
Accurate flood forecasting is a crucial process for predicting the timing, occurrence, duration, and magnitude of floods in specific zones. This prediction often involves analyzing various hydrological, meteorological, and environmental parameters. In recent years, several soft computing techniques have been widely used for flood forecasting. In this study, flood forecasting for the Narmada River at the Hoshangabad gauging site in Madhya Pradesh, India, was conducted using an Artificial Neural Network (ANN) model, a Fuzzy Logic (FL) model, and an Adaptive Neuro-Fuzzy Inference System (ANFIS) model. To assess their capacity to handle different levels of information, three separate input data sets were used. Our objective was to compare the performance and evaluate the suitability of soft computing data-driven models for flood forecasting. For the development of these models, monthly discharge data spanning 33 years from six gauging sites were selected. Various performance measures, such as regression, root mean square error (RMSE), and percentage deviation, were used to compare and evaluate the performances of the different models. The results indicated that the ANN and ANFIS models performed similarly in some cases. However, the ANFIS model generally predicted much better than the ANN model in most cases. The ANFIS model, developed using the hybrid method, delivered the best performance with an RMSE of 211.97 and a coefficient of regression of 0.96, demonstrating the potential of using these models for flood forecasting. This research highlighted the effectiveness of soft computing techniques in flood forecasting and established useful suitability criteria that can be employed by flood control departments in various countries, regions, and states for accurate flood prognosis.
Citation: Ronak P. Chaudhari, Shantanu R. Thorat, Darshan J. Mehta, Sahita I. Waikhom, Vipinkumar G. Yadav, Vijendra Kumar. Comparison of soft-computing techniques: Data-driven models for flood forecasting[J]. AIMS Environmental Science, 2024, 11(5): 741-758. doi: 10.3934/environsci.2024037
[1] | Wael S. Abu El Azm, Ramy Aldallal, Hassan M. Aljohani, Said G. Nassr . Estimations of competing lifetime data from inverse Weibull distribution under adaptive progressively hybrid censored. Mathematical Biosciences and Engineering, 2022, 19(6): 6252-6275. doi: 10.3934/mbe.2022292 |
[2] | Walid Emam, Ghadah Alomani . Predictive modeling of reliability engineering data using a new version of the flexible Weibull model. Mathematical Biosciences and Engineering, 2023, 20(6): 9948-9964. doi: 10.3934/mbe.2023436 |
[3] | Walid Emam, Khalaf S. Sultan . Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148 |
[4] | Manal M. Yousef, Rehab Alsultan, Said G. Nassr . Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on Type-II progressive censoring data. Mathematical Biosciences and Engineering, 2023, 20(2): 1674-1694. doi: 10.3934/mbe.2023076 |
[5] | M. Nagy, M. H. Abu-Moussa, Adel Fahad Alrasheedi, A. Rabie . Expected Bayesian estimation for exponential model based on simple step stress with Type-I hybrid censored data. Mathematical Biosciences and Engineering, 2022, 19(10): 9773-9791. doi: 10.3934/mbe.2022455 |
[6] | Said G. Nassr, Amal S. Hassan, Rehab Alsultan, Ahmed R. El-Saeed . Acceptance sampling plans for the three-parameter inverted Topp–Leone model. Mathematical Biosciences and Engineering, 2022, 19(12): 13628-13659. doi: 10.3934/mbe.2022636 |
[7] | M. E. Bakr, Abdulhakim A. Al-Babtain, Zafar Mahmood, R. A. Aldallal, Saima Khan Khosa, M. M. Abd El-Raouf, Eslam Hussam, Ahmed M. Gemeay . Statistical modelling for a new family of generalized distributions with real data applications. Mathematical Biosciences and Engineering, 2022, 19(9): 8705-8740. doi: 10.3934/mbe.2022404 |
[8] | Amal S. Hassan, Najwan Alsadat, Christophe Chesneau, Ahmed W. Shawki . A novel weighted family of probability distributions with applications to world natural gas, oil, and gold reserves. Mathematical Biosciences and Engineering, 2023, 20(11): 19871-19911. doi: 10.3934/mbe.2023880 |
[9] | M. G. M. Ghazal, H. M. M. Radwan . A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data. Mathematical Biosciences and Engineering, 2022, 19(12): 13193-13213. doi: 10.3934/mbe.2022617 |
[10] | Hatim Solayman Migdadi, Nesreen M. Al-Olaimat, Omar Meqdadi . Inference and optimal design for the k-level step-stress accelerated life test based on progressive Type-I interval censored power Rayleigh data. Mathematical Biosciences and Engineering, 2023, 20(12): 21407-21431. doi: 10.3934/mbe.2023947 |
Accurate flood forecasting is a crucial process for predicting the timing, occurrence, duration, and magnitude of floods in specific zones. This prediction often involves analyzing various hydrological, meteorological, and environmental parameters. In recent years, several soft computing techniques have been widely used for flood forecasting. In this study, flood forecasting for the Narmada River at the Hoshangabad gauging site in Madhya Pradesh, India, was conducted using an Artificial Neural Network (ANN) model, a Fuzzy Logic (FL) model, and an Adaptive Neuro-Fuzzy Inference System (ANFIS) model. To assess their capacity to handle different levels of information, three separate input data sets were used. Our objective was to compare the performance and evaluate the suitability of soft computing data-driven models for flood forecasting. For the development of these models, monthly discharge data spanning 33 years from six gauging sites were selected. Various performance measures, such as regression, root mean square error (RMSE), and percentage deviation, were used to compare and evaluate the performances of the different models. The results indicated that the ANN and ANFIS models performed similarly in some cases. However, the ANFIS model generally predicted much better than the ANN model in most cases. The ANFIS model, developed using the hybrid method, delivered the best performance with an RMSE of 211.97 and a coefficient of regression of 0.96, demonstrating the potential of using these models for flood forecasting. This research highlighted the effectiveness of soft computing techniques in flood forecasting and established useful suitability criteria that can be employed by flood control departments in various countries, regions, and states for accurate flood prognosis.
In several lifetime tests, including, industrial, lifetime and clinical applications, progressive censoring is very useful. Progressive censoring permits the removal of the experimental units surviving until the test finishes. Let an experiment of experiment with n independent units in which it is not desirable to detect all failure times under the cost and time limitations, so only part of failures of the units are observed and the other part are removed from the experiment, such a sample is called a censored sample. Assume that one of the units was broken by accident after the test began, but before all of the units had burned out. If the experiment is still ongoing, this unit must be removed from the life test. The progressive censoring scheme gives a methodology for analyzing this type of data in this case. Some of the most important works on this subject are Balakrishnan and Aggarwala [1], Balakrishnan [2], and Cramer and Iliopoulos [3].
The experimentation time can be very long if the units are very reliable, which is a disadvantage of progressive Type-II censored schemes. Kundu and Joarder [4] and Childs et al. [5] address this problem by proposing a new type of censoring in which the stopping time of the experiment is minimum value of {Xm:m:n,T}, where the time T is fixed time before the start of the test. This type of censored sampling is called a progressive hybrid censoring sample (PHCS). The total time of the experiment under a PHCS will not exceed T. Several authors have studied PHCSs. See, for example, Panahi in [6], Alshenawy et al. in [7], Hemmati and Khorram in [8], and Lin and Huang in [9].
However, the weakness of a PHCS is that it cannot be implemented when a few failures can be detected before time T. For this reason, Cho et al. [10] proposed a general type of censoring, called a generalized Type-I PHCS, in which a smaller number of failures is predetermined. A lifetime test experiment would save the time and costs of failures using this censoring scheme. Moreover, the estimates of the statistical efficiency are improved by the experiment having more failures. In the following section, the generalized Type-I PHCS and its advantages are explained. For recent work on this topic, see, for example, Moihe El-Din et al. [11], Mohie El-Din et al. [12], and Nagy et al. [13].
The Weibull distribution is one of the most important in reliability and life testing, and it is widely utilized in various domains such as reliability theory and clinical trials. For this reason, we used this distribution to express truly real data. The Weibull distribution has the probability density (PD), cumulative distribution (CD), survival (S), and hazard (H) functions given as follows.
f(x;λ,μ)=λμxμ−1e−λxμ,x>0, | (1.1) |
F(x;λ,μ)=1−e−λxμ,x>0,λ>0,μ>0. | (1.2) |
S(x;λ,μ)=ˉF(x;λ,μ)=1−F(x;λ,μ), H(x;λ,μ)=λμxμ−1,x>0,λ>0,μ>0. | (1.3) |
For Bayesian inference on the Weibull distribution, see, for example, Mohie El-Din and Nagy [14], and Lin et al. in [15].
In this paper, we address the development of point and interval estimation and classical and Bayesian inference for the Weibull distribution based on the generalized Type-I PHCS. The Bayesian estimate for any parameter β, denoted by ˆβBS, in terms of the squared error loss function (SELF), is the expected value of the posterior distribution and given by
ˆβBS=Eβ|x_[β]. | (1.4) |
The LINEX loss function (LLF) can be expressed as follows.
LBL(ˆβ,β)=exp[υ(ˆβ−β)]−υ(ˆβ−β)−1, υ≠0, | (1.5) |
The Bayesian estimator of β, denoted by ˆβBL under the (LLF), the value ˆβBL that minimizes Eβ|X_[LBL(ˆβ,β)] is given by
ˆβBL=−1υln{Eβ|x_[exp(−υβ)]}, | (1.6) |
Calabria and Pulcini [16] considered the question of the choice of the value of parameter v.
The general entropy loss function (GELF) is another widely used asymmetric loss function. It is given by
LBE(ˆβ,β)∝(ˆββ)κ−κln(ˆββ)−1. | (1.7) |
The Bayesian estimate ˆβBE relative to the GE loss function is given by
ˆβBE={Eβ|x_[β]−κ}−1κ. | (1.8) |
The remainder of this article is organized as ollows. Section 2 summarizes the model of the generalized Type-I PHCS. Section 3 extracts the maximum likelihood estimates (ML) and the Bayesian estimates for the unknown parameters and SF and HF under three loss functions. Section 4 derives the Bayesian one-sample prediction for all censoring stage failure times of all withdrawn units. In Section 5, we derive the Bayesian prediction for all withdrawn units in the censoring stage {Ri,i=1,...,m}, which is called one-sample Bayesian prediction; and in Section 6, we derive the Bayesian prediction of an unobserved future progressive sample from the same distribution, which is called two-sample Bayesian prediction. In Section 7, simulation studies are conducted to compare the efficiency of the proposed inference techniques. In Section 8, a real-life data set is used to demonstrate the theoretical findings. Finally, the paper is concluded in Section 9.
Consider lifetime testing in which n equivalent units are tested. The generalized Type-I PHCS is as follows. Let T>0 and k,m∈{1,2,...,n} be prefixed integers in which k<m with the predetermined censoring scheme R=(R1,R2,...,Rm) satisfying n=m+R1+…+Rm. When the first failure occurs, R1 of the remaining units are randomly eliminated. When the second failure occurs R2, of the surviving units are eliminated from the experiment. This process repeats until the termination time T∗=max{Xk:m:n,min{Xm:m:n,T}} is reached, at which moment the reset surviving units are eliminated from the test. The "generalised Type-I PHCS" modifies the PHCS by allowing the experiment to continue beyond T if only a few failures are observed up to T. Ideally, the experimenters would like to observe m failures within this system, but they will observe at least k failures. D is the number of failures observed up to T (see Figure 1).
As mentioned earlier, one of observations from the following types is given under the generalized Type-I PHCS:
1. Suppose the kth failure time occurs after T. Then, experiment is terminated at Xk:m:n and the observations are {X1:m:n<...<Xk:m:n}.
2. Suppose that T is reached after the kth failure and before the mth failure. In this case, the termination time is T and we observe {X1:m:n<...<Xk:m:n<Xk+1:m:n<...<XD:m:n}.
3. Suppose that the mth fault was discovered after the kth failure and before T. Then, the termination time is Xm:m:n, and we will find {X1:m:n<...<Xk:m:n<Xk+1:m:n<...<Xm:m:n}.
The joint PDF based on the generalized Type-I PHCS for all cases is now given by:
fX_(x_)=[D∗∏i=1m∑j=i(R∗j+1)]D∗∏i=1f(xi:D∗:n)[ˉF(xi:D∗:n)]R∗i[ˉF(T)]R∗τ, | (2.1) |
where R∗j is the jth value of the vector R∗,
R∗={(R1,…,RD,0,...,0,R∗k=n−k−D∑j=1Rj),Case−I,(R1,…,RD),Case−II,(R1,…,Rm),Case−III, | (2.2) |
R∗τ is the number of units eliminated at time T, as determined by
R∗τ={0,Case−I,n−D−D∑j=1Rj,Case−II,0,Case−III, | (2.3) |
D∗={kCase−I,DCase−II,mCase−III, | (2.4) |
and
x_={(x1:m:n,...,xk:m:n),Case−I(x1:m:n,...,xD:m:n),Case−II,(x1:m:n,...,xm:m:n),Case−III. | (2.5) |
The likelihood function of λ,μ under the generalized Type-I PHCS can be derived using (1.1) and (1.2) in (2.1), as
L(λ,μ;x_)=[D∗∏i=1m∑j=i(R∗j+1)]λD∗μD∗D∗∏i=1xμ−1iexp[−λW(μ|x_)], | (2.6) |
where W(μ|x_)=D∗∑i=1(R∗i+1)xμi+R∗τTμ and xi=xi:D∗:n for simplicity of notation.
From Equation (2.6), the related log-likelihood function can be found as
lnL(λ,μ|x_)=const.+D∗(lnλ+lnμ)+(μ−1)D∗∑i=1ln(xi)−λW(μ|x_), | (3.1) |
equating the first derivatives of (3.1) with respect to μ and λ to zero, we obtain
∂lnL(λ,μ|x_)∂λ=D∗λ−W(μ|x_)=0, | (3.2) |
∂lnL(λ,μ|x_)∂μ=D∗μ+D∗∑i=1ln(xi)−λ[D∗∑i=1(R∗i+1)xμilnxi+R∗τTμlnT]=0. | (3.3) |
The ML estimators of lambdaand mu are then obtained by
ˆλML(μ)=D∗W(μ|x_), | (3.4) |
ˆμML=D∗ˆλML(μ)[D∗∑i=1(R∗i+1)xμilnxi+R∗τTμlnT]. | (3.5) |
By using the numerical technique with the Newton-Raphson iteration method, the ML estimates ˆλML and ˆμML can be obtained by solving (3.2) and (3.3), respectively. Due to the invariance property, the related ML estimations of the SF and HF are therefore given by
ˆSML(t)=exp(−ˆλMLtˆμML), | (3.6) |
ˆHML(t)=ˆλMLˆμMLtˆμML−1. | (3.7) |
The observed Fisher information matrix of parameters lambda and mu for large D∗, is given by
I(ˆλ,ˆμ)=[−∂2lnL(λ,μ|x_)∂λ2−∂2lnL(λ,μ|x_)∂λ∂μ−∂2lnL(λ,μ|x_)∂μ∂λ−∂2lnL(λ,μ|x_)∂μ2](ˆλML,ˆμML) | (3.8) |
where
∂2lnL(λ,μ|x_)∂λ2=−D∗λ2, |
∂2lnL(λ,μ|x_)∂μ2=−D∗μ2−D∗∑i=1[λ(R∗i+1)+1][(lnxi)2xμi(1+xμi)2], |
∂2lnL(λ,μ|x_)∂λ∂μ=−[D∗∑i=1(R∗i+1)xμilnxi(1+xμi)], |
and a 100(1−γ)% two-sided approximate confidence intervals for the parameters λ and μ are then
(ˆλ−zγ/2√V(ˆλ),ˆλ+zγ/2√V(ˆλ)), | (3.9) |
and
(ˆμ−zγ/2√V(ˆμ),ˆμ+zγ/2√V(ˆμ)), | (3.10) |
respectively, where V(ˆλ) and V(ˆμ)are the estimated variances of ˆλML and ˆμML, which are given by the first and the second diagonal element of I−1(ˆλ,ˆμ) and zγ/2 is the upper (γ/2) percentile of the standard normal distribution.
Greene [17] used the delta method to construct the approximate confidence intervals for the SF and HF as a function of the MLEs. This method is used in this subsection to determine the variance of the simpler linear function that can be utilized for inference from large samples, as well as the linear approximation of this function. See Greene [17] and Agresti [18].
G1=[∂S(t)∂λ∂S(t)∂μ]andG1=[∂H(t)∂λ∂H(t)∂μ] | (3.11) |
where
∂S(t)∂λ=−tμexp(−λtμ),∂S(t)∂μ=−λtμexp(−λtμ)ln(t), |
and
∂H(t)∂λ=μtμ−1,∂H(t)∂μ=λ[tμ−1+μtμ−1ln(t)]. |
The approximate estimates of V(ˆS(t)) and V(ˆH(t)) are then supplied, respectively, by
V(ˆS(t))≃[Gt1I−1(λ,μ)G1](ˆλML,ˆμML),V(ˆH(t))≃[Gt2I−1(λ,μ)G2](ˆλML,ˆμML), |
where Gti is the transpose of Gi, i=1,2. These results provide the approximate confidence intervals for S(t) and H(t) are
(ˆS(t)−zγ/2√V(ˆS(t)),ˆS(t)+zγ/2√V(ˆS(t))) | (3.12) |
and
(ˆH(t)−zγ/2√V(ˆH(t)),ˆH(t)+zγ/2√V(ˆH(t))). | (3.13) |
Assuming that both λ and μ are unknown parameters, a natural choice for the prior distributions of λ and μ is to assume that they are independent gamma distributions G(a1,b1) and G(a2,b2), respectively. As a result, the following is the joint prior distribution.
π(λ,μ) ∝ λa1−1exp(−λb1)μa2−1exp(−b2μ), | (4.1) |
a1, b1, a2, b2 are positive constants. If hyperparameters a1, b1, a2, b2 are set as zero, then the informative priors are reduced to the noninformative priors.
Upon combining (2.6) and (4.1), given the generalized Type-I PHCS, the posterior density function of λ,μ is obtained as
π∗(λ,μ|x_)=L(λ,μ|x_)π(λ,μ)/∫L(λ,μ|x_)π(λ,μ)dλdμ=I−1λD∗+a1−1μD∗+a2−1exp(−b2μ)(D∗∏i=1xμ−1i)exp{−λ[W(μ|x_)+b1]}, | (4.2) |
where
I=∞∫0∞∫0λD∗+a1−1μD∗+a2−1exp(−b2μ)(D∗∏i=1xμ−1i)exp{−λ[W(μ|x_)+b1]}dλdμ=Γ(D∗+a1)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)exp(−b2μ)[W(μ|x_)+b1]−(D∗+a1)dμ. | (4.3) |
Thus, from (1.4), the Bayesian estimates of λ and μ under the SELF are as follows.
ˆλBS=I−1Γ(D∗+a1+1)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)×exp(−b2μ)[W(μ|x_)+b1]−(D∗+a1+1)dμ, | (4.4) |
ˆμBS=I−1Γ(D∗+a1)∞∫0μD∗+a2(D∗∏i=1xμ−1i)×exp(−b2μ)[W(μ|x_)+b1]−(D∗+a1)dμ. | (4.5) |
From (1.6), we obtain the Bayesian estimator of λ and μ under the LLF,
ˆλBL=−1υln{I−1Γ(D∗+a1)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)×exp(−b2μ)[W(μ|x_)+υ+b1]−(D∗+a1)dμ}, | (4.6) |
ˆμBL=−1υln{I−1Γ(D∗+a1)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)×exp[−μ(b2+υ)][W(μ|x_)+b1]−(D∗+a1)dμ}. | (4.7) |
From (1.8), one obtains the Bayesian estimator of λ and μ under the GELF as follows:
ˆλBE={I−1Γ(D∗+a1−κ)∞∫0μD∗+a2−1(D∗∏i=1xμ−1i)×exp(−b2μ)[W(μ|x_)+b1]−(D∗+a1−κ)dμ}−1κ, | (4.8) |
ˆμBE={I−1Γ(D∗+a1)∞∫0μD∗+a2−κ−1(D∗∏i=1xμ−1i)×exp(−μb2)[W(μ|x_)+b1]−(D∗+a1)dμ}−1κ. | (4.9) |
Since the integrals in (4.4), (4.5), (4.6), (4.7), (4.8), and (4.9) cannot be computed analytically, the Markov chain Monte Carlo method (MCMC) is used to evaluate these integrals. Depending on the posterior distribution in (4.2), the conditional posterior distributions π∗1(λ|μ;x_) and π∗2(μ|λ;x_) of parameters λ and μ can now be computed and written as follows.
π∗1(λ|μ;x_)=[W(μ|x_)+b1]Γ(D∗+a1)λD∗+a1−1exp{−λ[W(μ|x_)+b1]} | (4.10) |
and
π∗2(μ|λ;x_)=I−1Γ(D∗+a1)μD∗+a2−1exp(−b2μ)(D∗∏i=1xμ−1i)[W(μ|x_)+b1]−(D∗+a1). | (4.11) |
It is clear that, the posterior density function π∗1(λ|μ;x_) is a gamma density, therefore, samples of λ can be easily generated. However, the posterior density function π∗2(μ|λ;x_) is not a specific distribution; therefore, it is not possible to generate samples directly by standard methods. From theorem 2 of Kundu [19], π∗2(μ|λ;x_) is a log-concave function; therefore, to generate random samples from these distributions, we use the Metropolis-Hastings [20]. The MCMC algorithm can be described as follows.
Algorithm 1 MCMC method. |
Step 1, start with λ(0)=ˆλML and μ(0)=ˆμML |
Step 2, set i=1 |
Step 3, Generate λ(i)∼GammaDist.[D∗+a,W(μ(i−1)|x_)+b1]=π∗1(λ|μ(i−1);x_) |
Step 4, Generate a proposal μ(∗) from N(μ(i−1),V(μ)) |
Step 5, Calculate the acceptance probabilities dμ=min[1,π∗2(μ(∗)|λ(i−1))π∗1(μ(i−1)|λ(i−1))] |
Step 6, Generate u1 that follows a U(0,1) distribution. If u1≤dμ, set μ(i)=μ(∗); otherwise, set μ(i)=μ(i−1) |
Step 7, set i=i+1, repeat steps 3 to 7, N times and obtain (λ(j),μ(j)), j=1,2,...,N. |
Step 8, Remove the first B values for λ and μ, which is the burn-in period of λ(j) and μ(j), respectively, where j=1,2,...,N−B. |
Assuming g(λ,μ) is an arbitrary function in λ and μ, the Bayesian estimates of g are obtained using the MCMC values as follows.
Based on SELF, LLF, and GELF, the Bayesian estimates of g are then, respectively, given by
^g(λ,μ)BS=1N−BN−B∑i=1g(λ(i),μ(i)), | (4.12) |
^g(λ,μ)BL=−1υLn[1N−BN−B∑i=1eυg(λ(i),μ(i))], | (4.13) |
^g(λ,μ)BE=[1N−BN−B∑i=1[g(λ(i),μ(i))]−κ]−1/κ, | (4.14) |
The 100(1−γ)% Bayesian confidence interval or credible interval (L,U) for parameter β (β is λ or μ) if
U∫Lπ∗(β|x_)dβ=1−γ, | (4.15) |
Since the integration in (4.15) cannot be solved analytically, the 100(1−γ) MCMC-approximated credibility intervals for λ and μ using the (N−B) using the (N - B) generated values after sorting in ascending order, (λ(1),λ(2),...,λ(N−B)) and (μ(1),μ(2),...,μ(N−B)), are given as follows,
(λ[(N−B)γ/2],λ[(N−B)(1−γ)/2])(μ[(N−B)γ/2],μ[(N−B)(1−γ)/2]) |
The absolute difference between the upper and lower bounds determines the length of the credible intervals.
