, compute the next iteration {u**"} € C" according to the following
procedure

I+ Tyu,r =yl =Ty)ux + b,
: (3.3)

VI + Ty = (yI = Tug, 1 + b,

where vy is a prescribed positive constant.
Remark 3.1. In the above TSS iterative method, the main amount of calculation comes from the product
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of matrix (yI + T), (yI + T,) and vector. Since matrix 7 is a block bi-diagonal matrix and each block
is a Toeplitz matrix, matrix 7, is the Toeplitz matrix of the lower triangle of the block, and each block
is also a Toeplitz matrix, so we may use fast Fourier transform (FFT) to calculate them.
Next, we will discuss the convergence domain of the TSS iterative method and its optimal parameter.
By straightforward computations, the two half-iterates in Eq (3.3) can be integrated into a standard
iteration form
M@)u* = N(y)u® + b, (3.4)

where | .
M(y) = Z(ﬂ + Tyl + To), N(y) = 5(71 - T)(yI - T)). (3.5)

Next, we will show that the TSS method is unconditionally convergent, and give the optimal
parameters.
Theorem 3.1. Let W = T, + T, form a matrix split of W, where matrix T, , T, is defined by (3.1) and
(3.2). Let L(y) be the iterative matrix of the TSS iterative method,then

L(y) = (yI + To)"' (yI + T1) "' (yI = T1)(yl = T), (3.6)

and the spectral radius p(L(y)) of L(y) satisfies

p(L(y)) < o(y) < 1,Vy >0,

where

—t —t
e(y) ;== max {l?’ 1|} . max {l?’ 2|} , (3.7
Amin <11 <Amax y + tl ;lminstZS;lmax y + t2

Amins Amax denote the minimum and maximum eigenvalues of the matrix 77, Amin and Apax represent the
minimum and maximum eigenvalues of the matrix 75, #; and ¢, represent an eigenvalue of matrices T
and 1,, respectively.

Proof. Since

L(y) = M(y)"'N(y)
= I+ Ty) (I + T) ' (yI = T))(yI - T»)
= (v + T [/ + T (vl = T (/T = T + To) ™ | (v + T,
Let
Ly) = I+ Ty (I = Tyl = To)(yl + T2) ™,
then the matrix L(y) is similar to ﬁ(y), SO

PL()) = p(L(y))
< I+ T (vl = T = To)(yl + To) ™ ||
NI +T)" I =T L I =TI+ To) ™ ||

ly — ly -t
= max 7— . Imax y—
Amin<t1 SAmax y + tl /Alminﬁtzﬁ;lmax ’)’ + t2

= o(y).
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For T) = B ® e,Ty, Tp is a strictly diagonally dominant matrix, and the diagonal elements are
greater than 0. So the eigenvalues of ;T are all greater than 0. In addition, since all the eigenvalues
o of B are positive, according to the properties of Kronecker product on eigenvalues, we can get
ATy = AB® e Tg) > 0, where A(.) indicates an eigenvalue.

In the same way, we can get A(B ® exTj) > 0. Because T, = WARD + B exTj is the lower
triangular matrix of the block, and each block matrix on the diagonal is hﬁcg“"’)l + O'ezTﬁT is also a
Toeplitz matrix with strictly diagonally dominant matrix, so the eigenvalue is greater than 0, A(7;) > 0
is established.

Sincey > 0, >0and 1, > 0, so

-t -t
max =1l <1, max bkl <1
Amin <71 <Amax )/ + t] ;lminﬁtzﬁ;lmax 7 + t2

That is ¢(y) < 1, the TSS iteration method converges unconditionally.

Because the convergence rate of TSS iteration is limited by ¢(y), which depends not only on the
spectral radius of matrix 7} and 7, but also on the parameter y. The following lemma will give the
optimal parameter y* of the TSS iterative method.