For ρ=1,2,...,R∗j, let Zρ:R∗j denote the ρth order statistic out of R∗j removed units at stage j. Then, the conditional DF of Zρ:R∗j, given the observed generalized Type-I PHCS, is given, as in Basak et al.[21], by
g(Zρ:R∗j|x_)=g(z|x_)=R∗j!(ρ−1)!(R∗j−ρ)![G(z)−G(zj)]ρ−1[1−G(z)]R∗j−ρg(z)[1−G(zj)]R∗j, z>zj, | (5.1) |
where
j={1,...,kifT<Xk:m:n<Xm:m:n,1,...,D,τifXk:m:n<T<Xm:m:n,1,...,mifXk:m:n<Xm:m:n<T, |
with zτ=T.
By using (1.1) and (1.2) in (5.1), given a generalized Type-I PHCS, the conditional DF of Zρ:R∗j is then given as follows:
g(z|x_)=ρ−1∑q=0Cqλμxμ−1exp{−λ[ϖq(zμ−zμj)]}, z>zj, | (5.2) |
where Cq=(−1)q(ρ−1q)R∗j!(ρ−1)!(R∗j−ρ)! and ϖq=q+R∗j−ρ+1 for q=0,...,ρ−1.
Upon combining (4.2) and (5.2) and using the MCMC technique, the Bayesian predictive DF of Zρ:R∗j, given a generalized Type-I PHCS, is obtained as
g∗(z|x_)=∞∫0∞∫0g(z|x_)π∗(λ,μ|x_)dλdμ=1N−BN−B∑i=1ρ−1∑q=0Cqλ(i)μ(i)zμ(i)−1exp{−λ(i)[ϖq(zμ(i)−zμ(i)j)]}. | (5.3) |
The Bayesian predictive SF of Zρ:R∗j, given generalized Type-I PHCS, is given as
G∗(t|x_)=∞∫tg∗(z|x_)dx=1N−BN−B∑i=1ρ−1∑q=0Cqϖqexp{−λ(i)[ϖq(tμ(i)−zμ(i)j)]}. | (5.4) |
The Bayesian point predictor of Zρ:R∗j under the SELF is the mean of the predictive DF, given by
ˆZρ:R∗j=∞∫0zg∗(z|x_)dx, |
Let W1:ℓ:N≤W2:ℓ:N≤…≤Wℓ:ℓ:N be a future independent progressive Type-II censored sample from the same population with censoring scheme S=(S1,...,Sℓ). In this section, we develop a general procedure for deriving the point and interval predictions for Ws:ℓ:N, 1≤s≤ℓ, based on the observed generalized Type-I PHCS. The marginal DF of Ws:ℓ:N is given by Balakrishnan et al. [22] as
gWs:ℓ:N(ws|λ)=g(ws|λ)=c(N,s)s−1∑q=0cq,s−1[1−G(ws)]Mq,s−1g(ws), | (6.1) |
where 1≤s≤ρ, c(N,s)=N(N−S1−1)...(N−S1...−Ss−1+1),Mq,s=N−S1−...−Ss−q−1−s+q+1,and cq,s−1=(−1)q{[q∏u=1s−q+u−1∑υ=s−q(Sυ+1)][s−q−1∏u=1s−q−1∑υ=u(Sυ+1)]}−1.
Upon substituting (1.1) and (1.2) in (6.1), the marginal DF of Ws:ℓ:N is then obtained as
g(ws|λ)=c(N,s)s−1∑q=0cq,s−1λμyμ−1sexp{−λ[Mq,swμs]}, ws>0. | (6.2) |
Upon combining (4.2)and (6.2) and using the MCMC method, given a generalized Type-I PHCS, the Bayesian predictive DF of Ws:ℓ:N is obtained as
g∗(ws|x_)=∞∫0∞∫0g(ws|x_)π∗(λ,μ|x_)dλdμ=c(N,s)N−BN−B∑i=1s−1∑q=0cq,s−1λ(i)μ(i)wμ(i)−1sexp{−λ(i)[Mq,swμ(i)s]}. | (6.3) |
From (6.3), we simply obtain the predictive SF function of Ws:ℓ:N, given a generalized Type-I PHCS, as
G∗(t|x_)=∞∫tg∗(ws|x_)dys=c(N,s)N−BN−B∑i=1s−1∑q=0cq,s−1Mq,sexp{−λ(i)[Mq,stμ(i)]}. | (6.4) |
The Bayesian point predictor of Ws:ℓ:N, 1≤s≤m, under the SELF is the mean of the predictive DF, given by
ˆWs:ℓ:N=∞∫0wsg∗(ws|x_)dys, | (6.5) |
where g∗Ws:ℓ:N(ws|x_) is given as in (6.3).
By solving the following two equations, the Bayesian predictive bounds of the 100(1−γ)% equi-tailed (ET)interval for Zρ:R∗j and Ws:ℓ:N, 1≤s≤m can be obtained respectively,
G∗(LET|x_)=γ2andG∗(UET|x_)=1−γ2, | (6.6) |
where G∗(t|x_) is given as in (5.4) and (6.4), where LET and UET denote the lower and upper bounds, respectively. Furthermore, for the highest posterior density (HPD) method, the following two equations need to be solved:
G∗(LHPD|x_)−G∗(UHPD|x_)=1−γ, |
and
g∗(LHPD|x_)−g∗(UHPD|x_)=0, |
where g∗(z|x_) is as in (5.3) and (6.3), where LHPD and UHPD denote the HPD lower and upper bounds, respectively.
In this section, a Monte Carlo simulation study was conducted to compare the efficiency of ML and Bayesian estimates. Using different values of n,m,k and T, 5000 generalized Type-I PHCSs were generated from the Weibull distribution (with λ=1 and μ=2). The values of T are chosen such that the three cases of generalized Type-I PHCS occur. Thus, in the first case, a T that lies in the first quarter of the data such that T∗=Xk:m:n is chosen. In the second case, a T that lies in the third quarter such that T∗=T is chosen. Finally, a T that is sufficiently large such that T∗=Xm:m:n is chosen. We computed the ML estimate and the Bayesian estimates of λ, μ, S(t), and H(t) (with t=0.5) under the SELF, LLF (with υ = 0.5) and GELF (with κ = 0.5) using IP and NIP. We also calculated the mean squared error (MSE) and the expected bias (EB) for each estimate.
The 90% and 95% asymptotic and Bayesian credible confidence intervals with the average length (AL) and the estimated coverage probabilities (CPs) for ˆλ, ˆμ, ^S(t), and ^H(t) are computed.
Different samples of size (n) with different effective sample sizes (m,k) are used to conduct the simulation study. The process of removing the SF units is performed with these censoring schemes.
1. Scheme 1: Ri=2(n−m)m for odd integers i and Ri=0 for even integers of i.
2. Scheme 2: Ri=2(n−m)m for even integers i and Ri=0 for add integers of i..
3. Scheme 3: Ri=0 for i=1,2,...,m−1, Ri=n−m for i=m.
All these cases have been assumed according to the case of generalized Type-I progressive censoring and all Bayesian results are computed based on two different choices for the hyperparameters (a1,b1,a2,b2).
1. For the case of IP:a1=200, b1=200, a2=200 and b2=400 (by putting the marginal prior distribution of λ with mean a1b1=1 and small variance a1b21=0.005 and the marginal prior distribution of μ with mean a2b2=1 and variance a2b22=0.005).
2. For the case of NIP:a1=b1=a2=b2=0.
The simulated results are displayed in the Appendix of this paper.
To illustrate all conclusions reached for the Weibull distribution, we used a real data consists of 19 values. These data refer to breakthrough times of an offending liquid between electrodes at a voltage of 34 kilovolts, as prepared by Viveros and Balakrishnan in [23] from Table 6.1 of Nelson ([24], p.228). We will use these real data to consider the following progressively censored schemes.
Suppose m=10, R=(0,0,3,0,0,3,0,0,3,0), Then, we have the following progressive data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, 4.85, 7.35, 8.01, and 31.75. If we consider a different T, then we have three different generalized Type-I PHCSs.
1. Scheme I: Suppose T=4. Since T<X7:10:19<X10:10:19, then the experiment would have terminated at X7:7:19, with R∗=(0,0,3,0,0,0,9) and R∗τ=0 and we would have the following data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, and 4.67.
2. Scheme II: Suppose T=7.5. Since X7:10:19<T<X10:10:19, then the experiment would have terminated at T=8, with R∗ = (0, 0, 3, 0, 0, 3, 0, 0) and R∗τ=5 and we would have the following data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, 4.85, and 7.35.
3. Scheme III: Suppose k=7 and T=35. Since X7:10:19<X10:10:19<T, then the experiment would have terminated at X10:10:19, with R∗=R and R∗τ=0 and we would have the following data: 0.19, 0.78, 0.96, 2.78, 3.16, 4.15, 4.85, 7.35, 8.01, and 31.75.
Based on the generated generalized Type-I PHCS and two different choices of hyperparameters (a1,b1,a2,b2) as in the Monte Carlo simulation, Table 1 shows the point predictor and 95% Bayesian prediction bounds of Zρ:R∗k for three different censoring schemes, and Table 2 shows the point predictor and 95% Bayesian prediction bounds of Ws:ℓ:N from the future progressively censored sample of size ℓ=10 from a sample of size N=20 with progressive censoring scheme S=(0,0,3,0,0,3,0,0,3,1) for the previous four censoring schemes.
IP | NIP | |||||||
Sch. | j | ρ | ˆXρ:R∗j | ET interval | HPD interval | ˆXρ:R∗j | ET interval | HPD interval |
1 | 3 | 1 | 4.824 | (1.322, 21.783) | (1.214, 17.062) | 6.410 | (1.324, 23.275) | (1.214, 18.034) |
2 | 10.634 | (2.417, 42.868) | (1.319, 34.499) | 14.202 | (2.429, 46.302) | (1.308, 36.810) | ||
3 | 22.254 | (5.271, 86.933) | (2.348, 70.530) | 29.787 | (5.289, 94.280) | (2.274, 75.524) | ||
7 | 1 | 5.914 | (5.943, 12.764) | (5.908, 11.190) | 7.639 | (5.944, 13.261) | (5.908, 11.514) | |
2 | 7.367 | (6.254, 17.586) | (5.939, 15.267) | 9.587 | (6.258, 18.558) | (5.935, 15.923) | ||
3 | 9.027 | (6.817, 22.790) | (6.182, 19.570) | 11.814 | (6.821, 24.302) | (6.071, 20.612) | ||
4 | 10.964 | (7.581, 28.762) | (6.654, 24.889) | 14.411 | (7.581, 30.909) | (6.608, 26.363) | ||
5 | 13.288 | (8.553, 35.920) | (7.294, 31.039) | 17.528 | (8.544, 38.832) | (7.213, 33.049) | ||
6 | 16.192 | (9.782, 44.951) | (8.125, 38.766) | 21.424 | (9.761, 48.820) | (8.000, 41.448) | ||
7 | 20.066 | (11.390, 57.239) | (9.351, 48.369) | 26.619 | (11.351, 62.390) | (9.026, 52.794) | ||
8 | 25.877 | (13.657, 76.426) | (10.679, 65.357) | 34.412 | (13.592, 83.499) | (10.421, 70.278) | ||
9 | 37.497 | (17.494,118.537) | (12.895, 99.972) | 49.997 | (17.400,129.445) | (12.532,107.555) | ||
2 | 3 | 1 | 4.924 | (1.330, 21.776) | (1.214, 17.251) | 6.488 | (1.332, 22.842) | (1.214, 17.983) |
2 | 10.886 | (2.506, 42.386) | (1.343, 34.584) | 14.399 | (2.526, 44.762) | (1.337, 36.266) | ||
3 | 22.809 | (5.601, 85.629) | (5.198, 69.693) | 30.221 | (5.656, 90.660) | (5.227, 73.313) | ||
6 | 1 | 8.082 | (5.365, 25.811) | (5.250, 21.286) | 10.524 | (5.367, 26.877) | (5.250, 22.019) | |
2 | 14.044 | (6.541, 46.422) | (5.379, 38.619) | 18.435 | (6.562, 48.797) | (5.372, 40.302) | ||
3 | 25.967 | (9.637, 89.664) | (9.233, 73.728) | 34.256 | (9.691, 94.695) | (9.262, 77.348) | ||
9 | 1 | 10.305 | (10.188, 22.456) | (10.120, 19.742) | 13.284 | (10.191, 23.096) | (10.120, 20.181) | |
2 | 13.285 | (10.826, 32.161) | (10.192, 28.030) | 17.239 | (10.837, 33.440) | (10.190, 28.937) | ||
3 | 17.260 | (12.126, 44.641) | (12.105, 38.397) | 22.513 | (12.152, 46.768) | (10.856, 39.936) | ||
4 | 23.220 | (14.248, 63.813) | (12.029, 55.213) | 30.425 | (14.288, 67.225) | (11.978, 57.679) | ||
5 | 35.144 | (18.060,105.916) | (14.149, 90.288) | 46.246 | (18.126,111.946) | (14.055, 94.654) | ||
3 | 3 | 1 | 5.061 | (1.335, 22.283) | (1.214, 17.716) | 6.661 | (1.337, 23.291) | (1.214, 18.425) |
2 | 11.226 | (2.572, 43.235) | (1.356, 35.439) | 14.832 | (2.597, 45.441) | (1.351, 37.039) | ||
3 | 23.556 | (5.834, 87.257) | (2.664, 72.209) | 31.172 | (5.910, 91.905) | (2.639, 75.613) | ||
6 | 1 | 8.219 | (5.370, 26.318) | (5.250, 21.752) | 10.697 | (5.372, 27.327) | (5.250, 22.460) | |
2 | 14.384 | (6.607, 47.271) | (5.391, 39.474) | 18.867 | (6.632, 49.477) | (5.386, 41.075) | ||
3 | 26.714 | (9.870, 91.293) | (6.612, 75.361) | 35.207 | (9.945, 95.940) | (6.674, 79.648) | ||
9 | 1 | 26.714 | (9.870, 91.293) | (9.142, 75.361) | 15.580 | (10.255, 32.209) | (10.133, 27.343) | |
2 | 18.205 | (11.490, 52.153) | (10.274, 44.357) | 23.750 | (11.515, 54.360) | (10.269, 45.957) | ||
3 | 30.536 | (14.752, 96.175) | (11.495, 80.244) | 40.090 | (14.828,100.823) | (11.514, 83.663) |
IP | NIP | ||||||
Sch. | s | ˆYs:N | ET interval | HPD interval | ˆYs:N | ET interval | HPD interval |
1 | 1 | 0.704 | (0.016, 2.927) | (0.000, 2.255) | 0.739 | (0.016, 3.139) | (0.000, 2.393) |
2 | 0.972 | (0.143, 4.811) | (0.013, 3.858) | 1.014 | (0.144, 5.212) | (0.012, 4.127) | |
3 | 1.314 | (0.361, 6.671) | (0.114, 5.470) | 1.381 | (0.362, 7.270) | (0.106, 5.878) | |
4 | 1.760 | (0.668, 9.119) | (0.299, 7.574) | 1.861 | (0.668, 9.976) | (0.281, 8.162) | |
5 | 2.216 | (1.036, 11.675) | (0.545, 9.782) | 2.356 | (1.032, 12.810) | (0.514, 10.566) | |
6 | 2.696 | (1.457, 14.399) | (0.842, 12.142) | 2.878 | (1.448, 15.838) | (0.794, 13.139) | |
7 | 3.481 | (2.039, 18.751) | (1.237, 15.844) | 3.724 | (2.023, 20.644) | (1.169, 17.159) | |
8 | 4.352 | (2.726, 23.618) | (1.717, 20.008) | 4.666 | (2.702, 26.033) | (1.622, 21.689) | |
9 | 5.356 | (3.544, 29.252) | (2.293, 24.833) | 5.753 | (3.509, 32.275) | (2.167, 26.942) | |
10 | 9.350 | (5.264, 50.149) | (3.233, 41.790) | 9.952 | (5.218, 54.977) | (3.068, 45.151) | |
2 | 1 | 0.722 | (0.017, 2.926) | (0.000, 2.282) | 0.750 | (0.017, 3.077) | (0.000, 2.386) |
2 | 0.978 | (0.154, 4.751) | (0.016, 3.865) | 1.060 | (0.156, 5.028) | (0.016, 4.061) | |
3 | 1.308 | (0.391, 6.536) | (0.134, 5.450) | 1.423 | (0.396, 6.943) | (0.131, 5.742) | |
4 | 1.738 | (0.727, 8.892) | (0.350, 7.520) | 1.898 | (0.734, 9.468) | (0.341, 7.938) | |
5 | 2.172 | (1.132, 11.338) | (0.638, 9.684) | 2.382 | (1.140, 12.097) | (0.622, 10.237) | |
6 | 2.627 | (1.596, 13.939) | (0.984, 11.990) | 2.890 | (1.606, 14.898) | (0.959, 12.690) | |
7 | 3.380 | (2.238, 18.128) | (1.444, 15.628) | 3.726 | (2.249, 19.387) | (1.408, 16.549) | |
8 | 4.213 | (3.000, 22.800) | (2.003, 19.709) | 4.650 | (3.011, 24.402) | (1.954, 20.885) | |
9 | 5.168 | (3.905, 28.199) | (2.675, 24.436) | 5.714 | (3.916, 30.202) | (2.608, 25.909) | |
10 | 9.146 | (5.795, 48.785) | (3.750, 41.359) | 10.042 | (5.814, 52.007) | (3.667, 43.723) | |
3 | 1 | 0.748 | (0.017, 2.998) | (0.000, 2.348) | 0.775 | (0.018, 3.142) | (0.000, 2.449) |
2 | 1.042 | (0.162, 4.847) | (0.018, 3.964) | 1.051 | (0.164, 5.104) | (0.017, 4.150) | |
3 | 1.386 | (0.412, 6.650) | (0.146, 5.579) | 1.405 | (0.419, 7.024) | (0.144, 5.854) | |
4 | 1.836 | (0.768, 9.030) | (0.380, 7.686) | 1.867 | (0.779, 9.557) | (0.374, 8.077) | |
5 | 2.288 | (1.196, 11.496) | (0.691, 9.887) | 2.335 | (1.211, 12.187) | (0.680, 10.403) | |
6 | 2.761 | (1.690, 14.117) | (1.066, 12.229) | 2.825 | (1.708, 14.987) | (1.050, 12.881) | |
7 | 3.551 | (2.371, 18.349) | (1.564, 15.931) | 3.637 | (2.394, 19.492) | (1.541, 16.788) | |
8 | 4.418 | (3.181, 23.064) | (2.170, 20.083) | 4.534 | (3.209, 24.515) | (2.137, 21.175) | |
9 | 5.414 | (4.142, 28.510) | (2.897, 24.888) | 5.563 | (4.176, 30.322) | (2.855, 26.255) | |
10 | 9.635 | (6.145, 49.504) | (4.051, 42.221) | 9.839 | (6.198, 52.438) | (4.002, 44.426) |
The Bayesian and ML estimates of the unknown parameters and the SF and HF of the Weibull distribution when the observed sample is a generalized Type-I PHCS sample are obtained. In the Bayesian approach, the SELF, LLF and GELF based on IP and NIP distributions are considered. The 90% and 95% asymptotic and credible confidence intervals for the parameters and for the SF and HF are also constructed. The Bayesian point and interval predictions of future order statistics samples from the same population for a progressive Type-II of an unpredictable future sample were also developed. From the numerical results, we derive the following conclusions:
1. From Tables 1–2, the HPD prediction intervals appear to be more accurate than the ET prediction intervals, and the means of the Bayesian point predictor inside the Bayesian prediction intervals.
2. From Tables 3–6 in the appendix, the Bayesian estimates using the IP are better than the MLEs. Furthermore, the results of the ML estimates are similar to the Bayesian estimators with NIP. Thus, when we have no prior knowledge of the unknown parameters, it is often easier to use the ML instead of the Bayesian estimators, since the computation of the Bayesian estimator is more complicated. Moreover, in most cases, the MSE decreases as n and m increase.
Bayesian | |||||||||
{ˆλBS | {ˆλBL | {ˆλBE | |||||||
Sch. | T | (n,m,k) | ˆλML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.5082 | 0.0244 | 0.5305 | 0.0239 | 0.3282 | 0.0243 | 0.3739 |
(40, 20, 15) | 0.5186 | 0.0192 | 0.5693 | 0.0187 | 0.3517 | 0.0190 | 0.4026 | ||
(60, 30, 20) | 0.4127 | 0.0173 | 0.4355 | 0.0170 | 0.2675 | 0.0171 | 0.3403 | ||
T=0.7 | (30, 20, 15) | 0.2879 | 0.0259 | 0.2666 | 0.0252 | 0.2114 | 0.0255 | 0.2243 | |
(40, 20, 15) | 0.6400 | 0.0203 | 0.6240 | 0.0199 | 0.3760 | 0.0202 | 0.4454 | ||
(60, 30, 20) | 0.2110 | 0.0172 | 0.2007 | 0.0170 | 0.1646 | 0.0172 | 0.1708 | ||
T=1.5 | (30, 20, 15) | 0.2843 | 0.0250 | 0.2671 | 0.0242 | 0.2085 | 0.0245 | 0.2198 | |
(40, 20, 15) | 0.5891 | 0.0226 | 0.5973 | 0.0222 | 0.3726 | 0.0225 | 0.4423 | ||
(60, 30, 20) | 0.2528 | 0.0175 | 0.2440 | 0.0171 | 0.1921 | 0.0172 | 0.2036 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 0.5489 | 0.0197 | 0.5772 | 0.0194 | 0.3644 | 0.0197 | 0.4159 | ||
(60, 30, 20) | 0.3080 | 0.0174 | 0.3002 | 0.0172 | 0.2285 | 0.0174 | 0.2459 | ||
T=0.7 | (30, 20, 15) | 0.3489 | 0.0255 | 0.3314 | 0.0247 | 0.2473 | 0.0250 | 0.2673 | |
(40, 20, 15) | 0.5221 | 0.0191 | 0.5308 | 0.0187 | 0.3333 | 0.0190 | 0.3778 | ||
(60, 30, 20) | 0.2269 | 0.0164 | 0.2135 | 0.0160 | 0.1734 | 0.0162 | 0.1794 | ||
T=1.5 | (30, 20, 15) | 0.3369 | 0.0265 | 0.3188 | 0.0256 | 0.2451 | 0.0259 | 0.2584 | |
(40, 20, 15) | 0.6190 | 0.0205 | 0.6676 | 0.0198 | 0.3925 | 0.0200 | 0.4631 | ||
(60, 30, 20) | 0.2130 | 0.0177 | 0.2087 | 0.0173 | 0.1658 | 0.0174 | 0.1737 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 1.4205 | 0.0173 | 2.3081 | 0.0169 | 0.7138 | 0.0171 | 1.1274 | ||
(60, 30, 20) | 0.3416 | 0.0162 | 0.3652 | 0.0159 | 0.2586 | 0.0161 | 0.2772 | ||
T=0.7 | (30, 20, 15) | 0.5049 | 0.0246 | 0.5692 | 0.0238 | 0.3290 | 0.0241 | 0.4095 | |
(40, 20, 15) | 1.2471 | 0.0183 | 1.7174 | 0.0179 | 0.6258 | 0.0181 | 0.9441 | ||
(60, 30, 20) | 0.3569 | 0.0152 | 0.3705 | 0.0149 | 0.2577 | 0.0151 | 0.2792 | ||
T=1.5 | (30, 20, 15) | 0.4781 | 0.0246 | 0.5283 | 0.0238 | 0.3279 | 0.0241 | 0.3805 | |
(40, 20, 15) | 1.4825 | 0.0182 | 2.0789 | 0.0179 | 0.6943 | 0.0181 | 1.0823 | ||
(60, 30, 20) | 0.3832 | 0.0164 | 0.4044 | 0.0161 | 0.2737 | 0.0163 | 0.3012 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.1962 | 0.0036 | 0.1983 | 0.0069 | 0.1024 | 0.0121 | 0.0855 |
(40, 20, 15) | 0.1816 | 0.0052 | 0.1950 | 0.0036 | 0.0900 | 0.0079 | 0.0715 | ||
(60, 30, 20) | 0.1219 | 0.0057 | 0.1268 | 0.0019 | 0.0649 | 0.0057 | 0.0502 | ||
T=0.7 | (30, 20, 15) | 0.1114 | 0.0075 | 0.0936 | 0.0029 | 0.0436 | 0.0080 | 0.0274 | |
(40, 20, 15) | 0.2209 | 0.0041 | 0.2048 | 0.0046 | 0.1182 | 0.0089 | 0.1086 | ||
(60, 30, 20) | 0.0984 | 0.0019 | 0.0884 | 0.0054 | 0.0519 | 0.0090 | 0.0403 | ||
T=1.5 | (30, 20, 15) | 0.1340 | 0.0092 | 0.1151 | 0.0012 | 0.0662 | 0.0063 | 0.0516 | |
(40, 20, 15) | 0.1950 | 0.0010 | 0.1840 | 0.0077 | 0.1037 | 0.0119 | 0.0935 | ||
(60, 30, 20) | 0.1235 | 0.0052 | 0.1125 | 0.0021 | 0.0748 | 0.0058 | 0.0647 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.2021 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.1772 | 0.0006 | 0.1840 | 0.0079 | 0.0827 | 0.0122 | 0.0649 | ||
(60, 30, 20) | 0.1107 | 0.0002 | 0.1118 | 0.0072 | 0.0542 | 0.0109 | 0.0379 | ||
T=0.7 | (30, 20, 15) | 0.1516 | 0.0109 | 0.1333 | 0.0007 | 0.0785 | 0.0044 | 0.0645 | |
(40, 20, 15) | 0.2083 | 0.0036 | 0.2028 | 0.0049 | 0.1182 | 0.0091 | 0.1067 | ||
(60, 30, 20) | 0.1205 | 0.0051 | 0.1060 | 0.0021 | 0.0684 | 0.0057 | 0.0573 | ||
T=1.5 | (30, 20, 15) | 0.1597 | 0.0103 | 0.1411 | 0.0001 | 0.0889 | 0.0051 | 0.0757 | |
(40, 20, 15) | 0.2560 | 0.0116 | 0.2477 | 0.0030 | 0.1533 | 0.0012 | 0.1453 | ||
(60, 30, 20) | 0.1101 | 0.0089 | 0.1001 | 0.0016 | 0.0636 | 0.0020 | 0.0529 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.1928 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.3861 | 0.0032 | 0.4732 | 0.0048 | 0.2402 | 0.0088 | 0.2642 | ||
(60, 30, 20) | 0.1597 | 0.0022 | 0.1710 | 0.0046 | 0.1106 | 0.0081 | 0.1002 | ||
T=0.7 | (30, 20, 15) | 0.1877 | 0.0107 | 0.1846 | 0.0008 | 0.1130 | 0.0040 | 0.1052 | |
(40, 20, 15) | 0.3373 | 0.0014 | 0.4115 | 0.0066 | 0.2144 | 0.0106 | 0.2268 | ||
(60, 30, 20) | 0.1610 | 0.0039 | 0.1703 | 0.0030 | 0.1106 | 0.0064 | 0.1009 | ||
T=1.5 | (30, 20, 15) | 0.1982 | 0.0107 | 0.1950 | 0.0007 | 0.1223 | 0.0041 | 0.1140 | |
(40, 20, 15) | 0.3659 | 0.0018 | 0.4368 | 0.0062 | 0.2275 | 0.0103 | 0.2443 | ||
(60, 30, 20) | 0.1717 | 0.0001 | 0.1788 | 0.0068 | 0.1167 | 0.0103 | 0.1076 |
Bayesian | |||||||||
ˆμBS | ˆμBL | ˆμBE | |||||||
Sch. | T | (n,m,k) | ˆμML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0410 | 0.0066 | 0.0361 | 0.0065 | 0.0337 | 0.0064 | 0.0320 |
(40, 20, 15) | 0.0307 | 0.0051 | 0.0270 | 0.0051 | 0.0257 | 0.0050 | 0.0250 | ||
(60, 30, 20) | 0.0236 | 0.0046 | 0.0214 | 0.0046 | 0.0207 | 0.0046 | 0.0203 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0070 | 0.0246 | 0.0068 | 0.0235 | 0.0066 | 0.0229 | |
(40, 20, 15) | 0.0304 | 0.0054 | 0.0259 | 0.0053 | 0.0248 | 0.0051 | 0.0239 | ||
(60, 30, 20) | 0.0187 | 0.0047 | 0.0163 | 0.0046 | 0.0158 | 0.0046 | 0.0155 | ||
T=1.5 | (30, 20, 15) | 0.0301 | 0.0069 | 0.0257 | 0.0067 | 0.0246 | 0.0066 | 0.0238 | |
(40, 20, 15) | 0.0299 | 0.0060 | 0.0259 | 0.0059 | 0.0248 | 0.0058 | 0.0240 | ||
(60, 30, 20) | 0.0185 | 0.0047 | 0.0161 | 0.0046 | 0.0156 | 0.0046 | 0.0152 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0310 | 0.0054 | 0.0272 | 0.0054 | 0.0259 | 0.0053 | 0.0253 | ||
(60, 30, 20) | 0.0215 | 0.0046 | 0.0190 | 0.0045 | 0.0184 | 0.0044 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0066 | 0.0248 | 0.0066 | 0.0237 | 0.0064 | 0.0228 | |
(40, 20, 15) | 0.0256 | 0.0052 | 0.0220 | 0.0051 | 0.0210 | 0.0050 | 0.0202 | ||
(60, 30, 20) | 0.0176 | 0.0042 | 0.0153 | 0.0041 | 0.0148 | 0.0041 | 0.0144 | ||
T=1.5 | (30, 20, 15) | 0.0308 | 0.0069 | 0.0268 | 0.0067 | 0.0255 | 0.0066 | 0.0246 | |
(40, 20, 15) | 0.0279 | 0.0053 | 0.0243 | 0.0053 | 0.0231 | 0.0052 | 0.0221 | ||
(60, 30, 20) | 0.0161 | 0.0046 | 0.0140 | 0.0045 | 0.0136 | 0.0044 | 0.0133 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0462 | 0.0046 | 0.0423 | 0.0046 | 0.0393 | 0.0046 | 0.0370 | ||
(60, 30, 20) | 0.0248 | 0.0043 | 0.0226 | 0.0042 | 0.0216 | 0.0042 | 0.0207 | ||
T=0.7 | (30, 20, 15) | 0.0350 | 0.0062 | 0.0304 | 0.0062 | 0.0286 | 0.0061 | 0.0272 | |
(40, 20, 15) | 0.0428 | 0.0051 | 0.0394 | 0.0050 | 0.0369 | 0.0049 | 0.0348 | ||
(60, 30, 20) | 0.0232 | 0.0041 | 0.0208 | 0.0040 | 0.0199 | 0.0040 | 0.0192 | ||
T=1.5 | (30, 20, 15) | 0.0401 | 0.0067 | 0.0354 | 0.0066 | 0.0333 | 0.0065 | 0.0318 | |
(40, 20, 15) | 0.0469 | 0.0050 | 0.0420 | 0.0050 | 0.0392 | 0.0049 | 0.0371 | ||
(60, 30, 20) | 0.0254 | 0.0045 | 0.0224 | 0.0044 | 0.0214 | 0.0043 | 0.0205 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0556 | 0.0107 | 0.0453 | 0.0083 | 0.0378 | 0.0038 | 0.0247 |
(40, 20, 15) | 0.0338 | 0.0057 | 0.0263 | 0.0039 | 0.0204 | 0.0006 | 0.0095 | ||
(60, 30, 20) | 0.0248 | 0.0047 | 0.0194 | 0.0032 | 0.0150 | 0.0003 | 0.0069 | ||
T=0.7 | (30, 20, 15) | 0.0335 | 0.0084 | 0.0246 | 0.0061 | 0.0194 | 0.0015 | 0.0096 | |
(40, 20, 15) | 0.0446 | 0.0077 | 0.0333 | 0.0059 | 0.0285 | 0.0025 | 0.0198 | ||
(60, 30, 20) | 0.0269 | 0.0064 | 0.0210 | 0.0050 | 0.0178 | 0.0021 | 0.0118 | ||
T=1.5 | (30, 20, 15) | 0.0426 | 0.0090 | 0.0324 | 0.0067 | 0.0273 | 0.0022 | 0.0181 | |
(40, 20, 15) | 0.0439 | 0.0092 | 0.0337 | 0.0074 | 0.0291 | 0.0041 | 0.0205 | ||
(60, 30, 20) | 0.0319 | 0.0063 | 0.0260 | 0.0048 | 0.0229 | 0.0020 | 0.0171 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0350 | 0.0081 | 0.0258 | 0.0064 | 0.0200 | 0.0030 | 0.0093 | ||
(60, 30, 20) | 0.0262 | 0.0073 | 0.0200 | 0.0058 | 0.0157 | 0.0030 | 0.0077 | ||
T=0.7 | (30, 20, 15) | 0.0438 | 0.0082 | 0.0348 | 0.0059 | 0.0293 | 0.0015 | 0.0194 | |
(40, 20, 15) | 0.0426 | 0.0073 | 0.0339 | 0.0056 | 0.0291 | 0.0023 | 0.0203 | ||
(60, 30, 20) | 0.0305 | 0.0056 | 0.0224 | 0.0042 | 0.0192 | 0.0014 | 0.0133 | ||
T=1.5 | (30, 20, 15) | 0.0473 | 0.0086 | 0.0378 | 0.0062 | 0.0327 | 0.0018 | 0.0234 | |
(40, 20, 15) | 0.0494 | 0.0045 | 0.0384 | 0.0028 | 0.0335 | 0.0005 | 0.0248 | ||
(60, 30, 20) | 0.0239 | 0.0031 | 0.0184 | 0.0017 | 0.0153 | 0.0011 | 0.0095 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0701 | 0.0073 | 0.0608 | 0.0057 | 0.0534 | 0.0026 | 0.0413 | ||
(60, 30, 20) | 0.0404 | 0.0066 | 0.0353 | 0.0051 | 0.0310 | 0.0024 | 0.0233 | ||
T=0.7 | (30, 20, 15) | 0.0516 | 0.0070 | 0.0422 | 0.0048 | 0.0360 | 0.0005 | 0.0252 | |
(40, 20, 15) | 0.0656 | 0.0084 | 0.0581 | 0.0068 | 0.0510 | 0.0037 | 0.0391 | ||
(60, 30, 20) | 0.0388 | 0.0054 | 0.0332 | 0.0040 | 0.0291 | 0.0013 | 0.0215 | ||
T=1.5 | (30, 20, 15) | 0.0561 | 0.0073 | 0.0464 | 0.0050 | 0.0402 | 0.0007 | 0.0296 | |
(40, 20, 15) | 0.0685 | 0.0077 | 0.0595 | 0.0061 | 0.0524 | 0.0030 | 0.0404 | ||
(60, 30, 20) | 0.0444 | 0.0082 | 0.0375 | 0.0068 | 0.0332 | 0.0041 | 0.0256 |
Bayesian | |||||||||
^S(t)BS | ^S(t)BL | ^S(t)BE | |||||||
Sch. | T | (n,m,k) | ^S(t)ML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0005 | 3.90×10−6 | 0.0016 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0003 |
(40, 20, 15) | 0.0010 | 3.90×10−6 | 0.0026 | 3.90×10−6 | 0.0025 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0007 | 3.90×10−6 | 0.0016 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20×10−6 | 0.0012 | 5.20×10−6 | 0.0010 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90×10−6 | 0.0014 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0007 | 5.20×10−6 | 0.0007 | 2.60×10−6 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0008 | 3.90×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0005 | 5.20×10−6 | 0.0012 | 5.20×10−6 | 0.0012 | 2.60×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0005 | 5.20×10−6 | 0.0005 | 2.60×10−6 | 0.0001 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0007 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 2.60×10−6 | 0.0004 |
(40, 20, 15) | 0.0012 | 3.90×10−6 | 0.0029 | 3.90×10−6 | 0.0027 | 2.60×10−6 | 0.0005 | ||
(60, 30, 20) | 0.0008 | 3.90×10−6 | 0.0017 | 3.90×10−6 | 0.0016 | 2.60×10−6 | 0.0005 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20×10−6 | 0.0010 | 5.20×10−6 | 0.0010 | 2.60×10−6 | 0.0004 | |
(40, 20, 15) | 0.0005 | 3.90×10−6 | 0.0012 | 3.90×10−6 | 0.0012 | 2.60×10−6 | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0005 | 5.20×10−6 | 0.0005 | 2.60×10−6 | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0004 | 5.20×10−6 | 0.0008 | 5.20×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0004 | 3.90×10−6 | 0.0009 | 3.90×10−6 | 0.0009 | 2.60×10−6 | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0004 | 5.20×10−6 | 0.0004 | 2.60×10−6 | 0.0001 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0007 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 2.60×10−6 | 0.0004 |
(40, 20, 15) | 0.0007 | 2.60×10−6 | 0.0017 | 2.60×10−6 | 0.0016 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0004 | 3.90×10−6 | 0.0008 | 3.90×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | ||
T=0.7 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90×10−6 | 0.0017 | 3.90×10−6 | 0.0016 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | |
(40, 20, 15) | 0.0008 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0070 | 0.0014 | 0.0270 | 0.0014 | 0.0260 | 0.0007 | 0.0014 |
(40, 20, 15) | 0.0120 | 0.0014 | 0.0350 | 0.0014 | 0.0340 | 0.0007 | 0.0003 | ||
(60, 30, 20) | 0.0090 | 0.0013 | 0.0250 | 0.0013 | 0.0250 | 0.0007 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0013 | 0.0210 | 0.0007 | 0.0009 | |
(40, 20, 15) | 0.0073 | 0.0013 | 0.0230 | 0.0013 | 0.0230 | 0.0007 | 0.0007 | ||
(60, 30, 20) | 0.0049 | 0.0014 | 0.0150 | 0.0013 | 0.0150 | 0.0005 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0012 | 0.0170 | 0.0012 | 0.0170 | 0.0008 | 0.0004 | |
(40, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0014 | 0.0220 | 0.0007 | 0.0001 | ||
(60, 30, 20) | 0.0032 | 0.0012 | 0.0120 | 0.0012 | 0.0120 | 0.0007 | 0.0008 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0130 | 0.0014 | 0.0360 | 0.0014 | 0.0350 | 0.0007 | 0.0010 | ||
(60, 30, 20) | 0.0096 | 0.0014 | 0.0250 | 0.0014 | 0.0250 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0055 | 0.0012 | 0.0190 | 0.0012 | 0.0190 | 0.0008 | 0.0010 | |
(40, 20, 15) | 0.0062 | 0.0013 | 0.0210 | 0.0013 | 0.0210 | 0.0007 | 0.0008 | ||
(60, 30, 20) | 0.0039 | 0.0013 | 0.0140 | 0.0013 | 0.0140 | 0.0007 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0003 | |
(40, 20, 15) | 0.0038 | 0.0012 | 0.0190 | 0.0012 | 0.0180 | 0.0008 | 0.0021 | ||
(60, 30, 20) | 0.0034 | 0.0013 | 0.0130 | 0.0013 | 0.0120 | 0.0007 | 0.0008 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0074 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0025 | ||
(60, 30, 20) | 0.0055 | 0.0013 | 0.0170 | 0.0013 | 0.0170 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0035 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0020 | |
(40, 20, 15) | 0.0070 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0027 | ||
(60, 30, 20) | 0.0041 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 | ||
T=1.5 | (30, 20, 15) | 0.0039 | 0.0012 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0017 | |
(40, 20, 15) | 0.0080 | 0.0014 | 0.0270 | 0.0013 | 0.0260 | 0.0007 | 0.0020 | ||
(60, 30, 20) | 0.0042 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 |
Bayesian | |||||||||
^H(t)BS | ^H(t)BL | ^H(t)BE | |||||||
Sch. | T | (n,m,k) | ^H(t)ML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0250 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0320 | 4.20×10−5 | 0.0200 |
(40, 20, 15) | 0.0220 | 4.20×10−5 | 0.0350 | 4.20×10−5 | 0.0300 | 4.20×10−5 | 0.0190 | ||
(60, 30, 20) | 0.0250 | 5.60×10−5 | 0.0370 | 5.60×10−5 | 0.0270 | 5.60×10−5 | 0.0240 | ||
T=0.7 | (30, 20, 15) | 0.0110 | 5.60×10−5 | 0.0130 | 5.60×10−5 | 0.0130 | 7.00×10−5 | 0.0095 | |
(40, 20, 15) | 0.0290 | 5.60×10−5 | 0.0400 | 5.60×10−5 | 0.0330 | 5.60×10−5 | 0.0220 | ||
(60, 30, 20) | 0.0084 | 8.40×10−5 | 0.0110 | 8.40×10−5 | 0.0100 | 8.40×10−5 | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0120 | 7.00×10−5 | 0.0150 | 7.00×10−5 | 0.0140 | 7.00×10−5 | 0.0110 | |
(40, 20, 15) | 0.0240 | 5.60×10−5 | 0.0350 | 5.60×10−5 | 0.0300 | 5.60×10−5 | 0.0210 | ||
(60, 30, 20) | 0.0100 | 7.00×10−5 | 0.0130 | 8.40×10−5 | 0.0120 | 8.40×10−5 | 0.0095 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0260 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0340 | 5.60×10−5 | 0.0220 |
(40, 20, 15) | 0.0220 | 4.20×10−5 | 0.0340 | 4.20×10−5 | 0.0300 | 4.20×10−5 | 0.0190 | ||
(60, 30, 20) | 0.0120 | 5.60×10−5 | 0.0170 | 5.60×10−5 | 0.0150 | 5.60×10−5 | 0.0110 | ||
T=0.7 | (30, 20, 15) | 0.0130 | 5.60×10−5 | 0.0180 | 5.60×10−5 | 0.0170 | 7.00×10−5 | 0.0120 | |
(40, 20, 15) | 0.0190 | 5.60×10−5 | 0.0280 | 5.60×10−5 | 0.0250 | 5.60×10−5 | 0.0160 | ||
(60, 30, 20) | 0.0086 | 7.00×10−5 | 0.0110 | 7.00×10−5 | 0.0110 | 8.40×10−5 | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0130 | 7.00×10−5 | 0.0170 | 7.00×10−5 | 0.0160 | 7.00×10−5 | 0.0120 | |
(40, 20, 15) | 0.0260 | 4.20×10−5 | 0.0420 | 4.20×10−5 | 0.0350 | 5.60×10−5 | 0.0230 | ||
(60, 30, 20) | 0.0076 | 7.00×10−5 | 0.0100 | 7.00×10−5 | 0.0096 | 7.00×10−5 | 0.0074 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0260 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0340 | 5.60×10−5 | 0.0220 |
(40, 20, 15) | 0.0750 | 4.20×10−5 | 0.2200 | 4.20×10−5 | 0.1100 | 4.20×10−5 | 0.0680 | ||
(60, 30, 20) | 0.0150 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0210 | 5.60×10−5 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0260 | 5.60×10−5 | 0.0430 | 5.60×10−5 | 0.0340 | 5.60×10−5 | 0.0240 | |
(40, 20, 15) | 0.0660 | 4.20×10−5 | 0.1500 | 4.20×10−5 | 0.0910 | 4.20×10−5 | 0.0570 | ||
(60, 30, 20) | 0.0160 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0210 | 5.60×10−5 | 0.0140 | ||
T=1.5 | (30, 20, 15) | 0.0250 | 5.60×10−5 | 0.0430 | 5.60×10−5 | 0.0340 | 5.60×10−5 | 0.0230 | |
(40, 20, 15) | 0.0870 | 4.20×10−5 | 0.2000 | 4.20×10−5 | 0.1000 | 4.20×10−5 | 0.0700 | ||
(60, 30, 20) | 0.0170 | 5.60×10−5 | 0.0260 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0150 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0600 | 1.70×10−4 | 0.0880 | 3.20×10−4 | 0.0800 | 0.0027 | 0.0320 |
(40, 20, 15) | 0.0510 | 3.60×10−4 | 0.0810 | 5.20×10−4 | 0.0730 | 0.0028 | 0.0240 | ||
(60, 30, 20) | 0.0360 | 2.80×10−5 | 0.0540 | 1.10×10−4 | 0.0490 | 0.0024 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0330 | 3.80×10−4 | 0.0400 | 5.20×10−4 | 0.0370 | 0.0028 | 0.0110 | |
(40, 20, 15) | 0.0610 | 9.80×10−5 | 0.0810 | 5.60×10−5 | 0.0740 | 0.0024 | 0.0370 | ||
(60, 30, 20) | 0.0290 | 1.10×10−5 | 0.0370 | 1.50×10−4 | 0.0350 | 0.0024 | 0.0160 | ||
T=1.5 | (30, 20, 15) | 0.0400 | 2.40×10−4 | 0.0480 | 9.80×10−5 | 0.0450 | 0.0021 | 0.0200 | |
(40, 20, 15) | 0.0550 | 1.50×10−4 | 0.0740 | 3.10×10−4 | 0.0680 | 0.0025 | 0.0330 | ||
(60, 30, 20) | 0.0340 | 5.90×10−4 | 0.0440 | 4.50×10−4 | 0.0420 | 0.0017 | 0.0230 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0640 | 3.40×10−4 | 0.0920 | 4.90×10−4 | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.0510 | 3.50×10−4 | 0.0780 | 5.00×10−4 | 0.0700 | 0.0028 | 0.0230 | ||
(60, 30, 20) | 0.0330 | 1.40×10−5 | 0.0490 | 1.40×10−4 | 0.0450 | 0.0024 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0440 | 3.80×10−4 | 0.0550 | 2.20×10−4 | 0.0510 | 0.0021 | 0.0240 | |
(40, 20, 15) | 0.0550 | 4.20×10−5 | 0.0770 | 1.10×10−4 | 0.0720 | 0.0024 | 0.0340 | ||
(60, 30, 20) | 0.0330 | 4.90×10−4 | 0.0410 | 3.50×10−4 | 0.0390 | 0.0018 | 0.0190 | ||
T=1.5 | (30, 20, 15) | 0.0460 | 2.50×10−4 | 0.0570 | 1.10×10−4 | 0.0540 | 0.0021 | 0.0280 | |
(40, 20, 15) | 0.0670 | 4.20×10−4 | 0.0920 | 2.80×10−4 | 0.0850 | 0.0020 | 0.0450 | ||
(60, 30, 20) | 0.0280 | 1.30×10−4 | 0.0370 | 1.10×10−5 | 0.0350 | 0.0023 | 0.0160 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0640 | 3.40×10−4 | 0.0920 | 4.90×10−4 | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.1100 | 3.40×10−4 | 0.2000 | 1.80×10−4 | 0.1600 | 0.0021 | 0.0860 | ||
(60, 30, 20) | 0.0460 | 3.90×10−4 | 0.0700 | 2.40×10−4 | 0.0650 | 0.0020 | 0.0340 | ||
T=0.7 | (30, 20, 15) | 0.0560 | 1.30×10−4 | 0.0770 | 1.10×10−5 | 0.0710 | 0.0024 | 0.0370 | |
(40, 20, 15) | 0.0970 | 2.90×10−4 | 0.1700 | 1.40×10−4 | 0.1400 | 0.0023 | 0.0740 | ||
(60, 30, 20) | 0.0460 | 3.60×10−4 | 0.0680 | 2.10×10−4 | 0.0640 | 0.0021 | 0.0330 | ||
T=1.5 | (30, 20, 15) | 0.0600 | 1.10×10−4 | 0.0830 | 4.20×10−5 | 0.0760 | 0.0024 | 0.0410 | |
(40, 20, 15) | 0.1100 | 8.40×10−5 | 0.1800 | 7.00×10−5 | 0.1500 | 0.0024 | 0.0810 | ||
(60, 30, 20) | 0.0500 | 5.70×10−4 | 0.0730 | 4.20×10−4 | 0.0680 | 0.0018 | 0.0370 |
3. From Tables 7–10 in the appendix, the AL of confidence intervals decreases as T increases, and the credible intervals perform well compared to the asymptotic confidence intervals. Finally, in all cases AL of the confidence intervals, the 95% intervals are larger than the 90% intervals.