Lemma 3.2 Let A, = VAminAma> A+ = VAminAdmax. Then the optimal parameter y, that minimizes
the function ¢(y) is determined in the following three cases:
Case 1: If A« = A=, then it holds thaty, = A« = A«, and

VAmax VAmin VAmax VAmm
\/ max ‘//lmm \//lmax + \/ﬂmm

@(y=)=

Case 2: If A« < A=, then
Case 2.1: for Amin > Amins OF FOT Anax > Amaxs Amin > Amax and Anax ey, ﬂﬁ‘“axj’““ it holds that y, = A«,

/lmm"'/lmm
and
= A V max V min
so(w)—
max + mm

A

Case 2.2: for Ay = Amax, OF FOT Ay > /lmax,;lmin > Amax and m > | [Awindmin ¢ holds that Vi

mdx +/lmdx /Imﬂx /lmax

(P(')’ ) /lmm V max V;lmin
+ Amin V max V;lmin .

1]
o>
*

and

Case 3: If A, < A,, then
Case 3.1: for Ayax = Amaxs OF FOr Apax > Amaxsdmax > Amin and Anint dnin > ,/%, it holds that y« = A+,

/lmax+/lmax
A
min V max —
* mln V

Case 3.2: for Apin = Amin, OF fOr Amin > AminsAmax > Amax and Ao+ v > w/ ’;‘“““Am“* it holds that y» = A+,
min‘tmin

ﬂl’ﬂlﬂ +/1m1n

and

so(yx)—

+ Vo

and
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4. TSS preconditioner

From the TSS iterative method, we get the iterative matrix M(y) = 2%(71 + Ty)(vI + T») (see (3.5))
for the coefficient matrix W. By replacing the Toeplitz matrix T in M(y) with the circulant matrix
S [34], we get the circulant preconditioner of the coefficient matrix W of the linear system (2.10),
denoted as

1
P(y) = Z(ﬂ +S )+ S52), 4.1)

where
Si=B®eiSs  S,=WA®D+BweS), (4.2)

and the first columns of matrices S and S5 are respectively given by

T
_|e® ® . B 9. (/3)]
[gl 7g2 ’ 7g|_%J’ s 7g0 ’ (43)

T
_ [g(lm,gow’o’... ,O’g(@],... ,ggﬁ)] _

Take the matrix P(y) as the preconditioner of the coefficient matrix W, to show its effectiveness,
we need to consider the properties of the preconditioned matrix P(y)~'W. In the below discussion, let
| - || be the infinite norm of the matrix.

Theorem 4.1. The preconditioner P(y) = 2%()/1 + S 1)yl + S»,) is reversible.

Proof. According to the properties of the binomial coefficient g,(f) (see (2.4)), we have

[

rv=gy gl +kglh < D gl =P =p
3] k=0k#1

By the Ger§gorin circle theorem [38], we know that all eigenvalues of the circulant matrix Sz and
S " are within the open disc

{zeC: |lz-Bl<p},

so the circulant matrix S g and S 4" are strictly diagonally dominant. In addition, because all eigenvalues
of B are positive, by the properties of Kronecker product on eigenvalues, we can get A(S ) > 0, al +5,
is reversible.

In the same way, AB®e, TBT ) > 0. Because S, = "Y(A®I)+ BRe,S g is the lower triangular matrix
of the block, and each block matrix on the diagonal is hﬁcf)“’”)l + O'ezS,g is Toeplitz matrix with strictly
diagonally dominant, so the eigenvalue is greater than 0, A(S;) > 0, al + S is also reversible.

All in all, the preprocessing matrix P(y) = %(yl + Syl + S>,) is reversible.
Lemma 4.2 %1 If the positive generating function f of Toeplitz matrix T,, € C"™" is in the Wiener class,

S, € C™" is a Strang’s circulant preconditioner generated by 7,. Then, according to the equivalence
of norm, for all € > 0, there are positive integers N " M >0, so that for all n > N, there are

Tn_Sn:Eiz+Fna

Electronic Research Archive Volume 30, Issue 3, 780-797.
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with

rank(E,) < M, || F,|I<e.