ˆλB | |||||||||||||
ˆλML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 2.733 | 0.918 | 3.161 | 0.950 | 0.911 | 0.940 | 1.078 | 0.965 | 2.683 | 0.863 | 3.138 | 0.928 |
(40, 20, 15) | 2.871 | 0.930 | 3.309 | 0.945 | 0.828 | 0.947 | 0.986 | 0.970 | 2.810 | 0.879 | 3.317 | 0.925 | |
(60, 30, 20) | 2.135 | 0.907 | 2.544 | 0.941 | 0.769 | 0.948 | 0.920 | 0.969 | 2.098 | 0.867 | 2.511 | 0.922 | |
T=0.7 | (30, 20, 15) | 1.665 | 0.873 | 1.935 | 0.943 | 0.741 | 0.934 | 0.877 | 0.965 | 1.614 | 0.851 | 1.864 | 0.927 |
(40, 20, 15) | 2.012 | 0.924 | 2.417 | 0.935 | 0.674 | 0.945 | 0.803 | 0.964 | 1.956 | 0.877 | 2.360 | 0.892 | |
(60, 30, 20) | 1.393 | 0.878 | 1.638 | 0.946 | 0.623 | 0.931 | 0.737 | 0.969 | 1.355 | 0.856 | 1.596 | 0.918 | |
T=1.5 | (30, 20, 15) | 1.420 | 0.901 | 1.692 | 0.942 | 0.658 | 0.945 | 0.780 | 0.965 | 1.378 | 0.871 | 1.634 | 0.927 |
(40, 20, 15) | 1.748 | 0.931 | 2.067 | 0.945 | 0.602 | 0.946 | 0.708 | 0.965 | 1.707 | 0.864 | 2.015 | 0.907 | |
(60, 30, 20) | 1.208 | 0.907 | 1.461 | 0.940 | 0.554 | 0.937 | 0.656 | 0.965 | 1.173 | 0.889 | 1.420 | 0.913 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 2.727 | 0.908 | 3.181 | 0.940 | 0.909 | 0.930 | 1.079 | 0.965 | 2.653 | 0.858 | 3.143 | 0.912 |
(40, 20, 15) | 2.917 | 0.920 | 3.260 | 0.937 | 0.824 | 0.955 | 0.972 | 0.965 | 2.883 | 0.867 | 3.243 | 0.923 | |
(60, 30, 20) | 2.098 | 0.899 | 2.499 | 0.930 | 0.766 | 0.946 | 0.908 | 0.968 | 2.047 | 0.865 | 2.456 | 0.907 | |
T=0.7 | (30, 20, 15) | 1.648 | 0.886 | 1.984 | 0.942 | 0.738 | 0.944 | 0.876 | 0.961 | 1.592 | 0.858 | 1.930 | 0.917 |
(40, 20, 15) | 2.328 | 0.905 | 2.408 | 0.943 | 0.673 | 0.944 | 0.795 | 0.964 | 2.296 | 0.848 | 2.355 | 0.913 | |
(60, 30, 20) | 1.367 | 0.901 | 1.661 | 0.941 | 0.616 | 0.947 | 0.734 | 0.970 | 1.334 | 0.875 | 1.612 | 0.913 | |
T=1.5 | (30, 20, 15) | 1.481 | 0.879 | 1.726 | 0.935 | 0.654 | 0.934 | 0.782 | 0.959 | 1.455 | 0.858 | 1.683 | 0.907 |
(40, 20, 15) | 1.866 | 0.938 | 2.224 | 0.951 | 0.596 | 0.948 | 0.710 | 0.966 | 1.811 | 0.863 | 2.189 | 0.922 | |
(60, 30, 20) | 1.203 | 0.900 | 1.442 | 0.946 | 0.547 | 0.945 | 0.653 | 0.965 | 1.169 | 0.881 | 1.407 | 0.913 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 2.425 | 0.915 | 3.181 | 0.940 | 0.887 | 0.927 | 1.079 | 0.965 | 2.382 | 0.879 | 3.143 | 0.912 |
(40, 20, 15) | 3.676 | 0.928 | 4.329 | 0.951 | 0.798 | 0.948 | 0.945 | 0.974 | 3.932 | 0.857 | 4.748 | 0.912 | |
(60, 30, 20) | 2.083 | 0.913 | 2.451 | 0.945 | 0.742 | 0.951 | 0.875 | 0.964 | 2.057 | 0.854 | 2.459 | 0.911 | |
T=0.7 | (30, 20, 15) | 1.771 | 0.919 | 2.142 | 0.949 | 0.721 | 0.940 | 0.855 | 0.966 | 1.727 | 0.866 | 2.120 | 0.920 |
(40, 20, 15) | 3.077 | 0.924 | 3.378 | 0.952 | 0.656 | 0.942 | 0.773 | 0.968 | 3.272 | 0.844 | 3.600 | 0.916 | |
(60, 30, 20) | 1.670 | 0.913 | 1.993 | 0.949 | 0.601 | 0.949 | 0.715 | 0.967 | 1.669 | 0.859 | 1.986 | 0.917 | |
T=1.5 | (30, 20, 15) | 1.544 | 0.924 | 1.920 | 0.951 | 0.644 | 0.925 | 0.762 | 0.970 | 1.512 | 0.886 | 1.913 | 0.907 |
(40, 20, 15) | 2.793 | 0.927 | 3.096 | 0.943 | 0.580 | 0.948 | 0.685 | 0.967 | 2.910 | 0.837 | 3.291 | 0.896 | |
(60, 30, 20) | 1.517 | 0.913 | 1.792 | 0.955 | 0.534 | 0.937 | 0.634 | 0.957 | 1.502 | 0.844 | 1.792 | 0.917 |
Bayesian | |||||||||||||
ˆμML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.933 | 0.901 | 1.101 | 0.983 | 0.456 | 0.955 | 0.541 | 0.989 | 0.910 | 0.891 | 1.055 | 0.961 |
(40, 20, 15) | 0.833 | 0.904 | 0.979 | 0.968 | 0.393 | 0.940 | 0.466 | 0.991 | 0.804 | 0.876 | 0.937 | 0.951 | |
(60, 30, 20) | 0.710 | 0.915 | 0.837 | 0.963 | 0.366 | 0.952 | 0.427 | 0.987 | 0.695 | 0.890 | 0.805 | 0.931 | |
T=0.7 | (30, 20, 15) | 0.726 | 0.917 | 0.855 | 0.962 | 0.423 | 0.963 | 0.496 | 0.984 | 0.706 | 0.898 | 0.819 | 0.942 |
(40, 20, 15) | 0.688 | 0.916 | 0.814 | 0.960 | 0.364 | 0.957 | 0.432 | 0.990 | 0.671 | 0.896 | 0.783 | 0.931 | |
(60, 30, 20) | 0.556 | 0.895 | 0.661 | 0.945 | 0.335 | 0.939 | 0.396 | 0.986 | 0.542 | 0.882 | 0.642 | 0.927 | |
T=1.5 | (30, 20, 15) | 0.645 | 0.918 | 0.766 | 0.959 | 0.387 | 0.952 | 0.457 | 0.983 | 0.632 | 0.901 | 0.739 | 0.938 |
(40, 20, 15) | 0.614 | 0.928 | 0.735 | 0.966 | 0.331 | 0.954 | 0.393 | 0.970 | 0.594 | 0.893 | 0.707 | 0.930 | |
(60, 30, 20) | 0.500 | 0.917 | 0.599 | 0.949 | 0.306 | 0.954 | 0.363 | 0.987 | 0.488 | 0.899 | 0.578 | 0.927 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.931 | 0.908 | 1.106 | 0.973 | 0.455 | 0.955 | 0.537 | 0.990 | 0.900 | 0.893 | 1.061 | 0.935 |
(40, 20, 15) | 0.820 | 0.905 | 0.971 | 0.971 | 0.388 | 0.955 | 0.462 | 0.983 | 0.797 | 0.882 | 0.929 | 0.949 | |
(60, 30, 20) | 0.700 | 0.918 | 0.834 | 0.975 | 0.362 | 0.962 | 0.426 | 0.982 | 0.681 | 0.905 | 0.798 | 0.949 | |
T=0.7 | (30, 20, 15) | 0.719 | 0.912 | 0.858 | 0.972 | 0.417 | 0.958 | 0.494 | 0.991 | 0.703 | 0.888 | 0.834 | 0.952 |
(40, 20, 15) | 0.757 | 0.918 | 0.816 | 0.970 | 0.358 | 0.957 | 0.423 | 0.985 | 0.735 | 0.899 | 0.785 | 0.956 | |
(60, 30, 20) | 0.555 | 0.907 | 0.662 | 0.969 | 0.334 | 0.960 | 0.391 | 0.983 | 0.545 | 0.879 | 0.637 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.654 | 0.909 | 0.768 | 0.966 | 0.384 | 0.952 | 0.456 | 0.984 | 0.640 | 0.874 | 0.744 | 0.933 |
(40, 20, 15) | 0.633 | 0.907 | 0.751 | 0.971 | 0.331 | 0.960 | 0.388 | 0.980 | 0.615 | 0.874 | 0.721 | 0.954 | |
(60, 30, 20) | 0.506 | 0.890 | 0.593 | 0.971 | 0.307 | 0.939 | 0.357 | 0.988 | 0.490 | 0.872 | 0.578 | 0.953 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.915 | 0.926 | 1.106 | 0.973 | 0.447 | 0.941 | 0.537 | 0.990 | 0.891 | 0.891 | 1.061 | 0.935 |
(40, 20, 15) | 0.918 | 0.906 | 1.080 | 0.970 | 0.377 | 0.942 | 0.445 | 0.987 | 0.884 | 0.862 | 1.031 | 0.937 | |
(60, 30, 20) | 0.693 | 0.925 | 0.832 | 0.972 | 0.351 | 0.960 | 0.417 | 0.990 | 0.675 | 0.900 | 0.801 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.772 | 0.922 | 0.914 | 0.980 | 0.415 | 0.955 | 0.485 | 0.997 | 0.750 | 0.902 | 0.884 | 0.964 |
(40, 20, 15) | 0.834 | 0.925 | 0.990 | 0.974 | 0.345 | 0.950 | 0.411 | 0.987 | 0.806 | 0.876 | 0.941 | 0.935 | |
(60, 30, 20) | 0.641 | 0.919 | 0.760 | 0.968 | 0.326 | 0.955 | 0.383 | 0.992 | 0.623 | 0.890 | 0.729 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.704 | 0.921 | 0.842 | 0.971 | 0.382 | 0.942 | 0.446 | 0.992 | 0.686 | 0.896 | 0.808 | 0.947 |
(40, 20, 15) | 0.773 | 0.914 | 0.911 | 0.963 | 0.318 | 0.956 | 0.377 | 0.979 | 0.739 | 0.878 | 0.860 | 0.923 | |
(60, 30, 20) | 0.589 | 0.928 | 0.702 | 0.970 | 0.297 | 0.949 | 0.354 | 0.987 | 0.573 | 0.904 | 0.677 | 0.940 |
^S(t)B | |||||||||||||
^S(t)ML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.088 | 0.736 | 0.110 | 0.797 | 0.021 | 0.980 | 0.026 | 0.985 | 0.138 | 0.922 | 0.185 | 0.949 |
(40, 20, 15) | 0.113 | 0.771 | 0.140 | 0.813 | 0.022 | 0.987 | 0.026 | 0.993 | 0.164 | 0.919 | 0.215 | 0.948 | |
(60, 30, 20) | 0.091 | 0.803 | 0.110 | 0.849 | 0.021 | 0.976 | 0.026 | 0.978 | 0.123 | 0.907 | 0.158 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.789 | 0.088 | 0.856 | 0.020 | 0.965 | 0.024 | 0.963 | 0.099 | 0.903 | 0.133 | 0.946 |
(40, 20, 15) | 0.069 | 0.727 | 0.092 | 0.799 | 0.020 | 0.954 | 0.024 | 0.948 | 0.105 | 0.926 | 0.144 | 0.919 | |
(60, 30, 20) | 0.057 | 0.812 | 0.069 | 0.875 | 0.019 | 0.980 | 0.023 | 0.985 | 0.075 | 0.914 | 0.097 | 0.929 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.790 | 0.069 | 0.838 | 0.018 | 0.965 | 0.022 | 0.918 | 0.084 | 0.918 | 0.108 | 0.939 |
(40, 20, 15) | 0.066 | 0.758 | 0.083 | 0.809 | 0.018 | 0.954 | 0.022 | 0.985 | 0.098 | 0.909 | 0.132 | 0.934 | |
(60, 30, 20) | 0.049 | 0.833 | 0.058 | 0.856 | 0.018 | 0.980 | 0.021 | 0.903 | 0.066 | 0.948 | 0.083 | 0.929 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.089 | 0.743 | 0.113 | 0.769 | 0.021 | 0.980 | 0.026 | 0.985 | 0.140 | 0.921 | 0.188 | 0.943 |
(40, 20, 15) | 0.111 | 0.754 | 0.143 | 0.802 | 0.021 | 0.965 | 0.026 | 0.963 | 0.159 | 0.904 | 0.215 | 0.954 | |
(60, 30, 20) | 0.092 | 0.814 | 0.110 | 0.859 | 0.021 | 0.954 | 0.026 | 0.948 | 0.125 | 0.921 | 0.156 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.794 | 0.080 | 0.802 | 0.020 | 0.943 | 0.024 | 0.933 | 0.098 | 0.910 | 0.124 | 0.944 |
(40, 20, 15) | 0.105 | 0.730 | 0.088 | 0.802 | 0.020 | 0.932 | 0.024 | 0.918 | 0.150 | 0.912 | 0.139 | 0.940 | |
(60, 30, 20) | 0.055 | 0.821 | 0.066 | 0.836 | 0.019 | 0.980 | 0.023 | 0.985 | 0.074 | 0.913 | 0.094 | 0.930 | |
T=1.5 | (30, 20, 15) | 0.054 | 0.765 | 0.067 | 0.793 | 0.018 | 0.943 | 0.022 | 0.888 | 0.078 | 0.905 | 0.104 | 0.928 |
(40, 20, 15) | 0.063 | 0.735 | 0.073 | 0.781 | 0.018 | 0.932 | 0.022 | 0.985 | 0.096 | 0.895 | 0.123 | 0.950 | |
(60, 30, 20) | 0.048 | 0.827 | 0.059 | 0.884 | 0.018 | 0.980 | 0.021 | 0.873 | 0.064 | 0.913 | 0.085 | 0.934 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.101 | 0.782 | 0.113 | 0.769 | 0.021 | 0.979 | 0.026 | 0.985 | 0.144 | 0.919 | 0.188 | 0.943 |
(40, 20, 15) | 0.089 | 0.668 | 0.114 | 0.730 | 0.021 | 0.943 | 0.026 | 0.933 | 0.132 | 0.888 | 0.180 | 0.926 | |
(60, 30, 20) | 0.070 | 0.778 | 0.085 | 0.808 | 0.021 | 0.932 | 0.025 | 0.918 | 0.093 | 0.901 | 0.120 | 0.936 | |
T=0.7 | (30, 20, 15) | 0.065 | 0.766 | 0.074 | 0.815 | 0.020 | 0.921 | 0.024 | 0.903 | 0.093 | 0.908 | 0.119 | 0.951 |
(40, 20, 15) | 0.088 | 0.684 | 0.105 | 0.758 | 0.020 | 0.910 | 0.024 | 0.888 | 0.129 | 0.891 | 0.170 | 0.933 | |
(60, 30, 20) | 0.063 | 0.803 | 0.074 | 0.830 | 0.019 | 0.980 | 0.023 | 0.985 | 0.083 | 0.906 | 0.107 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.788 | 0.069 | 0.797 | 0.018 | 0.921 | 0.022 | 0.858 | 0.084 | 0.947 | 0.109 | 0.941 |
(40, 20, 15) | 0.078 | 0.684 | 0.099 | 0.747 | 0.018 | 0.910 | 0.023 | 0.985 | 0.116 | 0.883 | 0.158 | 0.927 | |
(60, 30, 20) | 0.057 | 0.787 | 0.069 | 0.803 | 0.018 | 0.980 | 0.022 | 0.903 | 0.077 | 0.899 | 0.098 | 0.939 |
^H(t)B | |||||||||||||
^H(t)ML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.472 | 0.716 | 0.537 | 0.769 | 0.078 | 0.961 | 0.093 | 0.966 | 0.475 | 0.943 | 0.556 | 0.963 |
(40, 20, 15) | 0.473 | 0.750 | 0.533 | 0.784 | 0.078 | 0.980 | 0.092 | 1.000 | 0.474 | 0.933 | 0.559 | 0.956 | |
(60, 30, 20) | 0.344 | 0.781 | 0.408 | 0.819 | 0.078 | 1.000 | 0.091 | 1.000 | 0.345 | 0.922 | 0.416 | 0.959 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.767 | 0.354 | 0.825 | 0.074 | 1.031 | 0.087 | 1.000 | 0.300 | 0.924 | 0.343 | 0.953 |
(40, 20, 15) | 0.344 | 0.707 | 0.417 | 0.770 | 0.067 | 0.963 | 0.080 | 0.955 | 0.339 | 0.946 | 0.417 | 0.925 | |
(60, 30, 20) | 0.256 | 0.790 | 0.301 | 0.843 | 0.072 | 1.000 | 0.086 | 1.000 | 0.249 | 0.926 | 0.294 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.288 | 0.768 | 0.343 | 0.808 | 0.072 | 1.000 | 0.085 | 1.000 | 0.280 | 0.931 | 0.332 | 0.938 |
(40, 20, 15) | 0.332 | 0.737 | 0.397 | 0.780 | 0.067 | 0.975 | 0.079 | 0.995 | 0.330 | 0.930 | 0.395 | 0.942 | |
(60, 30, 20) | 0.243 | 0.810 | 0.296 | 0.825 | 0.071 | 1.000 | 0.084 | 1.000 | 0.235 | 0.959 | 0.290 | 0.931 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.470 | 0.722 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 0.975 | 0.466 | 0.936 | 0.562 | 0.949 |
(40, 20, 15) | 0.485 | 0.733 | 0.527 | 0.773 | 0.078 | 0.967 | 0.092 | 0.989 | 0.494 | 0.924 | 0.547 | 0.955 | |
(60, 30, 20) | 0.333 | 0.792 | 0.398 | 0.828 | 0.077 | 1.035 | 0.091 | 1.000 | 0.329 | 0.937 | 0.401 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.773 | 0.375 | 0.773 | 0.074 | 0.967 | 0.088 | 1.000 | 0.299 | 0.925 | 0.369 | 0.955 |
(40, 20, 15) | 0.429 | 0.710 | 0.438 | 0.773 | 0.074 | 0.967 | 0.087 | 0.959 | 0.434 | 0.935 | 0.440 | 0.949 | |
(60, 30, 20) | 0.253 | 0.798 | 0.308 | 0.806 | 0.073 | 1.007 | 0.086 | 1.000 | 0.247 | 0.926 | 0.300 | 0.940 | |
T=1.5 | (30, 20, 15) | 0.315 | 0.744 | 0.357 | 0.765 | 0.072 | 0.956 | 0.085 | 1.000 | 0.314 | 0.925 | 0.350 | 0.935 |
(40, 20, 15) | 0.387 | 0.715 | 0.455 | 0.753 | 0.073 | 0.941 | 0.086 | 0.965 | 0.380 | 0.926 | 0.461 | 0.961 | |
(60, 30, 20) | 0.248 | 0.805 | 0.290 | 0.852 | 0.071 | 1.000 | 0.084 | 1.000 | 0.239 | 0.925 | 0.285 | 0.941 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.417 | 0.761 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 1.000 | 0.420 | 0.935 | 0.562 | 0.949 |
(40, 20, 15) | 0.663 | 0.649 | 0.779 | 0.704 | 0.078 | 0.880 | 0.093 | 0.877 | 0.771 | 0.906 | 0.944 | 0.933 | |
(60, 30, 20) | 0.348 | 0.756 | 0.412 | 0.779 | 0.077 | 0.973 | 0.091 | 1.000 | 0.349 | 0.917 | 0.427 | 0.948 | |
T=0.7 | (30, 20, 15) | 0.362 | 0.745 | 0.429 | 0.786 | 0.074 | 0.983 | 0.088 | 1.000 | 0.358 | 0.930 | 0.437 | 0.962 |
(40, 20, 15) | 0.607 | 0.666 | 0.665 | 0.731 | 0.075 | 0.914 | 0.089 | 0.898 | 0.695 | 0.912 | 0.758 | 0.946 | |
(60, 30, 20) | 0.332 | 0.781 | 0.394 | 0.800 | 0.074 | 1.000 | 0.087 | 1.000 | 0.338 | 0.923 | 0.405 | 0.952 | |
T=1.5 | (30, 20, 15) | 0.338 | 0.766 | 0.429 | 0.769 | 0.073 | 0.961 | 0.086 | 1.000 | 0.335 | 0.962 | 0.443 | 0.953 |
(40, 20, 15) | 0.621 | 0.666 | 0.689 | 0.720 | 0.073 | 0.900 | 0.087 | 0.898 | 0.686 | 0.903 | 0.796 | 0.936 | |
(60, 30, 20) | 0.331 | 0.765 | 0.394 | 0.774 | 0.072 | 0.968 | 0.086 | 1.000 | 0.333 | 0.923 | 0.408 | 0.950 |
This work is supported by Researchers Supporting Project number (RSP-2021/323), King Saud University, Riyadh, Saudi Arabia.
We are grateful to the referees and the editor for their careful reading and their constructive comments, which leads to this greatly improved paper.
The authors acknowledge financial support from the Researchers Supporting Project number (RSP-2021/323), King Saud University, Riyadh, Saudi Arabia.
The authors declare there is no conflict of interest.
[1] | Brown M, Harris C (1994) Neurofuzzy adaptive modelling and control, Hertfordshire: Prentice Hall International (UK) Ltd. |
[2] |
Chang FJ, Chiang YM, Chang LC, et al. (2007) Multi-step-ahead neural networks for flood forecasting. Hydrolog Sci J 52: 114–130. http://dx.doi.org/10.1623/hysj.52.1.114 doi: 10.1623/hysj.52.1.114
![]() |
[3] |
Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2: 267–278. http://dx.doi.org/10.3233/IFS-1994-2306 doi: 10.3233/IFS-1994-2306
![]() |
[4] |
Duan Q, Sorooshian S, Gupta VK, et al. (1992) Effective and efficient global optimization for conceptual Rainfall-Runoff models. Water Resour Res 28: 1015–1031. https://doi.org/10.1029/91WR02985 doi: 10.1029/91WR02985
![]() |
[5] | Sudheer KP (2000) Modeling hydrological processes using neural computing technique, Ph.D. thesis, Indian Institution of Technology Delhi, India. |
[6] |
Dawson C, Wilby R (1998) An artificial neural network approach to rainfall-runoff modeling. Hydrolog Sci J 43: 47–66. https://doi.org/10.1080/02626669809492102 doi: 10.1080/02626669809492102
![]() |
[7] |
Sudheer KP, Gosain AK, Ramasastri KS, et al. (2002) A data driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol Process 16: 1325–1330. https://doi.org/10.1002/hyp.554 doi: 10.1002/hyp.554
![]() |
[8] |
Sudheer KP (2005) Knowledge extraction from Trained neural network river flow models. J Hydrol Eng 10: 264–269. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:4(264) doi: 10.1061/(ASCE)1084-0699(2005)10:4(264)
![]() |
[9] |
Nayak PC, Sudheer KP, Ramasastri KS, et al. (2005) Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrol Process 19: 955–968. https://doi.org/10.1002/hyp.5553 doi: 10.1002/hyp.5553
![]() |
[10] |
Singh SR (2007) A robust method of forecasting based on fuzzy time series. Appl Math.Comput 188: 472–484. https://doi.org/10.1016/j.amc.2006.09.140 doi: 10.1016/j.amc.2006.09.140
![]() |
[11] |
Nayak PC, Sudheer KP, Rangan DM, et al. (2004) A neuro-fuzzy computing technique for modeling hydrological time series. J Hydrol 291: 52–66. https://doi.org/10.1016/j.jhydrol.2003.12.010 doi: 10.1016/j.jhydrol.2003.12.010
![]() |
[12] |
Nayak PC, Sudheer KP, Rangan DM, et al. (2005) Short-term flood forecasting with a neurofuzzy model. Water Resour Res 41. https://doi.org/10.1029/2004WR003562 doi: 10.1029/2004WR003562
![]() |
[13] | Haykin S (1999) Neural networks: A comprehensive foundation, Hoboken: Prentice Hall. |
[14] |
Zadeh LA (1965) Fuzzy sets. Inf Control 8: 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[15] |
Chang L, Chang F (2001) Intelligent control for modelling of real-time reservoir operation. Hydrol Process 15: 1621–1634. https://doi.org/10.1002/hyp.226 doi: 10.1002/hyp.226
![]() |
[16] |
Shamseldin AY, Nasr AE, O'Connor KM, et al. (2002) Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecasting. Hydrol Earth Syst Sc 6: 671–684. https://doi.org/10.5194/hess-6-671-2002 doi: 10.5194/hess-6-671-2002
![]() |
[17] |
Connor JT, Martin RD, Atlas LE, et al. (1994) Recurrent neural networks and robust time series prediction. IEEE T Neural Networ 5: 240–254. https://doi.org/10.1109/72.279188 doi: 10.1109/72.279188
![]() |
[18] |
Gohil M, Mehta D, Shaikh M, et al. (2024) An integration of geospatial and fuzzy-logic techniques for flood-hazard mapping. J Earth Syst Sc 133: 80. https://doi.org/10.1007/s12040-024-02288-1 doi: 10.1007/s12040-024-02288-1
![]() |
[19] | Babovic V, Keijzer M (2000) Forecasting of river discharges in the presence of chaos and noise, In: J. Marsalek, W. E. Watt, E. Zeman, F. Sieker, Eds., Flood Issues in Contemporary Water Management, Dordrecht: Springer, 71: 405–419. https://doi.org/10.1007/978-94-011-4140-6_42 |
[20] |
Hornik K, Stinchcombe M, White H, et al. (1989) Multilayer feed forward networks are universal approximators. Neural Networks 2: 359–366. https://doi.org/10.1016/0893-6080(89)90020-8 doi: 10.1016/0893-6080(89)90020-8
![]() |
[21] |
Sugeno M, Yasukawa TA (1993) fuzzy-logic based approach to qualitative modeling. IEEE T Fuzzy Syst 1: 7–31. https://doi.org/10.1109/TFUZZ.1993.390281 doi: 10.1109/TFUZZ.1993.390281
![]() |
[22] | Fujita M, Zhu ML, Nakoa T, et al. (1992) An application of fuzzy set theory to runoff prediction, paper presented at Sixth IAHR International Symposium on Stochastic Hydraulics. Int Assoc for Hydraul Res. |
[23] | Zhu ML, Fujita M (1994) Comparison between fuzzy reasoning and neural network method to forecast runoff discharge. J Hydrosci Hydraul Eng 12: 131–141. |
[24] |
Zhu ML, Fujita M, Hashimoto N, et al. (1994) Long lead time forecast of runoff using fuzzy reasoning method. J Jpn Soc Hydrol Water Resour 7: 83–89. https://doi.org/10.3178/jjshwr.7.2_83 doi: 10.3178/jjshwr.7.2_83
![]() |
[25] | Stuber M, Gemmar P, Greving M, et al. (2000) Machine supported development of fuzzy-flood forecast systems, In Proceedings of European Conference on Advances in Flood Research, 504–515. |
[26] |
See L, Openshaw S (1999) Applying soft computing approaches to river level forecasting. Hydrol Sci J 44: 763–778. https://doi.org/10.1080/02626669909492272 doi: 10.1080/02626669909492272
![]() |
[27] |
Hundecha Y, Bardossy A, Werner HW, et al. (2001) Development of a fuzzy logic-based rainfall-runoff model. Hydrol Sci J 46: 363–376. https://doi.org/10.1080/02626660109492832 doi: 10.1080/02626660109492832
![]() |
[28] |
Xiong L, Shamseldin AY, O'Connor KM, et al. (2001) A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system. J Hydrol 245: 196–217. https://doi.org/10.1016/S0022-1694(01)00349-3 doi: 10.1016/S0022-1694(01)00349-3
![]() |
[29] |
Minns W, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41: 399–417. https://doi.org/10.1080/02626669609491511 doi: 10.1080/02626669609491511
![]() |
[30] | Khondker M, Wilson G, Klinting, et al. (1998) Application of neural networks in real time flash flood forecasting. 777–781. |
[31] | Solomatine DP, Rojas CJ, Velickov S, et al. (2000) Chaos theory in predicting surge water levels in the North Sea, In Proceedings of the 4th International Conference on Hydroinformatics, Babovic V, Larsen CL, Eds., Rotterdam: Balkema, 1–8. |
[32] |
Sudheer KP, Jain A (2004) Explaining the internal behaviour of artificial neural network river flow models. Hydrol Process 18: 833–844. https://doi.org/10.1002/hyp.5517 doi: 10.1002/hyp.5517
![]() |
[33] |
Jang JSR (1993) ANFIS: Adaptive-network based fuzzy inference system. IEEE T Syst Man Cybern 23: 665–685. https://doi.org/10.1109/21.256541 doi: 10.1109/21.256541
![]() |
[34] |
Atiya AF, El-Shoura SM, Shaheen SI, et al. (1999) A comparison between neural-network forecasting techniques—Case study: River flow forecasting, IEEE T Neural Netwo 10: 402–409. https://doi.org/10.1109/72.750569 doi: 10.1109/72.750569
![]() |
[35] |
Khan UT, Jianxun H, Valeo C, et al. (2018) River flood prediction using fuzzy neural networks: An investigation on automated network architecture, Water Sci Technol 238–247. https://doi.org/10.2166/wst.2018.107 doi: 10.2166/wst.2018.107
![]() |
[36] |
Patel D, Parekh F (2014) Flood forecasting using adaptive neuro-fuzzy inference system (ANFIS). Int J Eng Trends Technol 12: 510–514. https://doi.org/10.14445/22315381/IJETT-V12P295 doi: 10.14445/22315381/IJETT-V12P295
![]() |
[37] | Mistry S, Parekh F (2022) Flood forecasting using artificial neural network, In IOP Conference Series: Earth and Environmental Science, Bristol: IOP Publishing. https://doi.org/10.1088/1755-1315/1086/1/012036 |
[38] |
Ahmadia N, Moradinia SF (2024) An approach for flood flow prediction utilizing new hybrids of ANFIS with several optimization techniques: A case study. Hydrol Res 55: 561–575. https://doi.org/10.2166/nh.2024.191 doi: 10.2166/nh.2024.191
![]() |
[39] | Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE T Syst Man Cybern 15: 116–132. https://doi.org/10.1109/TSMC.1985.6313399 |
[40] |
Setnes M (2000) Supervised fuzzy clustering for rule extraction. IEEE T Fuzzy Syst 8: 416–424. https://doi.org/10.1109/91.868948 doi: 10.1109/91.868948
![]() |
[41] |
Guru N, Jha R (2019) Application of soft computing techniques for river flow prediction in the downstream catchment of Mahanadi River Basin using partial duration series, India. Iran J Sci Technol 44: 279–297. https://doi.org/10.1007/s40996-019-00272-0 doi: 10.1007/s40996-019-00272-0
![]() |
[42] |
Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7: 1–13. https://doi.org/10.1016/S0020-7373(75)80002-2 doi: 10.1016/S0020-7373(75)80002-2
![]() |
[43] | Tsukamoto Y (1979) An approach to fuzzy reasoning method. Adv Fuzzy Set Theor Appl 137–149. |
[44] |
Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and application. Environ Modell Softw 15: 101–124. https://doi.org/10.1016/S1364-8152(99)00007-9 doi: 10.1016/S1364-8152(99)00007-9
![]() |
[45] |
Campolo M, Andreussi P, Soldati A, et al. (1999) River flood forecasting with neural network model. Water Resour Res 35: 1191–1197. https://doi.org/10.1029/1998WR900086 doi: 10.1029/1998WR900086
![]() |
[46] |
Thirumalaiah KC, Deo M (2000) Hydrological forecasting using neural networks. J Hydrol Eng 5: 180–189. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(180) doi: 10.1061/(ASCE)1084-0699(2000)5:2(180)
![]() |
[47] |
Maier HR, Dandy GC (1997) Determining inputs for neural network models of multivariate time series. Comput-Aided Civ Inf 12: 353–368. https://doi.org/10.1111/0885-9507.00069 doi: 10.1111/0885-9507.00069
![]() |
[48] |
Legates DR, McCabe GJ (1999) Evaluating the use of "goodness-of-Fit" measures in hydrologic and hydroclimatic model validation. Water Resour Res 35: 233–241. https://doi.org/10.1029/1998WR900018 doi: 10.1029/1998WR900018
![]() |
[49] |
Sudheer KP, Jain SK, et al. (2003) Radial basis function neural networks for modeling stage discharge relationship. J Hydrol Eng 8: 161–164. https://doi.org/10.1061/(ASCE)1084-0699(2003)8:3(161) doi: 10.1061/(ASCE)1084-0699(2003)8:3(161)
![]() |
[50] |
Sajikumar N, Thandaveswara B (1999) A non-linear rainfall-runoff model using an artificial neural network. J Hydrol 216: 32–55. https://doi.org/10.1016/S0022-1694(98)00273-X doi: 10.1016/S0022-1694(98)00273-X
![]() |
[51] |
Luk K, Ball J, Sharma A, et al. (2000) A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J Hydrol 227: 56–65. https://doi.org/10.1016/S0022-1694(99)00165-1 doi: 10.1016/S0022-1694(99)00165-1
![]() |
[52] |
Silverman D, Dracup JA (2000) Artificial neural networks and long-range precipitation in California. J Appl Meteorol 39: 57–66. https://doi.org/10.1175/1520-0450(2000)039<0057:ANNALR>2.0.CO;2 doi: 10.1175/1520-0450(2000)039<0057:ANNALR>2.0.CO;2
![]() |
[53] |
Coulibaly P, Anctil F, Bobee B, et al. (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230: 244–257. https://doi.org/10.1016/S0022-1694(00)00214-6 doi: 10.1016/S0022-1694(00)00214-6
![]() |
[54] |
Coulibaly P, Anctil F, Bobée B, et al. (2001) Multivariate reservoir inflow forecasting using temporal neural networks. J Hydrol Eng 6: 367–376. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:5(367) doi: 10.1061/(ASCE)1084-0699(2001)6:5(367)
![]() |
[55] |
Bowden GJ, Dandy GC, Maier HR, et al. (2005) Input determination for neural network models in water resources applications. Part 1—Background and methodology. J Hydrol 301: 75–92. https://doi.org/10.1016/j.jhydrol.2004.06.021 doi: 10.1016/j.jhydrol.2004.06.021
![]() |
[56] |
Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part Ⅰ—A discussion of principles. J Hydrol 10: 282–290. https://doi.org/10.1016/0022-1694(70)90255-6 doi: 10.1016/0022-1694(70)90255-6
![]() |
[57] |
Mangukiya NK, Mehta DJ, Jariwala R, et al. (2022) Flood frequency analysis and inundation mapping for lower Narmada basin, India. Water Pract Technol 17: 612–622. https://doi.org/10.2166/wpt.2022.009 doi: 10.2166/wpt.2022.009
![]() |
[58] |
Alyousifi Y, Othman M, Husin A, et al. (2021) A new hybrid fuzzy time series model with an application to predict PM10 concentration. Ecotox Environ Safe 227: 112875. https://doi.org/10.1016/j.ecoenv.2021.112875 doi: 10.1016/j.ecoenv.2021.112875
![]() |
[59] |
Mampitiya L, Rathnayake N, Leon LP, et al. (2023) Machine learning techniques to predict the air quality using meteorological data in two urban areas in Sri Lanka. Environments 10: 141. https://doi.org/10.3390/environments10080141 doi: 10.3390/environments10080141
![]() |
[60] |
Pawar U, Suppawimut W, Muttil N, et al. (2022) A GIS-based comparative analysis of frequency ratio and statistical index models for flood susceptibility mapping in the Upper Krishna Basin, India. Water 14: 3771. https://doi.org/10.3390/w14223771 doi: 10.3390/w14223771
![]() |
[61] |
Herath M, Jayathilaka T, Hoshino Y, et al. (2023) Deep machine learning-based water level prediction model for Colombo flood detention area. Appl Sci 13: 2194. https://doi.org/10.3390/app13042194 doi: 10.3390/app13042194
![]() |
[62] |
Mukherjee A, Chatterjee C, Raghuwanshi NS, et al. (2009) Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models. J Hydrol Eng 14: 647–652. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000040 doi: 10.1061/(ASCE)HE.1943-5584.0000040
![]() |
[63] | Folorunsho J, Obiniyi A (2014) A comparison of ANFIS and ANN-based models in river discharge forecasting. New Ground Res J Phys Sci 1: 1–16. |
[64] |
He ZB, Wen XH, Liu H, et al. (2014) A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. J Hydrol 509: 379–386. https://doi.org/10.1016/j.jhydrol.2013.11.054 doi: 10.1016/j.jhydrol.2013.11.054
![]() |
[65] |
Jain A, Srinivasulu S (2004) Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour Res 40. https://doi.org/10.1029/2003WR002355 doi: 10.1029/2003WR002355
![]() |
1. | M. Nagy, Adel Fahad Alrasheedi, Behnaz Ghoraani, Estimations of Generalized Exponential Distribution Parameters Based on Type I Generalized Progressive Hybrid Censored Data, 2022, 2022, 1748-6718, 1, 10.1155/2022/8058473 | |
2. | M. Nagy, Adel Fahad Alrasheedi, Muye Pang, Classical and Bayesian Inference Using Type-II Unified Progressive Hybrid Censored Samples for Pareto Model, 2022, 2022, 1754-2103, 1, 10.1155/2022/2073067 | |
3. | M. Nagy, M. H. Abu-Moussa, Adel Fahad Alrasheedi, A. Rabie, Expected Bayesian estimation for exponential model based on simple step stress with Type-I hybrid censored data, 2022, 19, 1551-0018, 9773, 10.3934/mbe.2022455 | |
4. | M. Nagy, Expected Bayesian estimation based on generalized progressive hybrid censored data for Burr-XII distribution with applications, 2024, 14, 2158-3226, 10.1063/5.0184910 | |
5. | Magdy Nagy, Mohamed Ahmed Mosilhy, Ahmed Hamdi Mansi, Mahmoud Hamed Abu-Moussa, An Analysis of Type-I Generalized Progressive Hybrid Censoring for the One Parameter Logistic-Geometry Lifetime Distribution with Applications, 2024, 13, 2075-1680, 692, 10.3390/axioms13100692 | |
6. | Mahmoud M. Abdelwahab, Anis Ben Ghorbal, Amal S. Hassan, Mohammed Elgarhy, Ehab M. Almetwally, Atef F. Hashem, Classical and Bayesian Inference for the Kavya–Manoharan Generalized Exponential Distribution under Generalized Progressively Hybrid Censored Data, 2023, 15, 2073-8994, 1193, 10.3390/sym15061193 |
Algorithm 1 MCMC method. |
Step 1, start with λ(0)=ˆλML and μ(0)=ˆμML |
Step 2, set i=1 |
Step 3, Generate λ(i)∼GammaDist.[D∗+a,W(μ(i−1)|x_)+b1]=π∗1(λ|μ(i−1);x_) |
Step 4, Generate a proposal μ(∗) from N(μ(i−1),V(μ)) |
Step 5, Calculate the acceptance probabilities dμ=min[1,π∗2(μ(∗)|λ(i−1))π∗1(μ(i−1)|λ(i−1))] |
Step 6, Generate u1 that follows a U(0,1) distribution. If u1≤dμ, set μ(i)=μ(∗); otherwise, set μ(i)=μ(i−1) |
Step 7, set i=i+1, repeat steps 3 to 7, N times and obtain (λ(j),μ(j)), j=1,2,...,N. |
Step 8, Remove the first B values for λ and μ, which is the burn-in period of λ(j) and μ(j), respectively, where j=1,2,...,N−B. |
IP | NIP | |||||||
Sch. | j | ρ | ˆXρ:R∗j | ET interval | HPD interval | ˆXρ:R∗j | ET interval | HPD interval |
1 | 3 | 1 | 4.824 | (1.322, 21.783) | (1.214, 17.062) | 6.410 | (1.324, 23.275) | (1.214, 18.034) |
2 | 10.634 | (2.417, 42.868) | (1.319, 34.499) | 14.202 | (2.429, 46.302) | (1.308, 36.810) | ||
3 | 22.254 | (5.271, 86.933) | (2.348, 70.530) | 29.787 | (5.289, 94.280) | (2.274, 75.524) | ||
7 | 1 | 5.914 | (5.943, 12.764) | (5.908, 11.190) | 7.639 | (5.944, 13.261) | (5.908, 11.514) | |
2 | 7.367 | (6.254, 17.586) | (5.939, 15.267) | 9.587 | (6.258, 18.558) | (5.935, 15.923) | ||