Theorem 4.3. There exist matrices E;, F;, Er and F such that

YI+S)\YI+T)=E +F +1, (YI+S8,)"'(yI+T,)=Er+Fg+1,

with 0
rank(E)) < (M- DM, || FL < =,
Y
rank(Eg) < (M - DM, || Fz 1< Ze.
Y
Proof. Since
YI+S)"' I +T)=@l+S) (T -S)+1,
and

Ti—S1=B®e(Tp - Sp).
According to the Lemma 4.2, let

T[;—Sﬂ:Eﬁ+Fﬂ,
with

rank(Eg) < M, || Fz|I<e.

Bring it into the above formula to get

T, -S,=B®e(Ez+ Fp)
:B®€1Eﬁ+g®€1Fﬁ

= EL + ﬁL,
with
EL:B®€1Eﬁ, FL:B®€1Fﬁ,
and

rank(E;) = rank(B@elEﬁ)
= rank(B) - rank(Eg)
<(M-1DM,
| Fpll=ll Bo e Fy ||
=Bl -lleFgll
<epr|BIl-Il Fgll

<er&.
Bring it into the above formula to get

YI+S) "I +T) =(@l+8) " (E,+F)+1

=(I+S) " EL+ (I +S) FL+ 1
=FE, +F; +1,

Electronic Research Archive

Volume 30, Issue 3, 780-797.
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with
E =(wIl+S\)"E,, Fo=@I+S)"Fp,
and R
rank(E;) = rank((yI + S|)"'E})
< rank(E))
<(M-1M,
| Foll=ll (I + S0 Fo
< I+S)™ - Epl
< I+S)™ - ELl
€l
< —e&.
Y
Similarly
I +8) (Yl +To) = (Y +85) (Tr = S2) + 1,
and , _ , ,
= B®ey(Ej + Fj)
= ER + FR,
with
ER = B®€2ET, FR:B®€2FT,
and

rank(Ex) = rank(B ® e, Ej)
= rank(B) - rank(ezE; )
<(M-1M,
| Frll=ll B® e2F} ||
= Bl |l e2F |l
< ere.

Bring it into the above formula to get

YT+ S2) 'yl +To) = (yI + S2) " (Ex + Fr) + 1
= ER + FR + I,
with
Er=(yl+S2) "Eg, Fr=(yl+Sy) 'Fy,
and
rank(Eg) < rank(Eg) < (M - DM,
| Frll=ll (7T +S2)7 Fr |

<O +S)7 -1 Pl

€
< —e&.

Y

Electronic Research Archive
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Theorem 4.4. There are matrices £ and F such that P()/)_1 M(y) = E + F + I, with

B
rank(E) <2(M — )M, || F|I< ey + e +2€2,3) tey
Y

Proof.

Py) 'M(y) = (Y1 +S2) 7' (yI + S (vl + T)(YI + T)
= (Yl +Sy) ' [EL+ Fr + (I + T»)
=l +S) 'EL(yI +To) + (yI +S,) 'Fr(yl + To) + Eg + Fr + 1
=W+ S) 'EL(yI +To) + Ex+ (yI + So) '"FL(yI + Ty) + Fr+ 1
—E+F+1,
with
E=@I+S) "' ELyI+T) + Ep,  F=@l+S8) ' FL(yI + T2) + Fy,

and
rank(E) = rank((yI + Sz)_]EL(yI + T5) + Eg)

< rank((yI + S»)'E (yI + T»)) + rank(Eg)
< rank(E ) + rank(ER)
<2M-1M .