3 | 9.027 | (6.817, 22.790) | (6.182, 19.570) | 11.814 | (6.821, 24.302) | (6.071, 20.612) | ||
4 | 10.964 | (7.581, 28.762) | (6.654, 24.889) | 14.411 | (7.581, 30.909) | (6.608, 26.363) | ||
5 | 13.288 | (8.553, 35.920) | (7.294, 31.039) | 17.528 | (8.544, 38.832) | (7.213, 33.049) | ||
6 | 16.192 | (9.782, 44.951) | (8.125, 38.766) | 21.424 | (9.761, 48.820) | (8.000, 41.448) | ||
7 | 20.066 | (11.390, 57.239) | (9.351, 48.369) | 26.619 | (11.351, 62.390) | (9.026, 52.794) | ||
8 | 25.877 | (13.657, 76.426) | (10.679, 65.357) | 34.412 | (13.592, 83.499) | (10.421, 70.278) | ||
9 | 37.497 | (17.494,118.537) | (12.895, 99.972) | 49.997 | (17.400,129.445) | (12.532,107.555) | ||
2 | 3 | 1 | 4.924 | (1.330, 21.776) | (1.214, 17.251) | 6.488 | (1.332, 22.842) | (1.214, 17.983) |
2 | 10.886 | (2.506, 42.386) | (1.343, 34.584) | 14.399 | (2.526, 44.762) | (1.337, 36.266) | ||
3 | 22.809 | (5.601, 85.629) | (5.198, 69.693) | 30.221 | (5.656, 90.660) | (5.227, 73.313) | ||
6 | 1 | 8.082 | (5.365, 25.811) | (5.250, 21.286) | 10.524 | (5.367, 26.877) | (5.250, 22.019) | |
2 | 14.044 | (6.541, 46.422) | (5.379, 38.619) | 18.435 | (6.562, 48.797) | (5.372, 40.302) | ||
3 | 25.967 | (9.637, 89.664) | (9.233, 73.728) | 34.256 | (9.691, 94.695) | (9.262, 77.348) | ||
9 | 1 | 10.305 | (10.188, 22.456) | (10.120, 19.742) | 13.284 | (10.191, 23.096) | (10.120, 20.181) | |
2 | 13.285 | (10.826, 32.161) | (10.192, 28.030) | 17.239 | (10.837, 33.440) | (10.190, 28.937) | ||
3 | 17.260 | (12.126, 44.641) | (12.105, 38.397) | 22.513 | (12.152, 46.768) | (10.856, 39.936) | ||
4 | 23.220 | (14.248, 63.813) | (12.029, 55.213) | 30.425 | (14.288, 67.225) | (11.978, 57.679) | ||
5 | 35.144 | (18.060,105.916) | (14.149, 90.288) | 46.246 | (18.126,111.946) | (14.055, 94.654) | ||
3 | 3 | 1 | 5.061 | (1.335, 22.283) | (1.214, 17.716) | 6.661 | (1.337, 23.291) | (1.214, 18.425) |
2 | 11.226 | (2.572, 43.235) | (1.356, 35.439) | 14.832 | (2.597, 45.441) | (1.351, 37.039) | ||
3 | 23.556 | (5.834, 87.257) | (2.664, 72.209) | 31.172 | (5.910, 91.905) | (2.639, 75.613) | ||
6 | 1 | 8.219 | (5.370, 26.318) | (5.250, 21.752) | 10.697 | (5.372, 27.327) | (5.250, 22.460) | |
2 | 14.384 | (6.607, 47.271) | (5.391, 39.474) | 18.867 | (6.632, 49.477) | (5.386, 41.075) | ||
3 | 26.714 | (9.870, 91.293) | (6.612, 75.361) | 35.207 | (9.945, 95.940) | (6.674, 79.648) | ||
9 | 1 | 26.714 | (9.870, 91.293) | (9.142, 75.361) | 15.580 | (10.255, 32.209) | (10.133, 27.343) | |
2 | 18.205 | (11.490, 52.153) | (10.274, 44.357) | 23.750 | (11.515, 54.360) | (10.269, 45.957) | ||
3 | 30.536 | (14.752, 96.175) | (11.495, 80.244) | 40.090 | (14.828,100.823) | (11.514, 83.663) |
IP | NIP | ||||||
Sch. | s | ˆYs:N | ET interval | HPD interval | ˆYs:N | ET interval | HPD interval |
1 | 1 | 0.704 | (0.016, 2.927) | (0.000, 2.255) | 0.739 | (0.016, 3.139) | (0.000, 2.393) |
2 | 0.972 | (0.143, 4.811) | (0.013, 3.858) | 1.014 | (0.144, 5.212) | (0.012, 4.127) | |
3 | 1.314 | (0.361, 6.671) | (0.114, 5.470) | 1.381 | (0.362, 7.270) | (0.106, 5.878) | |
4 | 1.760 | (0.668, 9.119) | (0.299, 7.574) | 1.861 | (0.668, 9.976) | (0.281, 8.162) | |
5 | 2.216 | (1.036, 11.675) | (0.545, 9.782) | 2.356 | (1.032, 12.810) | (0.514, 10.566) | |
6 | 2.696 | (1.457, 14.399) | (0.842, 12.142) | 2.878 | (1.448, 15.838) | (0.794, 13.139) | |
7 | 3.481 | (2.039, 18.751) | (1.237, 15.844) | 3.724 | (2.023, 20.644) | (1.169, 17.159) | |
8 | 4.352 | (2.726, 23.618) | (1.717, 20.008) | 4.666 | (2.702, 26.033) | (1.622, 21.689) | |
9 | 5.356 | (3.544, 29.252) | (2.293, 24.833) | 5.753 | (3.509, 32.275) | (2.167, 26.942) | |
10 | 9.350 | (5.264, 50.149) | (3.233, 41.790) | 9.952 | (5.218, 54.977) | (3.068, 45.151) | |
2 | 1 | 0.722 | (0.017, 2.926) | (0.000, 2.282) | 0.750 | (0.017, 3.077) | (0.000, 2.386) |
2 | 0.978 | (0.154, 4.751) | (0.016, 3.865) | 1.060 | (0.156, 5.028) | (0.016, 4.061) | |
3 | 1.308 | (0.391, 6.536) | (0.134, 5.450) | 1.423 | (0.396, 6.943) | (0.131, 5.742) | |
4 | 1.738 | (0.727, 8.892) | (0.350, 7.520) | 1.898 | (0.734, 9.468) | (0.341, 7.938) | |
5 | 2.172 | (1.132, 11.338) | (0.638, 9.684) | 2.382 | (1.140, 12.097) | (0.622, 10.237) | |
6 | 2.627 | (1.596, 13.939) | (0.984, 11.990) | 2.890 | (1.606, 14.898) | (0.959, 12.690) | |
7 | 3.380 | (2.238, 18.128) | (1.444, 15.628) | 3.726 | (2.249, 19.387) | (1.408, 16.549) | |
8 | 4.213 | (3.000, 22.800) | (2.003, 19.709) | 4.650 | (3.011, 24.402) | (1.954, 20.885) | |
9 | 5.168 | (3.905, 28.199) | (2.675, 24.436) | 5.714 | (3.916, 30.202) | (2.608, 25.909) | |
10 | 9.146 | (5.795, 48.785) | (3.750, 41.359) | 10.042 | (5.814, 52.007) | (3.667, 43.723) | |
3 | 1 | 0.748 | (0.017, 2.998) | (0.000, 2.348) | 0.775 | (0.018, 3.142) | (0.000, 2.449) |
2 | 1.042 | (0.162, 4.847) | (0.018, 3.964) | 1.051 | (0.164, 5.104) | (0.017, 4.150) | |
3 | 1.386 | (0.412, 6.650) | (0.146, 5.579) | 1.405 | (0.419, 7.024) | (0.144, 5.854) | |
4 | 1.836 | (0.768, 9.030) | (0.380, 7.686) | 1.867 | (0.779, 9.557) | (0.374, 8.077) | |
5 | 2.288 | (1.196, 11.496) | (0.691, 9.887) | 2.335 | (1.211, 12.187) | (0.680, 10.403) | |
6 | 2.761 | (1.690, 14.117) | (1.066, 12.229) | 2.825 | (1.708, 14.987) | (1.050, 12.881) | |
7 | 3.551 | (2.371, 18.349) | (1.564, 15.931) | 3.637 | (2.394, 19.492) | (1.541, 16.788) | |
8 | 4.418 | (3.181, 23.064) | (2.170, 20.083) | 4.534 | (3.209, 24.515) | (2.137, 21.175) | |
9 | 5.414 | (4.142, 28.510) | (2.897, 24.888) | 5.563 | (4.176, 30.322) | (2.855, 26.255) | |
10 | 9.635 | (6.145, 49.504) | (4.051, 42.221) | 9.839 | (6.198, 52.438) | (4.002, 44.426) |
Bayesian | |||||||||
{ˆλBS | {ˆλBL | {ˆλBE | |||||||
Sch. | T | (n,m,k) | ˆλML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.5082 | 0.0244 | 0.5305 | 0.0239 | 0.3282 | 0.0243 | 0.3739 |
(40, 20, 15) | 0.5186 | 0.0192 | 0.5693 | 0.0187 | 0.3517 | 0.0190 | 0.4026 | ||
(60, 30, 20) | 0.4127 | 0.0173 | 0.4355 | 0.0170 | 0.2675 | 0.0171 | 0.3403 | ||
T=0.7 | (30, 20, 15) | 0.2879 | 0.0259 | 0.2666 | 0.0252 | 0.2114 | 0.0255 | 0.2243 | |
(40, 20, 15) | 0.6400 | 0.0203 | 0.6240 | 0.0199 | 0.3760 | 0.0202 | 0.4454 | ||
(60, 30, 20) | 0.2110 | 0.0172 | 0.2007 | 0.0170 | 0.1646 | 0.0172 | 0.1708 | ||
T=1.5 | (30, 20, 15) | 0.2843 | 0.0250 | 0.2671 | 0.0242 | 0.2085 | 0.0245 | 0.2198 | |
(40, 20, 15) | 0.5891 | 0.0226 | 0.5973 | 0.0222 | 0.3726 | 0.0225 | 0.4423 | ||
(60, 30, 20) | 0.2528 | 0.0175 | 0.2440 | 0.0171 | 0.1921 | 0.0172 | 0.2036 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 0.5489 | 0.0197 | 0.5772 | 0.0194 | 0.3644 | 0.0197 | 0.4159 | ||
(60, 30, 20) | 0.3080 | 0.0174 | 0.3002 | 0.0172 | 0.2285 | 0.0174 | 0.2459 | ||
T=0.7 | (30, 20, 15) | 0.3489 | 0.0255 | 0.3314 | 0.0247 | 0.2473 | 0.0250 | 0.2673 | |
(40, 20, 15) | 0.5221 | 0.0191 | 0.5308 | 0.0187 | 0.3333 | 0.0190 | 0.3778 | ||
(60, 30, 20) | 0.2269 | 0.0164 | 0.2135 | 0.0160 | 0.1734 | 0.0162 | 0.1794 | ||
T=1.5 | (30, 20, 15) | 0.3369 | 0.0265 | 0.3188 | 0.0256 | 0.2451 | 0.0259 | 0.2584 | |
(40, 20, 15) | 0.6190 | 0.0205 | 0.6676 | 0.0198 | 0.3925 | 0.0200 | 0.4631 | ||
(60, 30, 20) | 0.2130 | 0.0177 | 0.2087 | 0.0173 | 0.1658 | 0.0174 | 0.1737 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 1.4205 | 0.0173 | 2.3081 | 0.0169 | 0.7138 | 0.0171 | 1.1274 | ||
(60, 30, 20) | 0.3416 | 0.0162 | 0.3652 | 0.0159 | 0.2586 | 0.0161 | 0.2772 | ||
T=0.7 | (30, 20, 15) | 0.5049 | 0.0246 | 0.5692 | 0.0238 | 0.3290 | 0.0241 | 0.4095 | |
(40, 20, 15) | 1.2471 | 0.0183 | 1.7174 | 0.0179 | 0.6258 | 0.0181 | 0.9441 | ||
(60, 30, 20) | 0.3569 | 0.0152 | 0.3705 | 0.0149 | 0.2577 | 0.0151 | 0.2792 | ||
T=1.5 | (30, 20, 15) | 0.4781 | 0.0246 | 0.5283 | 0.0238 | 0.3279 | 0.0241 | 0.3805 | |
(40, 20, 15) | 1.4825 | 0.0182 | 2.0789 | 0.0179 | 0.6943 | 0.0181 | 1.0823 | ||
(60, 30, 20) | 0.3832 | 0.0164 | 0.4044 | 0.0161 | 0.2737 | 0.0163 | 0.3012 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.1962 | 0.0036 | 0.1983 | 0.0069 | 0.1024 | 0.0121 | 0.0855 |
(40, 20, 15) | 0.1816 | 0.0052 | 0.1950 | 0.0036 | 0.0900 | 0.0079 | 0.0715 | ||
(60, 30, 20) | 0.1219 | 0.0057 | 0.1268 | 0.0019 | 0.0649 | 0.0057 | 0.0502 | ||
T=0.7 | (30, 20, 15) | 0.1114 | 0.0075 | 0.0936 | 0.0029 | 0.0436 | 0.0080 | 0.0274 | |
(40, 20, 15) | 0.2209 | 0.0041 | 0.2048 | 0.0046 | 0.1182 | 0.0089 | 0.1086 | ||
(60, 30, 20) | 0.0984 | 0.0019 | 0.0884 | 0.0054 | 0.0519 | 0.0090 | 0.0403 | ||
T=1.5 | (30, 20, 15) | 0.1340 | 0.0092 | 0.1151 | 0.0012 | 0.0662 | 0.0063 | 0.0516 | |
(40, 20, 15) | 0.1950 | 0.0010 | 0.1840 | 0.0077 | 0.1037 | 0.0119 | 0.0935 | ||
(60, 30, 20) | 0.1235 | 0.0052 | 0.1125 | 0.0021 | 0.0748 | 0.0058 | 0.0647 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.2021 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.1772 | 0.0006 | 0.1840 | 0.0079 | 0.0827 | 0.0122 | 0.0649 | ||
(60, 30, 20) | 0.1107 | 0.0002 | 0.1118 | 0.0072 | 0.0542 | 0.0109 | 0.0379 | ||
T=0.7 | (30, 20, 15) | 0.1516 | 0.0109 | 0.1333 | 0.0007 | 0.0785 | 0.0044 | 0.0645 | |
(40, 20, 15) | 0.2083 | 0.0036 | 0.2028 | 0.0049 | 0.1182 | 0.0091 | 0.1067 | ||
(60, 30, 20) | 0.1205 | 0.0051 | 0.1060 | 0.0021 | 0.0684 | 0.0057 | 0.0573 | ||
T=1.5 | (30, 20, 15) | 0.1597 | 0.0103 | 0.1411 | 0.0001 | 0.0889 | 0.0051 | 0.0757 | |
(40, 20, 15) | 0.2560 | 0.0116 | 0.2477 | 0.0030 | 0.1533 | 0.0012 | 0.1453 | ||
(60, 30, 20) | 0.1101 | 0.0089 | 0.1001 | 0.0016 | 0.0636 | 0.0020 | 0.0529 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.1928 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.3861 | 0.0032 | 0.4732 | 0.0048 | 0.2402 | 0.0088 | 0.2642 | ||
(60, 30, 20) | 0.1597 | 0.0022 | 0.1710 | 0.0046 | 0.1106 | 0.0081 | 0.1002 | ||
T=0.7 | (30, 20, 15) | 0.1877 | 0.0107 | 0.1846 | 0.0008 | 0.1130 | 0.0040 | 0.1052 | |
(40, 20, 15) | 0.3373 | 0.0014 | 0.4115 | 0.0066 | 0.2144 | 0.0106 | 0.2268 | ||
(60, 30, 20) | 0.1610 | 0.0039 | 0.1703 | 0.0030 | 0.1106 | 0.0064 | 0.1009 | ||
T=1.5 | (30, 20, 15) | 0.1982 | 0.0107 | 0.1950 | 0.0007 | 0.1223 | 0.0041 | 0.1140 | |
(40, 20, 15) | 0.3659 | 0.0018 | 0.4368 | 0.0062 | 0.2275 | 0.0103 | 0.2443 | ||
(60, 30, 20) | 0.1717 | 0.0001 | 0.1788 | 0.0068 | 0.1167 | 0.0103 | 0.1076 |
Bayesian | |||||||||
ˆμBS | ˆμBL | ˆμBE | |||||||
Sch. | T | (n,m,k) | ˆμML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0410 | 0.0066 | 0.0361 | 0.0065 | 0.0337 | 0.0064 | 0.0320 |
(40, 20, 15) | 0.0307 | 0.0051 | 0.0270 | 0.0051 | 0.0257 | 0.0050 | 0.0250 | ||
(60, 30, 20) | 0.0236 | 0.0046 | 0.0214 | 0.0046 | 0.0207 | 0.0046 | 0.0203 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0070 | 0.0246 | 0.0068 | 0.0235 | 0.0066 | 0.0229 | |
(40, 20, 15) | 0.0304 | 0.0054 | 0.0259 | 0.0053 | 0.0248 | 0.0051 | 0.0239 | ||
(60, 30, 20) | 0.0187 | 0.0047 | 0.0163 | 0.0046 | 0.0158 | 0.0046 | 0.0155 | ||
T=1.5 | (30, 20, 15) | 0.0301 | 0.0069 | 0.0257 | 0.0067 | 0.0246 | 0.0066 | 0.0238 | |
(40, 20, 15) | 0.0299 | 0.0060 | 0.0259 | 0.0059 | 0.0248 | 0.0058 | 0.0240 | ||
(60, 30, 20) | 0.0185 | 0.0047 | 0.0161 | 0.0046 | 0.0156 | 0.0046 | 0.0152 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0310 | 0.0054 | 0.0272 | 0.0054 | 0.0259 | 0.0053 | 0.0253 | ||
(60, 30, 20) | 0.0215 | 0.0046 | 0.0190 | 0.0045 | 0.0184 | 0.0044 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0066 | 0.0248 | 0.0066 | 0.0237 | 0.0064 | 0.0228 | |
(40, 20, 15) | 0.0256 | 0.0052 | 0.0220 | 0.0051 | 0.0210 | 0.0050 | 0.0202 | ||
(60, 30, 20) | 0.0176 | 0.0042 | 0.0153 | 0.0041 | 0.0148 | 0.0041 | 0.0144 | ||
T=1.5 | (30, 20, 15) | 0.0308 | 0.0069 | 0.0268 | 0.0067 | 0.0255 | 0.0066 | 0.0246 | |
(40, 20, 15) | 0.0279 | 0.0053 | 0.0243 | 0.0053 | 0.0231 | 0.0052 | 0.0221 | ||
(60, 30, 20) | 0.0161 | 0.0046 | 0.0140 | 0.0045 | 0.0136 | 0.0044 | 0.0133 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0462 | 0.0046 | 0.0423 | 0.0046 | 0.0393 | 0.0046 | 0.0370 | ||
(60, 30, 20) | 0.0248 | 0.0043 | 0.0226 | 0.0042 | 0.0216 | 0.0042 | 0.0207 | ||
T=0.7 | (30, 20, 15) | 0.0350 | 0.0062 | 0.0304 | 0.0062 | 0.0286 | 0.0061 | 0.0272 | |
(40, 20, 15) | 0.0428 | 0.0051 | 0.0394 | 0.0050 | 0.0369 | 0.0049 | 0.0348 | ||
(60, 30, 20) | 0.0232 | 0.0041 | 0.0208 | 0.0040 | 0.0199 | 0.0040 | 0.0192 | ||
T=1.5 | (30, 20, 15) | 0.0401 | 0.0067 | 0.0354 | 0.0066 | 0.0333 | 0.0065 | 0.0318 | |
(40, 20, 15) | 0.0469 | 0.0050 | 0.0420 | 0.0050 | 0.0392 | 0.0049 | 0.0371 | ||
(60, 30, 20) | 0.0254 | 0.0045 | 0.0224 | 0.0044 | 0.0214 | 0.0043 | 0.0205 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0556 | 0.0107 | 0.0453 | 0.0083 | 0.0378 | 0.0038 | 0.0247 |
(40, 20, 15) | 0.0338 | 0.0057 | 0.0263 | 0.0039 | 0.0204 | 0.0006 | 0.0095 | ||
(60, 30, 20) | 0.0248 | 0.0047 | 0.0194 | 0.0032 | 0.0150 | 0.0003 | 0.0069 | ||
T=0.7 | (30, 20, 15) | 0.0335 | 0.0084 | 0.0246 | 0.0061 | 0.0194 | 0.0015 | 0.0096 | |
(40, 20, 15) | 0.0446 | 0.0077 | 0.0333 | 0.0059 | 0.0285 | 0.0025 | 0.0198 | ||
(60, 30, 20) | 0.0269 | 0.0064 | 0.0210 | 0.0050 | 0.0178 | 0.0021 | 0.0118 | ||
T=1.5 | (30, 20, 15) | 0.0426 | 0.0090 | 0.0324 | 0.0067 | 0.0273 | 0.0022 | 0.0181 | |
(40, 20, 15) | 0.0439 | 0.0092 | 0.0337 | 0.0074 | 0.0291 | 0.0041 | 0.0205 | ||
(60, 30, 20) | 0.0319 | 0.0063 | 0.0260 | 0.0048 | 0.0229 | 0.0020 | 0.0171 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0350 | 0.0081 | 0.0258 | 0.0064 | 0.0200 | 0.0030 | 0.0093 | ||
(60, 30, 20) | 0.0262 | 0.0073 | 0.0200 | 0.0058 | 0.0157 | 0.0030 | 0.0077 | ||
T=0.7 | (30, 20, 15) | 0.0438 | 0.0082 | 0.0348 | 0.0059 | 0.0293 | 0.0015 | 0.0194 | |
(40, 20, 15) | 0.0426 | 0.0073 | 0.0339 | 0.0056 | 0.0291 | 0.0023 | 0.0203 | ||
(60, 30, 20) | 0.0305 | 0.0056 | 0.0224 | 0.0042 | 0.0192 | 0.0014 | 0.0133 | ||
T=1.5 | (30, 20, 15) | 0.0473 | 0.0086 | 0.0378 | 0.0062 | 0.0327 | 0.0018 | 0.0234 | |
(40, 20, 15) | 0.0494 | 0.0045 | 0.0384 | 0.0028 | 0.0335 | 0.0005 | 0.0248 | ||
(60, 30, 20) | 0.0239 | 0.0031 | 0.0184 | 0.0017 | 0.0153 | 0.0011 | 0.0095 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0701 | 0.0073 | 0.0608 | 0.0057 | 0.0534 | 0.0026 | 0.0413 | ||
(60, 30, 20) | 0.0404 | 0.0066 | 0.0353 | 0.0051 | 0.0310 | 0.0024 | 0.0233 | ||
T=0.7 | (30, 20, 15) | 0.0516 | 0.0070 | 0.0422 | 0.0048 | 0.0360 | 0.0005 | 0.0252 | |
(40, 20, 15) | 0.0656 | 0.0084 | 0.0581 | 0.0068 | 0.0510 | 0.0037 | 0.0391 | ||
(60, 30, 20) | 0.0388 | 0.0054 | 0.0332 | 0.0040 | 0.0291 | 0.0013 | 0.0215 | ||
T=1.5 | (30, 20, 15) | 0.0561 | 0.0073 | 0.0464 | 0.0050 | 0.0402 | 0.0007 | 0.0296 | |
(40, 20, 15) | 0.0685 | 0.0077 | 0.0595 | 0.0061 | 0.0524 | 0.0030 | 0.0404 | ||
(60, 30, 20) | 0.0444 | 0.0082 | 0.0375 | 0.0068 | 0.0332 | 0.0041 | 0.0256 |
Bayesian | |||||||||
^S(t)BS | ^S(t)BL | ^S(t)BE | |||||||
Sch. | T | (n,m,k) | ^S(t)ML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0005 | 3.90×10−6 | 0.0016 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0003 |
(40, 20, 15) | 0.0010 | 3.90×10−6 | 0.0026 | 3.90×10−6 | 0.0025 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0007 | 3.90×10−6 | 0.0016 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20×10−6 | 0.0012 | 5.20×10−6 | 0.0010 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90×10−6 | 0.0014 | 3.90×10−6 | 0.0014 | 2.60×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0007 | 5.20×10−6 | 0.0007 | 2.60×10−6 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0008 | 3.90×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0005 | 5.20×10−6 | 0.0012 | 5.20×10−6 | 0.0012 | 2.60×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0005 | 5.20×10−6 | 0.0005 | 2.60×10−6 | 0.0001 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0007 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 2.60×10−6 | 0.0004 |
(40, 20, 15) | 0.0012 | 3.90×10−6 | 0.0029 | 3.90×10−6 | 0.0027 | 2.60×10−6 | 0.0005 | ||
(60, 30, 20) | 0.0008 | 3.90×10−6 | 0.0017 | 3.90×10−6 | 0.0016 | 2.60×10−6 | 0.0005 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20×10−6 | 0.0010 | 5.20×10−6 | 0.0010 | 2.60×10−6 | 0.0004 | |
(40, 20, 15) | 0.0005 | 3.90×10−6 | 0.0012 | 3.90×10−6 | 0.0012 | 2.60×10−6 | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0005 | 5.20×10−6 | 0.0005 | 2.60×10−6 | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0004 | 5.20×10−6 | 0.0008 | 5.20×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0004 | 3.90×10−6 | 0.0009 | 3.90×10−6 | 0.0009 | 2.60×10−6 | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20×10−6 | 0.0004 | 5.20×10−6 | 0.0004 | 2.60×10−6 | 0.0001 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0007 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 2.60×10−6 | 0.0004 |
(40, 20, 15) | 0.0007 | 2.60×10−6 | 0.0017 | 2.60×10−6 | 0.0016 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0004 | 3.90×10−6 | 0.0008 | 3.90×10−6 | 0.0008 | 2.60×10−6 | 0.0003 | ||
T=0.7 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90×10−6 | 0.0017 | 3.90×10−6 | 0.0016 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | |
(40, 20, 15) | 0.0008 | 3.90×10−6 | 0.0018 | 3.90×10−6 | 0.0017 | 1.30×10−6 | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90×10−6 | 0.0007 | 3.90×10−6 | 0.0007 | 2.60×10−6 | 0.0001 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0070 | 0.0014 | 0.0270 | 0.0014 | 0.0260 | 0.0007 | 0.0014 |
(40, 20, 15) | 0.0120 | 0.0014 | 0.0350 | 0.0014 | 0.0340 | 0.0007 | 0.0003 | ||
(60, 30, 20) | 0.0090 | 0.0013 | 0.0250 | 0.0013 | 0.0250 | 0.0007 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0013 | 0.0210 | 0.0007 | 0.0009 | |
(40, 20, 15) | 0.0073 | 0.0013 | 0.0230 | 0.0013 | 0.0230 | 0.0007 | 0.0007 | ||
(60, 30, 20) | 0.0049 | 0.0014 | 0.0150 | 0.0013 | 0.0150 | 0.0005 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0012 | 0.0170 | 0.0012 | 0.0170 | 0.0008 | 0.0004 | |
(40, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0014 | 0.0220 | 0.0007 | 0.0001 | ||
(60, 30, 20) | 0.0032 | 0.0012 | 0.0120 | 0.0012 | 0.0120 | 0.0007 | 0.0008 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0130 | 0.0014 | 0.0360 | 0.0014 | 0.0350 | 0.0007 | 0.0010 | ||
(60, 30, 20) | 0.0096 | 0.0014 | 0.0250 | 0.0014 | 0.0250 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0055 | 0.0012 | 0.0190 | 0.0012 | 0.0190 | 0.0008 | 0.0010 | |
(40, 20, 15) | 0.0062 | 0.0013 | 0.0210 | 0.0013 | 0.0210 | 0.0007 | 0.0008 | ||
(60, 30, 20) | 0.0039 | 0.0013 | 0.0140 | 0.0013 | 0.0140 | 0.0007 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0003 | |
(40, 20, 15) | 0.0038 | 0.0012 | 0.0190 | 0.0012 | 0.0180 | 0.0008 | 0.0021 | ||
(60, 30, 20) | 0.0034 | 0.0013 | 0.0130 | 0.0013 | 0.0120 | 0.0007 | 0.0008 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0074 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0025 | ||
(60, 30, 20) | 0.0055 | 0.0013 | 0.0170 | 0.0013 | 0.0170 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0035 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0020 | |
(40, 20, 15) | 0.0070 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0027 | ||
(60, 30, 20) | 0.0041 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 | ||
T=1.5 | (30, 20, 15) | 0.0039 | 0.0012 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0017 | |
(40, 20, 15) | 0.0080 | 0.0014 | 0.0270 | 0.0013 | 0.0260 | 0.0007 | 0.0020 | ||
(60, 30, 20) | 0.0042 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 |
Bayesian | |||||||||
^H(t)BS | ^H(t)BL | ^H(t)BE | |||||||
Sch. | T | (n,m,k) | ^H(t)ML | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0250 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0320 | 4.20×10−5 | 0.0200 |
(40, 20, 15) | 0.0220 | 4.20×10−5 | 0.0350 | 4.20×10−5 | 0.0300 | 4.20×10−5 | 0.0190 | ||
(60, 30, 20) | 0.0250 | 5.60×10−5 | 0.0370 | 5.60×10−5 | 0.0270 | 5.60×10−5 | 0.0240 | ||
T=0.7 | (30, 20, 15) | 0.0110 | 5.60×10−5 | 0.0130 | 5.60×10−5 | 0.0130 | 7.00×10−5 | 0.0095 | |
(40, 20, 15) | 0.0290 | 5.60×10−5 | 0.0400 | 5.60×10−5 | 0.0330 | 5.60×10−5 | 0.0220 | ||
(60, 30, 20) | 0.0084 | 8.40×10−5 | 0.0110 | 8.40×10−5 | 0.0100 | 8.40×10−5 | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0120 | 7.00×10−5 | 0.0150 | 7.00×10−5 | 0.0140 | 7.00×10−5 | 0.0110 | |
(40, 20, 15) | 0.0240 | 5.60×10−5 | 0.0350 | 5.60×10−5 | 0.0300 | 5.60×10−5 | 0.0210 | ||
(60, 30, 20) | 0.0100 | 7.00×10−5 | 0.0130 | 8.40×10−5 | 0.0120 | 8.40×10−5 | 0.0095 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0260 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0340 | 5.60×10−5 | 0.0220 |
(40, 20, 15) | 0.0220 | 4.20×10−5 | 0.0340 | 4.20×10−5 | 0.0300 | 4.20×10−5 | 0.0190 | ||
(60, 30, 20) | 0.0120 | 5.60×10−5 | 0.0170 | 5.60×10−5 | 0.0150 | 5.60×10−5 | 0.0110 | ||
T=0.7 | (30, 20, 15) | 0.0130 | 5.60×10−5 | 0.0180 | 5.60×10−5 | 0.0170 | 7.00×10−5 | 0.0120 | |
(40, 20, 15) | 0.0190 | 5.60×10−5 | 0.0280 | 5.60×10−5 | 0.0250 | 5.60×10−5 | 0.0160 | ||
(60, 30, 20) | 0.0086 | 7.00×10−5 | 0.0110 | 7.00×10−5 | 0.0110 | 8.40×10−5 | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0130 | 7.00×10−5 | 0.0170 | 7.00×10−5 | 0.0160 | 7.00×10−5 | 0.0120 | |
(40, 20, 15) | 0.0260 | 4.20×10−5 | 0.0420 | 4.20×10−5 | 0.0350 | 5.60×10−5 | 0.0230 | ||
(60, 30, 20) | 0.0076 | 7.00×10−5 | 0.0100 | 7.00×10−5 | 0.0096 | 7.00×10−5 | 0.0074 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0260 | 4.20×10−5 | 0.0390 | 4.20×10−5 | 0.0340 | 5.60×10−5 | 0.0220 |
(40, 20, 15) | 0.0750 | 4.20×10−5 | 0.2200 | 4.20×10−5 | 0.1100 | 4.20×10−5 | 0.0680 | ||
(60, 30, 20) | 0.0150 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0210 | 5.60×10−5 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0260 | 5.60×10−5 | 0.0430 | 5.60×10−5 | 0.0340 | 5.60×10−5 | 0.0240 | |
(40, 20, 15) | 0.0660 | 4.20×10−5 | 0.1500 | 4.20×10−5 | 0.0910 | 4.20×10−5 | 0.0570 | ||
(60, 30, 20) | 0.0160 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0210 | 5.60×10−5 | 0.0140 | ||
T=1.5 | (30, 20, 15) | 0.0250 | 5.60×10−5 | 0.0430 | 5.60×10−5 | 0.0340 | 5.60×10−5 | 0.0230 | |
(40, 20, 15) | 0.0870 | 4.20×10−5 | 0.2000 | 4.20×10−5 | 0.1000 | 4.20×10−5 | 0.0700 | ||
(60, 30, 20) | 0.0170 | 5.60×10−5 | 0.0260 | 5.60×10−5 | 0.0230 | 5.60×10−5 | 0.0150 | ||
EB | |||||||||
Sch−I | T=0.3 | (30, 20, 15) | 0.0600 | 1.70×10−4 | 0.0880 | 3.20×10−4 | 0.0800 | 0.0027 | 0.0320 |
(40, 20, 15) | 0.0510 | 3.60×10−4 | 0.0810 | 5.20×10−4 | 0.0730 | 0.0028 | 0.0240 | ||
(60, 30, 20) | 0.0360 | 2.80×10−5 | 0.0540 | 1.10×10−4 | 0.0490 | 0.0024 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0330 | 3.80×10−4 | 0.0400 | 5.20×10−4 | 0.0370 | 0.0028 | 0.0110 | |
(40, 20, 15) | 0.0610 | 9.80×10−5 | 0.0810 | 5.60×10−5 | 0.0740 | 0.0024 | 0.0370 | ||
(60, 30, 20) | 0.0290 | 1.10×10−5 | 0.0370 | 1.50×10−4 | 0.0350 | 0.0024 | 0.0160 | ||
T=1.5 | (30, 20, 15) | 0.0400 | 2.40×10−4 | 0.0480 | 9.80×10−5 | 0.0450 | 0.0021 | 0.0200 | |
(40, 20, 15) | 0.0550 | 1.50×10−4 | 0.0740 | 3.10×10−4 | 0.0680 | 0.0025 | 0.0330 | ||
(60, 30, 20) | 0.0340 | 5.90×10−4 | 0.0440 | 4.50×10−4 | 0.0420 | 0.0017 | 0.0230 | ||
Sch−II | T=0.3 | (30, 20, 15) | 0.0640 | 3.40×10−4 | 0.0920 | 4.90×10−4 | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.0510 | 3.50×10−4 | 0.0780 | 5.00×10−4 | 0.0700 | 0.0028 | 0.0230 | ||
(60, 30, 20) | 0.0330 | 1.40×10−5 | 0.0490 | 1.40×10−4 | 0.0450 | 0.0024 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0440 | 3.80×10−4 | 0.0550 | 2.20×10−4 | 0.0510 | 0.0021 | 0.0240 | |
(40, 20, 15) | 0.0550 | 4.20×10−5 | 0.0770 | 1.10×10−4 | 0.0720 | 0.0024 | 0.0340 | ||
(60, 30, 20) | 0.0330 | 4.90×10−4 | 0.0410 | 3.50×10−4 | 0.0390 | 0.0018 | 0.0190 | ||
T=1.5 | (30, 20, 15) | 0.0460 | 2.50×10−4 | 0.0570 | 1.10×10−4 | 0.0540 | 0.0021 | 0.0280 | |
(40, 20, 15) | 0.0670 | 4.20×10−4 | 0.0920 | 2.80×10−4 | 0.0850 | 0.0020 | 0.0450 | ||
(60, 30, 20) | 0.0280 | 1.30×10−4 | 0.0370 | 1.10×10−5 | 0.0350 | 0.0023 | 0.0160 | ||
Sch−III | T=0.3 | (30, 20, 15) | 0.0640 | 3.40×10−4 | 0.0920 | 4.90×10−4 | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.1100 | 3.40×10−4 | 0.2000 | 1.80×10−4 | 0.1600 | 0.0021 | 0.0860 | ||
(60, 30, 20) | 0.0460 | 3.90×10−4 | 0.0700 | 2.40×10−4 | 0.0650 | 0.0020 | 0.0340 | ||
T=0.7 | (30, 20, 15) | 0.0560 | 1.30×10−4 | 0.0770 | 1.10×10−5 | 0.0710 | 0.0024 | 0.0370 | |
(40, 20, 15) | 0.0970 | 2.90×10−4 | 0.1700 | 1.40×10−4 | 0.1400 | 0.0023 | 0.0740 | ||
(60, 30, 20) | 0.0460 | 3.60×10−4 | 0.0680 | 2.10×10−4 | 0.0640 | 0.0021 | 0.0330 | ||
T=1.5 | (30, 20, 15) | 0.0600 | 1.10×10−4 | 0.0830 | 4.20×10−5 | 0.0760 | 0.0024 | 0.0410 | |
(40, 20, 15) | 0.1100 | 8.40×10−5 | 0.1800 | 7.00×10−5 | 0.1500 | 0.0024 | 0.0810 | ||
(60, 30, 20) | 0.0500 | 5.70×10−4 | 0.0730 | 4.20×10−4 | 0.0680 | 0.0018 | 0.0370 |
ˆλB | |||||||||||||
ˆλML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 2.733 | 0.918 | 3.161 | 0.950 | 0.911 | 0.940 | 1.078 | 0.965 | 2.683 | 0.863 | 3.138 | 0.928 |
(40, 20, 15) | 2.871 | 0.930 | 3.309 | 0.945 | 0.828 | 0.947 | 0.986 | 0.970 | 2.810 | 0.879 | 3.317 | 0.925 | |
(60, 30, 20) | 2.135 | 0.907 | 2.544 | 0.941 | 0.769 | 0.948 | 0.920 | 0.969 | 2.098 | 0.867 | 2.511 | 0.922 | |
T=0.7 | (30, 20, 15) | 1.665 | 0.873 | 1.935 | 0.943 | 0.741 | 0.934 | 0.877 | 0.965 | 1.614 | 0.851 | 1.864 | 0.927 |
(40, 20, 15) | 2.012 | 0.924 | 2.417 | 0.935 | 0.674 | 0.945 | 0.803 | 0.964 | 1.956 | 0.877 | 2.360 | 0.892 | |
(60, 30, 20) | 1.393 | 0.878 | 1.638 | 0.946 | 0.623 | 0.931 | 0.737 | 0.969 | 1.355 | 0.856 | 1.596 | 0.918 | |
T=1.5 | (30, 20, 15) | 1.420 | 0.901 | 1.692 | 0.942 | 0.658 | 0.945 | 0.780 | 0.965 | 1.378 | 0.871 | 1.634 | 0.927 |
(40, 20, 15) | 1.748 | 0.931 | 2.067 | 0.945 | 0.602 | 0.946 | 0.708 | 0.965 | 1.707 | 0.864 | 2.015 | 0.907 | |
(60, 30, 20) | 1.208 | 0.907 | 1.461 | 0.940 | 0.554 | 0.937 | 0.656 | 0.965 | 1.173 | 0.889 | 1.420 | 0.913 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 2.727 | 0.908 | 3.181 | 0.940 | 0.909 | 0.930 | 1.079 | 0.965 | 2.653 | 0.858 | 3.143 | 0.912 |
(40, 20, 15) | 2.917 | 0.920 | 3.260 | 0.937 | 0.824 | 0.955 | 0.972 | 0.965 | 2.883 | 0.867 | 3.243 | 0.923 | |
(60, 30, 20) | 2.098 | 0.899 | 2.499 | 0.930 | 0.766 | 0.946 | 0.908 | 0.968 | 2.047 | 0.865 | 2.456 | 0.907 | |
T=0.7 | (30, 20, 15) | 1.648 | 0.886 | 1.984 | 0.942 | 0.738 | 0.944 | 0.876 | 0.961 | 1.592 | 0.858 | 1.930 | 0.917 |
(40, 20, 15) | 2.328 | 0.905 | 2.408 | 0.943 | 0.673 | 0.944 | 0.795 | 0.964 | 2.296 | 0.848 | 2.355 | 0.913 | |
(60, 30, 20) | 1.367 | 0.901 | 1.661 | 0.941 | 0.616 | 0.947 | 0.734 | 0.970 | 1.334 | 0.875 | 1.612 | 0.913 | |
T=1.5 | (30, 20, 15) | 1.481 | 0.879 | 1.726 | 0.935 | 0.654 | 0.934 | 0.782 | 0.959 | 1.455 | 0.858 | 1.683 | 0.907 |
(40, 20, 15) | 1.866 | 0.938 | 2.224 | 0.951 | 0.596 | 0.948 | 0.710 | 0.966 | 1.811 | 0.863 | 2.189 | 0.922 | |
(60, 30, 20) | 1.203 | 0.900 | 1.442 | 0.946 | 0.547 | 0.945 | 0.653 | 0.965 | 1.169 | 0.881 | 1.407 | 0.913 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 2.425 | 0.915 | 3.181 | 0.940 | 0.887 | 0.927 | 1.079 | 0.965 | 2.382 | 0.879 | 3.143 | 0.912 |
(40, 20, 15) | 3.676 | 0.928 | 4.329 | 0.951 | 0.798 | 0.948 | 0.945 | 0.974 | 3.932 | 0.857 | 4.748 | 0.912 | |
(60, 30, 20) | 2.083 | 0.913 | 2.451 | 0.945 | 0.742 | 0.951 | 0.875 | 0.964 | 2.057 | 0.854 | 2.459 | 0.911 | |
T=0.7 | (30, 20, 15) | 1.771 | 0.919 | 2.142 | 0.949 | 0.721 | 0.940 | 0.855 | 0.966 | 1.727 | 0.866 | 2.120 | 0.920 |
(40, 20, 15) | 3.077 | 0.924 | 3.378 | 0.952 | 0.656 | 0.942 | 0.773 | 0.968 | 3.272 | 0.844 | 3.600 | 0.916 | |
(60, 30, 20) | 1.670 | 0.913 | 1.993 | 0.949 | 0.601 | 0.949 | 0.715 | 0.967 | 1.669 | 0.859 | 1.986 | 0.917 | |
T=1.5 | (30, 20, 15) | 1.544 | 0.924 | 1.920 | 0.951 | 0.644 | 0.925 | 0.762 | 0.970 | 1.512 | 0.886 | 1.913 | 0.907 |
(40, 20, 15) | 2.793 | 0.927 | 3.096 | 0.943 | 0.580 | 0.948 | 0.685 | 0.967 | 2.910 | 0.837 | 3.291 | 0.896 | |
(60, 30, 20) | 1.517 | 0.913 | 1.792 | 0.955 | 0.534 | 0.937 | 0.634 | 0.957 | 1.502 | 0.844 | 1.792 | 0.917 |
Bayesian | |||||||||||||
ˆμML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.933 | 0.901 | 1.101 | 0.983 | 0.456 | 0.955 | 0.541 | 0.989 | 0.910 | 0.891 | 1.055 | 0.961 |
(40, 20, 15) | 0.833 | 0.904 | 0.979 | 0.968 | 0.393 | 0.940 | 0.466 | 0.991 | 0.804 | 0.876 | 0.937 | 0.951 | |
(60, 30, 20) | 0.710 | 0.915 | 0.837 | 0.963 | 0.366 | 0.952 | 0.427 | 0.987 | 0.695 | 0.890 | 0.805 | 0.931 | |
T=0.7 | (30, 20, 15) | 0.726 | 0.917 | 0.855 | 0.962 | 0.423 | 0.963 | 0.496 | 0.984 | 0.706 | 0.898 | 0.819 | 0.942 |
(40, 20, 15) | 0.688 | 0.916 | 0.814 | 0.960 | 0.364 | 0.957 | 0.432 | 0.990 | 0.671 | 0.896 | 0.783 | 0.931 | |
(60, 30, 20) | 0.556 | 0.895 | 0.661 | 0.945 | 0.335 | 0.939 | 0.396 | 0.986 | 0.542 | 0.882 | 0.642 | 0.927 | |
T=1.5 | (30, 20, 15) | 0.645 | 0.918 | 0.766 | 0.959 | 0.387 | 0.952 | 0.457 | 0.983 | 0.632 | 0.901 | 0.739 | 0.938 |
(40, 20, 15) | 0.614 | 0.928 | 0.735 | 0.966 | 0.331 | 0.954 | 0.393 | 0.970 | 0.594 | 0.893 | 0.707 | 0.930 | |
(60, 30, 20) | 0.500 | 0.917 | 0.599 | 0.949 | 0.306 | 0.954 | 0.363 | 0.987 | 0.488 | 0.899 | 0.578 | 0.927 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.931 | 0.908 | 1.106 | 0.973 | 0.455 | 0.955 | 0.537 | 0.990 | 0.900 | 0.893 | 1.061 | 0.935 |
(40, 20, 15) | 0.820 | 0.905 | 0.971 | 0.971 | 0.388 | 0.955 | 0.462 | 0.983 | 0.797 | 0.882 | 0.929 | 0.949 | |
(60, 30, 20) | 0.700 | 0.918 | 0.834 | 0.975 | 0.362 | 0.962 | 0.426 | 0.982 | 0.681 | 0.905 | 0.798 | 0.949 | |
T=0.7 | (30, 20, 15) | 0.719 | 0.912 | 0.858 | 0.972 | 0.417 | 0.958 | 0.494 | 0.991 | 0.703 | 0.888 | 0.834 | 0.952 |
(40, 20, 15) | 0.757 | 0.918 | 0.816 | 0.970 | 0.358 | 0.957 | 0.423 | 0.985 | 0.735 | 0.899 | 0.785 | 0.956 | |
(60, 30, 20) | 0.555 | 0.907 | 0.662 | 0.969 | 0.334 | 0.960 | 0.391 | 0.983 | 0.545 | 0.879 | 0.637 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.654 | 0.909 | 0.768 | 0.966 | 0.384 | 0.952 | 0.456 | 0.984 | 0.640 | 0.874 | 0.744 | 0.933 |
(40, 20, 15) | 0.633 | 0.907 | 0.751 | 0.971 | 0.331 | 0.960 | 0.388 | 0.980 | 0.615 | 0.874 | 0.721 | 0.954 | |
(60, 30, 20) | 0.506 | 0.890 | 0.593 | 0.971 | 0.307 | 0.939 | 0.357 | 0.988 | 0.490 | 0.872 | 0.578 | 0.953 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.915 | 0.926 | 1.106 | 0.973 | 0.447 | 0.941 | 0.537 | 0.990 | 0.891 | 0.891 | 1.061 | 0.935 |
(40, 20, 15) | 0.918 | 0.906 | 1.080 | 0.970 | 0.377 | 0.942 | 0.445 | 0.987 | 0.884 | 0.862 | 1.031 | 0.937 | |
(60, 30, 20) | 0.693 | 0.925 | 0.832 | 0.972 | 0.351 | 0.960 | 0.417 | 0.990 | 0.675 | 0.900 | 0.801 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.772 | 0.922 | 0.914 | 0.980 | 0.415 | 0.955 | 0.485 | 0.997 | 0.750 | 0.902 | 0.884 | 0.964 |
(40, 20, 15) | 0.834 | 0.925 | 0.990 | 0.974 | 0.345 | 0.950 | 0.411 | 0.987 | 0.806 | 0.876 | 0.941 | 0.935 | |
(60, 30, 20) | 0.641 | 0.919 | 0.760 | 0.968 | 0.326 | 0.955 | 0.383 | 0.992 | 0.623 | 0.890 | 0.729 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.704 | 0.921 | 0.842 | 0.971 | 0.382 | 0.942 | 0.446 | 0.992 | 0.686 | 0.896 | 0.808 | 0.947 |
(40, 20, 15) | 0.773 | 0.914 | 0.911 | 0.963 | 0.318 | 0.956 | 0.377 | 0.979 | 0.739 | 0.878 | 0.860 | 0.923 | |
(60, 30, 20) | 0.589 | 0.928 | 0.702 | 0.970 | 0.297 | 0.949 | 0.354 | 0.987 | 0.573 | 0.904 | 0.677 | 0.940 |
^S(t)B | |||||||||||||
^S(t)ML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.088 | 0.736 | 0.110 | 0.797 | 0.021 | 0.980 | 0.026 | 0.985 | 0.138 | 0.922 | 0.185 | 0.949 |
(40, 20, 15) | 0.113 | 0.771 | 0.140 | 0.813 | 0.022 | 0.987 | 0.026 | 0.993 | 0.164 | 0.919 | 0.215 | 0.948 | |
(60, 30, 20) | 0.091 | 0.803 | 0.110 | 0.849 | 0.021 | 0.976 | 0.026 | 0.978 | 0.123 | 0.907 | 0.158 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.789 | 0.088 | 0.856 | 0.020 | 0.965 | 0.024 | 0.963 | 0.099 | 0.903 | 0.133 | 0.946 |
(40, 20, 15) | 0.069 | 0.727 | 0.092 | 0.799 | 0.020 | 0.954 | 0.024 | 0.948 | 0.105 | 0.926 | 0.144 | 0.919 | |
(60, 30, 20) | 0.057 | 0.812 | 0.069 | 0.875 | 0.019 | 0.980 | 0.023 | 0.985 | 0.075 | 0.914 | 0.097 | 0.929 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.790 | 0.069 | 0.838 | 0.018 | 0.965 | 0.022 | 0.918 | 0.084 | 0.918 | 0.108 | 0.939 |
(40, 20, 15) | 0.066 | 0.758 | 0.083 | 0.809 | 0.018 | 0.954 | 0.022 | 0.985 | 0.098 | 0.909 | 0.132 | 0.934 | |
(60, 30, 20) | 0.049 | 0.833 | 0.058 | 0.856 | 0.018 | 0.980 | 0.021 | 0.903 | 0.066 | 0.948 | 0.083 | 0.929 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.089 | 0.743 | 0.113 | 0.769 | 0.021 | 0.980 | 0.026 | 0.985 | 0.140 | 0.921 | 0.188 | 0.943 |
(40, 20, 15) | 0.111 | 0.754 | 0.143 | 0.802 | 0.021 | 0.965 | 0.026 | 0.963 | 0.159 | 0.904 | 0.215 | 0.954 | |
(60, 30, 20) | 0.092 | 0.814 | 0.110 | 0.859 | 0.021 | 0.954 | 0.026 | 0.948 | 0.125 | 0.921 | 0.156 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.794 | 0.080 | 0.802 | 0.020 | 0.943 | 0.024 | 0.933 | 0.098 | 0.910 | 0.124 | 0.944 |
(40, 20, 15) | 0.105 | 0.730 | 0.088 | 0.802 | 0.020 | 0.932 | 0.024 | 0.918 | 0.150 | 0.912 | 0.139 | 0.940 | |