Let ¢ = max {lc(a (r)| |c(w,(r) (a (T)l | (a, 0') (a (r)l} then

| T2 =l PARD+BeeT] |
=W A+ Bl eTj |
Shﬁc+ez,[3,

SO
I E W=l + S2) 7 FLiyI + To) + Fr ||

<yl +S2) " Fryl + To) || + || Fr |l
UL +S)™ - N ELll- Iyl +Tall + 1l Fr
’y+hBC+€2ﬁ e ()
— = . —+ —¢
Y Y Y
el(y+hﬁc+ez,6’) + eyy
E.

52
Theorem 4.5. There are matrices £ and F' such that P(y)‘1 W =1+ E(y) + F(y), with

ei(y + hPc + exB) + ery
£

rank(E(y)) < 2(M - )M, | F(y) |I<2 2 +1.

Proof. Since _ _
P(y)™'W = P(y)" M(y)M(y)"'W

= +E+F)I-L>y))
=1+EUI - L(y) + FI - L(y)) — L(y).

Electronic Research Archive Volume 30, Issue 3, 780-797.
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Let
E(y) = EU - L(y)), F(y) = F( - L(y)) - L(y),
then R
rank(E(y)) = rank(E(I — L(y)))
< rank(E)
<2M-1)M,

| F(y) lI=Il BT = L(y)) = L(y) ||
<IEN+INE+TI-1ILoy) |
< FN+1IEF+11-¢(y)
< 26’1(?’ + hﬁc;‘zezﬁ) +ey,

+ 1.

5. Numerical experiments

In this section, a numerical example used to show the performance of preconditioner
Prss(y) = %(y[ + Syl + S,) (4.1) generated by the TSS iteration method. To illustrate the
efficiency of Prss(y), the preconditioner Pprs(y) = %(’y! +HPARD)yl+B®(e;Sp+ S ;)) which
generated by the diagonal and Toeplitz splitting (DTS) iteration method proposed by Bai [26] is
tested. The Strang’s circulant preconditioner Pc = (A ® I) + B® (¢;S4 + €2 g) which generated by
directly replacing Toeplitz part of coefficient matrix with Strang’s circulant matrix has been tested too.
We choose the GMRES method to solve the Eq (2.1). The iteration terminated if the relative residual
error satisfies H:ﬁﬁi:’; < 107®, where r® denotes the residual vector in the kzh iteration. The initial guess
is chosen as the zero vector, and the experimental results include the CPU time and the number of
iterations. All experiments are carried out via MATLAB 2020a on a Windows 10 (64 bit) PC.

Example 1. For Eq (2.1), consider the value of the fractional derivative (o, 8) = (0.1, 1.1), (0.4, 1.7),
(0.7,1.4), (0.9,1.9), the time domain is [0, T] = [0, 1], and the space domain is [0,L] = [0, 1], e¢; =
20, e, = 0.02, and source item is

Fx, 1) = 26" E1 020X (1 = x)* — € {F(g(—i)ﬁ)

LG N o, L)
g 20F 7+ 00201 -0+ pe s

[20x°7 + 0.02(1 — x)*P]

[20x*# + 0.02(1 - x)“-ﬂ} ,

where
Eu v = -
W) ka T(uk +v)

the exact solution of the corresponding fractional diffusion equation is

u(x, 1) = ' x*(1 — x)%.

Electronic Research Archive Volume 30, Issue 3, 780-797.
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Table 1. Numerical results obtained by using Gmres(50) in Example 1.

(a,B) (N, M) Prss_gmres Pprs _gmres Pc_gmres
Iter Time Iter Time Iter Time
(0.1,1.1) (17,17) (1,13) 0.012 (1,15) 0.013 (1,11) 0.023
(33,33) (1,16) 0.138 (1,18) 0.159 (1,12) 0.421
(65,65) (1,19) 3.688 (1,18) 3.785 (1,13) 14.476
(129,129) (1,28) 40.954 (1,20) 41.296 (1,14) 599.907
0.4,1.7) (17,17) (1,23) 0.015 (1,28) 0.018 (1,21) 0.041
(33,33) (1,36) 0.279 (1,43) 0.346 (1,30) 0.594
(65,65) (2,10) 11.067 2,9) 11.213 (1,35) 32.985
(129,129) (2,14) 118.760 2,17) 121.514 (1,27) 1125.36
0.7,1.4) (17,17 (1,26) 0.015 (1,29) 0.017 (1,21) 0.041
(33,33) (1,36) 0.279 (1,43) 0.346 (1,30) 0.594
(65,65) (2,1) 9.472 2,8) 11.085 (1,35) 32.985
(129,129) 2,17) 120.668 (2,18) 122.241 (1,39) 1669.31
(0.9,1.9) (17,17 (1,35) 0.021 (1,31) 0.025 (1,21) 0.053
(33,33) (2,42) 0.368 (1,49) 0.383 (1,49) 0.921
(65,65) (4,24) 30.883 (4,36) 33.658 (3,24) 126.978
(129,129) (5,47) 383.927 (5,22) 385.181 (3,49) 6125.710

Table 1 shows that compared with the preconditioner Pprs(y), the preconditioner Prgg(y) reduce
the computational cost and number of iterations when we use the GMRES subspace iteration method
to solve Example 1.

40

Figure 1. Spectra of the coefficient matrix W for (a,8) = (0.7,1.4), (N,M) = (33,33) in
Example 1.
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Figure 2. Spectra of TSS and DTS after preconditioned for (a,8) = (0.7,1.4), (N,M) =
(33,33) in Example 1.

Figure 1 shows the eigenvalues distribution of the original coefficient matrix in Example 1 when
((@,p) = (0.7,1.4), (N.M) = (33,33). At this time, the eigenvalues are scattered in a large range. But
after preprocessing, the eigenvalues gather obviously, as shown in Figure 2. Figure 2(a) on the left
shows the result of the preconditioner generated by the TSS iterative method. On the right Figure 2(b)
is the result of the preconditioner generated by the DTS iterative method. From the comparison results,
the preconditioner generated by TSS makes the eigenvalues more concentrated.

6. Conclusions

In this paper, we mainly researched the preconditioner of linear equations which are discretized
from fractional diffusion equations. According to the two-Step Split (TSS) iteration method, we
constructed a split iteration preconditioner that could reduce the computational cost and number of
iterations when the Krylov subspace iteration method was used to solve this equation. Firstly, through
the FDE discretization, we got the linear system Wu = b which contained the Kronecker product.
Then, the coefficient matrix was split into two parts 7', T», and introduced to a single parameter
two-step split iteration method TSS. It was proved that the TSS iterative method was unconditionally
convergent, the optimal parameter values were given, and the preconditioner P(y) of the coeflicient
matrix was constructed. Finally, to show the effectiveness of the preconditioner, theoretical analysis
proved that preprocessed coefficient matrix could be expressed as the sum of an identity matrix, a
low-rank matrix, and a small norm matrix. This showed that the preconditioner had a high degree of
approximation to the coefficient matrix. It could be obtained by fast Fourier transform (FFT) in a
small amount of calculation for the circulant matrix, calculating inversion, matrix-vector
multiplication, etc. In the numerical experiment, a numerical example was used to demonstrate the
effectiveness of the preconditioner proposed in this paper. From the analysis of the experimental
results, the preconditioner we constructed could make the eigenvalue distribution of the coefficient

Electronic Research Archive Volume 30, Issue 3, 780-797.
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matrix more concentrated than the preconditioner produced by the DTS iteration method. When using
the Krylov subspace iteration method, such as the generalized minimal residual (GMRES) method,
the number of iteration steps was reduced and the calculation speed was increased.

In addition, the proposed model is mainly for the constant-order fractional diffusion equations.
Whether it can be extended to variable-order fractional diffusion problems [42—45] may also be
considered in the future.
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