(60, 30, 20) | 0.055 | 0.821 | 0.066 | 0.836 | 0.019 | 0.980 | 0.023 | 0.985 | 0.074 | 0.913 | 0.094 | 0.930 | |
T=1.5 | (30, 20, 15) | 0.054 | 0.765 | 0.067 | 0.793 | 0.018 | 0.943 | 0.022 | 0.888 | 0.078 | 0.905 | 0.104 | 0.928 |
(40, 20, 15) | 0.063 | 0.735 | 0.073 | 0.781 | 0.018 | 0.932 | 0.022 | 0.985 | 0.096 | 0.895 | 0.123 | 0.950 | |
(60, 30, 20) | 0.048 | 0.827 | 0.059 | 0.884 | 0.018 | 0.980 | 0.021 | 0.873 | 0.064 | 0.913 | 0.085 | 0.934 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.101 | 0.782 | 0.113 | 0.769 | 0.021 | 0.979 | 0.026 | 0.985 | 0.144 | 0.919 | 0.188 | 0.943 |
(40, 20, 15) | 0.089 | 0.668 | 0.114 | 0.730 | 0.021 | 0.943 | 0.026 | 0.933 | 0.132 | 0.888 | 0.180 | 0.926 | |
(60, 30, 20) | 0.070 | 0.778 | 0.085 | 0.808 | 0.021 | 0.932 | 0.025 | 0.918 | 0.093 | 0.901 | 0.120 | 0.936 | |
T=0.7 | (30, 20, 15) | 0.065 | 0.766 | 0.074 | 0.815 | 0.020 | 0.921 | 0.024 | 0.903 | 0.093 | 0.908 | 0.119 | 0.951 |
(40, 20, 15) | 0.088 | 0.684 | 0.105 | 0.758 | 0.020 | 0.910 | 0.024 | 0.888 | 0.129 | 0.891 | 0.170 | 0.933 | |
(60, 30, 20) | 0.063 | 0.803 | 0.074 | 0.830 | 0.019 | 0.980 | 0.023 | 0.985 | 0.083 | 0.906 | 0.107 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.788 | 0.069 | 0.797 | 0.018 | 0.921 | 0.022 | 0.858 | 0.084 | 0.947 | 0.109 | 0.941 |
(40, 20, 15) | 0.078 | 0.684 | 0.099 | 0.747 | 0.018 | 0.910 | 0.023 | 0.985 | 0.116 | 0.883 | 0.158 | 0.927 | |
(60, 30, 20) | 0.057 | 0.787 | 0.069 | 0.803 | 0.018 | 0.980 | 0.022 | 0.903 | 0.077 | 0.899 | 0.098 | 0.939 |
^H(t)B | |||||||||||||
^H(t)ML | IP | NIP | |||||||||||
90% | 95% | 90% | 95% | 90% | 95% | ||||||||
T | (n,m,k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch.I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.472 | 0.716 | 0.537 | 0.769 | 0.078 | 0.961 | 0.093 | 0.966 | 0.475 | 0.943 | 0.556 | 0.963 |
(40, 20, 15) | 0.473 | 0.750 | 0.533 | 0.784 | 0.078 | 0.980 | 0.092 | 1.000 | 0.474 | 0.933 | 0.559 | 0.956 | |
(60, 30, 20) | 0.344 | 0.781 | 0.408 | 0.819 | 0.078 | 1.000 | 0.091 | 1.000 | 0.345 | 0.922 | 0.416 | 0.959 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.767 | 0.354 | 0.825 | 0.074 | 1.031 | 0.087 | 1.000 | 0.300 | 0.924 | 0.343 | 0.953 |
(40, 20, 15) | 0.344 | 0.707 | 0.417 | 0.770 | 0.067 | 0.963 | 0.080 | 0.955 | 0.339 | 0.946 | 0.417 | 0.925 | |
(60, 30, 20) | 0.256 | 0.790 | 0.301 | 0.843 | 0.072 | 1.000 | 0.086 | 1.000 | 0.249 | 0.926 | 0.294 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.288 | 0.768 | 0.343 | 0.808 | 0.072 | 1.000 | 0.085 | 1.000 | 0.280 | 0.931 | 0.332 | 0.938 |
(40, 20, 15) | 0.332 | 0.737 | 0.397 | 0.780 | 0.067 | 0.975 | 0.079 | 0.995 | 0.330 | 0.930 | 0.395 | 0.942 | |
(60, 30, 20) | 0.243 | 0.810 | 0.296 | 0.825 | 0.071 | 1.000 | 0.084 | 1.000 | 0.235 | 0.959 | 0.290 | 0.931 | |
Sch.II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.470 | 0.722 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 0.975 | 0.466 | 0.936 | 0.562 | 0.949 |
(40, 20, 15) | 0.485 | 0.733 | 0.527 | 0.773 | 0.078 | 0.967 | 0.092 | 0.989 | 0.494 | 0.924 | 0.547 | 0.955 | |
(60, 30, 20) | 0.333 | 0.792 | 0.398 | 0.828 | 0.077 | 1.035 | 0.091 | 1.000 | 0.329 | 0.937 | 0.401 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.773 | 0.375 | 0.773 | 0.074 | 0.967 | 0.088 | 1.000 | 0.299 | 0.925 | 0.369 | 0.955 |
(40, 20, 15) | 0.429 | 0.710 | 0.438 | 0.773 | 0.074 | 0.967 | 0.087 | 0.959 | 0.434 | 0.935 | 0.440 | 0.949 | |
(60, 30, 20) | 0.253 | 0.798 | 0.308 | 0.806 | 0.073 | 1.007 | 0.086 | 1.000 | 0.247 | 0.926 | 0.300 | 0.940 | |
T=1.5 | (30, 20, 15) | 0.315 | 0.744 | 0.357 | 0.765 | 0.072 | 0.956 | 0.085 | 1.000 | 0.314 | 0.925 | 0.350 | 0.935 |
(40, 20, 15) | 0.387 | 0.715 | 0.455 | 0.753 | 0.073 | 0.941 | 0.086 | 0.965 | 0.380 | 0.926 | 0.461 | 0.961 | |
(60, 30, 20) | 0.248 | 0.805 | 0.290 | 0.852 | 0.071 | 1.000 | 0.084 | 1.000 | 0.239 | 0.925 | 0.285 | 0.941 | |
Sch.III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.417 | 0.761 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 1.000 | 0.420 | 0.935 | 0.562 | 0.949 |
(40, 20, 15) | 0.663 | 0.649 | 0.779 | 0.704 | 0.078 | 0.880 | 0.093 | 0.877 | 0.771 | 0.906 | 0.944 | 0.933 | |
(60, 30, 20) | 0.348 | 0.756 | 0.412 | 0.779 | 0.077 | 0.973 | 0.091 | 1.000 | 0.349 | 0.917 | 0.427 | 0.948 | |
T=0.7 | (30, 20, 15) | 0.362 | 0.745 | 0.429 | 0.786 | 0.074 | 0.983 | 0.088 | 1.000 | 0.358 | 0.930 | 0.437 | 0.962 |
(40, 20, 15) | 0.607 | 0.666 | 0.665 | 0.731 | 0.075 | 0.914 | 0.089 | 0.898 | 0.695 | 0.912 | 0.758 | 0.946 | |
(60, 30, 20) | 0.332 | 0.781 | 0.394 | 0.800 | 0.074 | 1.000 | 0.087 | 1.000 | 0.338 | 0.923 | 0.405 | 0.952 | |
T=1.5 | (30, 20, 15) | 0.338 | 0.766 | 0.429 | 0.769 | 0.073 | 0.961 | 0.086 | 1.000 | 0.335 | 0.962 | 0.443 | 0.953 |
(40, 20, 15) | 0.621 | 0.666 | 0.689 | 0.720 | 0.073 | 0.900 | 0.087 | 0.898 | 0.686 | 0.903 | 0.796 | 0.936 | |
(60, 30, 20) | 0.331 | 0.765 | 0.394 | 0.774 | 0.072 | 0.968 | 0.086 | 1.000 | 0.333 | 0.923 | 0.408 | 0.950 |
Algorithm 1 MCMC method. |
Step 1, start with λ(0)=ˆλML and μ(0)=ˆμML |
Step 2, set i=1 |
Step 3, Generate λ(i)∼GammaDist.[D∗+a,W(μ(i−1)|x_)+b1]=π∗1(λ|μ(i−1);x_) |
\bf{Step} \bf{4, } Generate a proposal \mu ^{(\ast)} from N(\mu ^{(i-1)}, V(\mu)) |
\bf{Step} \bf{5, } Calculate the acceptance probabilities d_{\mu}=min\left[ 1, \frac{\pi _{2}^{\ast }(\mu ^{(\ast)}|\lambda ^{(i-1)})}{\pi_{1}^{\ast }(\mu^{(i-1)}|\lambda ^{(i-1)})}\right] |
\bf{Step} \bf{6, } Generate u_{1} that follows a U(0, 1) distribution. If u_{1}\leq d_{\mu } , set \mu ^{(i)}=\mu ^{(\ast)} ; otherwise, set \mu ^{(i)}=\mu ^{(i-1)} |
\bf{Step} \bf{7, } set i=i+1 , repeat steps 3 to 7, N times and obtain \left(\lambda ^{(j)}, \mu ^{(j)}\right) , j=1, 2, ..., N. |
\bf{Step} \bf{8, } Remove the first B values for \lambda and \mu , which is the burn-in period of \lambda ^{(j)} and \mu ^{(j)} , respectively, where j=1, 2, ..., N-B . |
IP | NIP | |||||||
Sch. | j | \rho | \widehat{X}_{\rho :R_{j}^{\ast }} | ET interval | HPD interval | \widehat{X}_{\rho :R_{j}^{\ast }} | ET interval | HPD interval |
1 | 3 | 1 | 4.824 | (1.322, 21.783) | (1.214, 17.062) | 6.410 | (1.324, 23.275) | (1.214, 18.034) |
2 | 10.634 | (2.417, 42.868) | (1.319, 34.499) | 14.202 | (2.429, 46.302) | (1.308, 36.810) | ||
3 | 22.254 | (5.271, 86.933) | (2.348, 70.530) | 29.787 | (5.289, 94.280) | (2.274, 75.524) | ||
7 | 1 | 5.914 | (5.943, 12.764) | (5.908, 11.190) | 7.639 | (5.944, 13.261) | (5.908, 11.514) | |
2 | 7.367 | (6.254, 17.586) | (5.939, 15.267) | 9.587 | (6.258, 18.558) | (5.935, 15.923) | ||
3 | 9.027 | (6.817, 22.790) | (6.182, 19.570) | 11.814 | (6.821, 24.302) | (6.071, 20.612) | ||
4 | 10.964 | (7.581, 28.762) | (6.654, 24.889) | 14.411 | (7.581, 30.909) | (6.608, 26.363) | ||
5 | 13.288 | (8.553, 35.920) | (7.294, 31.039) | 17.528 | (8.544, 38.832) | (7.213, 33.049) | ||
6 | 16.192 | (9.782, 44.951) | (8.125, 38.766) | 21.424 | (9.761, 48.820) | (8.000, 41.448) | ||
7 | 20.066 | (11.390, 57.239) | (9.351, 48.369) | 26.619 | (11.351, 62.390) | (9.026, 52.794) | ||
8 | 25.877 | (13.657, 76.426) | (10.679, 65.357) | 34.412 | (13.592, 83.499) | (10.421, 70.278) | ||
9 | 37.497 | (17.494,118.537) | (12.895, 99.972) | 49.997 | (17.400,129.445) | (12.532,107.555) | ||
2 | 3 | 1 | 4.924 | (1.330, 21.776) | (1.214, 17.251) | 6.488 | (1.332, 22.842) | (1.214, 17.983) |
2 | 10.886 | (2.506, 42.386) | (1.343, 34.584) | 14.399 | (2.526, 44.762) | (1.337, 36.266) | ||
3 | 22.809 | (5.601, 85.629) | (5.198, 69.693) | 30.221 | (5.656, 90.660) | (5.227, 73.313) | ||
6 | 1 | 8.082 | (5.365, 25.811) | (5.250, 21.286) | 10.524 | (5.367, 26.877) | (5.250, 22.019) | |
2 | 14.044 | (6.541, 46.422) | (5.379, 38.619) | 18.435 | (6.562, 48.797) | (5.372, 40.302) | ||
3 | 25.967 | (9.637, 89.664) | (9.233, 73.728) | 34.256 | (9.691, 94.695) | (9.262, 77.348) | ||
9 | 1 | 10.305 | (10.188, 22.456) | (10.120, 19.742) | 13.284 | (10.191, 23.096) | (10.120, 20.181) | |
2 | 13.285 | (10.826, 32.161) | (10.192, 28.030) | 17.239 | (10.837, 33.440) | (10.190, 28.937) | ||
3 | 17.260 | (12.126, 44.641) | (12.105, 38.397) | 22.513 | (12.152, 46.768) | (10.856, 39.936) | ||
4 | 23.220 | (14.248, 63.813) | (12.029, 55.213) | 30.425 | (14.288, 67.225) | (11.978, 57.679) | ||
5 | 35.144 | (18.060,105.916) | (14.149, 90.288) | 46.246 | (18.126,111.946) | (14.055, 94.654) | ||
3 | 3 | 1 | 5.061 | (1.335, 22.283) | (1.214, 17.716) | 6.661 | (1.337, 23.291) | (1.214, 18.425) |
2 | 11.226 | (2.572, 43.235) | (1.356, 35.439) | 14.832 | (2.597, 45.441) | (1.351, 37.039) | ||
3 | 23.556 | (5.834, 87.257) | (2.664, 72.209) | 31.172 | (5.910, 91.905) | (2.639, 75.613) | ||
6 | 1 | 8.219 | (5.370, 26.318) | (5.250, 21.752) | 10.697 | (5.372, 27.327) | (5.250, 22.460) | |
2 | 14.384 | (6.607, 47.271) | (5.391, 39.474) | 18.867 | (6.632, 49.477) | (5.386, 41.075) | ||
3 | 26.714 | (9.870, 91.293) | (6.612, 75.361) | 35.207 | (9.945, 95.940) | (6.674, 79.648) | ||
9 | 1 | 26.714 | (9.870, 91.293) | (9.142, 75.361) | 15.580 | (10.255, 32.209) | (10.133, 27.343) | |
2 | 18.205 | (11.490, 52.153) | (10.274, 44.357) | 23.750 | (11.515, 54.360) | (10.269, 45.957) | ||
3 | 30.536 | (14.752, 96.175) | (11.495, 80.244) | 40.090 | (14.828,100.823) | (11.514, 83.663) |
IP | NIP | ||||||
Sch. | s | \widehat{Y}_{s:N} | ET interval | HPD interval | \widehat{Y}_{s:N} | ET interval | HPD interval |
1 | 1 | 0.704 | (0.016, 2.927) | (0.000, 2.255) | 0.739 | (0.016, 3.139) | (0.000, 2.393) |
2 | 0.972 | (0.143, 4.811) | (0.013, 3.858) | 1.014 | (0.144, 5.212) | (0.012, 4.127) | |
3 | 1.314 | (0.361, 6.671) | (0.114, 5.470) | 1.381 | (0.362, 7.270) | (0.106, 5.878) | |
4 | 1.760 | (0.668, 9.119) | (0.299, 7.574) | 1.861 | (0.668, 9.976) | (0.281, 8.162) | |
5 | 2.216 | (1.036, 11.675) | (0.545, 9.782) | 2.356 | (1.032, 12.810) | (0.514, 10.566) | |
6 | 2.696 | (1.457, 14.399) | (0.842, 12.142) | 2.878 | (1.448, 15.838) | (0.794, 13.139) | |
7 | 3.481 | (2.039, 18.751) | (1.237, 15.844) | 3.724 | (2.023, 20.644) | (1.169, 17.159) | |
8 | 4.352 | (2.726, 23.618) | (1.717, 20.008) | 4.666 | (2.702, 26.033) | (1.622, 21.689) | |
9 | 5.356 | (3.544, 29.252) | (2.293, 24.833) | 5.753 | (3.509, 32.275) | (2.167, 26.942) | |
10 | 9.350 | (5.264, 50.149) | (3.233, 41.790) | 9.952 | (5.218, 54.977) | (3.068, 45.151) | |
2 | 1 | 0.722 | (0.017, 2.926) | (0.000, 2.282) | 0.750 | (0.017, 3.077) | (0.000, 2.386) |
2 | 0.978 | (0.154, 4.751) | (0.016, 3.865) | 1.060 | (0.156, 5.028) | (0.016, 4.061) | |
3 | 1.308 | (0.391, 6.536) | (0.134, 5.450) | 1.423 | (0.396, 6.943) | (0.131, 5.742) | |
4 | 1.738 | (0.727, 8.892) | (0.350, 7.520) | 1.898 | (0.734, 9.468) | (0.341, 7.938) | |
5 | 2.172 | (1.132, 11.338) | (0.638, 9.684) | 2.382 | (1.140, 12.097) | (0.622, 10.237) | |
6 | 2.627 | (1.596, 13.939) | (0.984, 11.990) | 2.890 | (1.606, 14.898) | (0.959, 12.690) | |
7 | 3.380 | (2.238, 18.128) | (1.444, 15.628) | 3.726 | (2.249, 19.387) | (1.408, 16.549) | |
8 | 4.213 | (3.000, 22.800) | (2.003, 19.709) | 4.650 | (3.011, 24.402) | (1.954, 20.885) | |
9 | 5.168 | (3.905, 28.199) | (2.675, 24.436) | 5.714 | (3.916, 30.202) | (2.608, 25.909) | |
10 | 9.146 | (5.795, 48.785) | (3.750, 41.359) | 10.042 | (5.814, 52.007) | (3.667, 43.723) | |
3 | 1 | 0.748 | (0.017, 2.998) | (0.000, 2.348) | 0.775 | (0.018, 3.142) | (0.000, 2.449) |
2 | 1.042 | (0.162, 4.847) | (0.018, 3.964) | 1.051 | (0.164, 5.104) | (0.017, 4.150) | |
3 | 1.386 | (0.412, 6.650) | (0.146, 5.579) | 1.405 | (0.419, 7.024) | (0.144, 5.854) | |
4 | 1.836 | (0.768, 9.030) | (0.380, 7.686) | 1.867 | (0.779, 9.557) | (0.374, 8.077) | |
5 | 2.288 | (1.196, 11.496) | (0.691, 9.887) | 2.335 | (1.211, 12.187) | (0.680, 10.403) | |
6 | 2.761 | (1.690, 14.117) | (1.066, 12.229) | 2.825 | (1.708, 14.987) | (1.050, 12.881) | |
7 | 3.551 | (2.371, 18.349) | (1.564, 15.931) | 3.637 | (2.394, 19.492) | (1.541, 16.788) | |
8 | 4.418 | (3.181, 23.064) | (2.170, 20.083) | 4.534 | (3.209, 24.515) | (2.137, 21.175) | |
9 | 5.414 | (4.142, 28.510) | (2.897, 24.888) | 5.563 | (4.176, 30.322) | (2.855, 26.255) | |
10 | 9.635 | (6.145, 49.504) | (4.051, 42.221) | 9.839 | (6.198, 52.438) | (4.002, 44.426) |
Bayesian | |||||||||
{ \widehat{\lambda}_{BS} | { \widehat{\lambda}_{BL} | { \widehat{\lambda}_{BE} | |||||||
Sch. | T | (n, m, k) | \widehat{\lambda}_{ML} | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.5082 | 0.0244 | 0.5305 | 0.0239 | 0.3282 | 0.0243 | 0.3739 |
(40, 20, 15) | 0.5186 | 0.0192 | 0.5693 | 0.0187 | 0.3517 | 0.0190 | 0.4026 | ||
(60, 30, 20) | 0.4127 | 0.0173 | 0.4355 | 0.0170 | 0.2675 | 0.0171 | 0.3403 | ||
T=0.7 | (30, 20, 15) | 0.2879 | 0.0259 | 0.2666 | 0.0252 | 0.2114 | 0.0255 | 0.2243 | |
(40, 20, 15) | 0.6400 | 0.0203 | 0.6240 | 0.0199 | 0.3760 | 0.0202 | 0.4454 | ||
(60, 30, 20) | 0.2110 | 0.0172 | 0.2007 | 0.0170 | 0.1646 | 0.0172 | 0.1708 | ||
T=1.5 | (30, 20, 15) | 0.2843 | 0.0250 | 0.2671 | 0.0242 | 0.2085 | 0.0245 | 0.2198 | |
(40, 20, 15) | 0.5891 | 0.0226 | 0.5973 | 0.0222 | 0.3726 | 0.0225 | 0.4423 | ||
(60, 30, 20) | 0.2528 | 0.0175 | 0.2440 | 0.0171 | 0.1921 | 0.0172 | 0.2036 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 0.5489 | 0.0197 | 0.5772 | 0.0194 | 0.3644 | 0.0197 | 0.4159 | ||
(60, 30, 20) | 0.3080 | 0.0174 | 0.3002 | 0.0172 | 0.2285 | 0.0174 | 0.2459 | ||
T=0.7 | (30, 20, 15) | 0.3489 | 0.0255 | 0.3314 | 0.0247 | 0.2473 | 0.0250 | 0.2673 | |
(40, 20, 15) | 0.5221 | 0.0191 | 0.5308 | 0.0187 | 0.3333 | 0.0190 | 0.3778 | ||
(60, 30, 20) | 0.2269 | 0.0164 | 0.2135 | 0.0160 | 0.1734 | 0.0162 | 0.1794 | ||
T=1.5 | (30, 20, 15) | 0.3369 | 0.0265 | 0.3188 | 0.0256 | 0.2451 | 0.0259 | 0.2584 | |
(40, 20, 15) | 0.6190 | 0.0205 | 0.6676 | 0.0198 | 0.3925 | 0.0200 | 0.4631 | ||
(60, 30, 20) | 0.2130 | 0.0177 | 0.2087 | 0.0173 | 0.1658 | 0.0174 | 0.1737 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.5166 | 0.0252 | 0.5284 | 0.0245 | 0.3486 | 0.0250 | 0.3869 |
(40, 20, 15) | 1.4205 | 0.0173 | 2.3081 | 0.0169 | 0.7138 | 0.0171 | 1.1274 | ||
(60, 30, 20) | 0.3416 | 0.0162 | 0.3652 | 0.0159 | 0.2586 | 0.0161 | 0.2772 | ||
T=0.7 | (30, 20, 15) | 0.5049 | 0.0246 | 0.5692 | 0.0238 | 0.3290 | 0.0241 | 0.4095 | |
(40, 20, 15) | 1.2471 | 0.0183 | 1.7174 | 0.0179 | 0.6258 | 0.0181 | 0.9441 | ||
(60, 30, 20) | 0.3569 | 0.0152 | 0.3705 | 0.0149 | 0.2577 | 0.0151 | 0.2792 | ||
T=1.5 | (30, 20, 15) | 0.4781 | 0.0246 | 0.5283 | 0.0238 | 0.3279 | 0.0241 | 0.3805 | |
(40, 20, 15) | 1.4825 | 0.0182 | 2.0789 | 0.0179 | 0.6943 | 0.0181 | 1.0823 | ||
(60, 30, 20) | 0.3832 | 0.0164 | 0.4044 | 0.0161 | 0.2737 | 0.0163 | 0.3012 | ||
EB | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.1962 | 0.0036 | 0.1983 | 0.0069 | 0.1024 | 0.0121 | 0.0855 |
(40, 20, 15) | 0.1816 | 0.0052 | 0.1950 | 0.0036 | 0.0900 | 0.0079 | 0.0715 | ||
(60, 30, 20) | 0.1219 | 0.0057 | 0.1268 | 0.0019 | 0.0649 | 0.0057 | 0.0502 | ||
T=0.7 | (30, 20, 15) | 0.1114 | 0.0075 | 0.0936 | 0.0029 | 0.0436 | 0.0080 | 0.0274 | |
(40, 20, 15) | 0.2209 | 0.0041 | 0.2048 | 0.0046 | 0.1182 | 0.0089 | 0.1086 | ||
(60, 30, 20) | 0.0984 | 0.0019 | 0.0884 | 0.0054 | 0.0519 | 0.0090 | 0.0403 | ||
T=1.5 | (30, 20, 15) | 0.1340 | 0.0092 | 0.1151 | 0.0012 | 0.0662 | 0.0063 | 0.0516 | |
(40, 20, 15) | 0.1950 | 0.0010 | 0.1840 | 0.0077 | 0.1037 | 0.0119 | 0.0935 | ||
(60, 30, 20) | 0.1235 | 0.0052 | 0.1125 | 0.0021 | 0.0748 | 0.0058 | 0.0647 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.2021 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.1772 | 0.0006 | 0.1840 | 0.0079 | 0.0827 | 0.0122 | 0.0649 | ||
(60, 30, 20) | 0.1107 | 0.0002 | 0.1118 | 0.0072 | 0.0542 | 0.0109 | 0.0379 | ||
T=0.7 | (30, 20, 15) | 0.1516 | 0.0109 | 0.1333 | 0.0007 | 0.0785 | 0.0044 | 0.0645 | |
(40, 20, 15) | 0.2083 | 0.0036 | 0.2028 | 0.0049 | 0.1182 | 0.0091 | 0.1067 | ||
(60, 30, 20) | 0.1205 | 0.0051 | 0.1060 | 0.0021 | 0.0684 | 0.0057 | 0.0573 | ||
T=1.5 | (30, 20, 15) | 0.1597 | 0.0103 | 0.1411 | 0.0001 | 0.0889 | 0.0051 | 0.0757 | |
(40, 20, 15) | 0.2560 | 0.0116 | 0.2477 | 0.0030 | 0.1533 | 0.0012 | 0.1453 | ||
(60, 30, 20) | 0.1101 | 0.0089 | 0.1001 | 0.0016 | 0.0636 | 0.0020 | 0.0529 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.1928 | 0.0034 | 0.2015 | 0.0070 | 0.1070 | 0.0122 | 0.0894 |
(40, 20, 15) | 0.3861 | 0.0032 | 0.4732 | 0.0048 | 0.2402 | 0.0088 | 0.2642 | ||
(60, 30, 20) | 0.1597 | 0.0022 | 0.1710 | 0.0046 | 0.1106 | 0.0081 | 0.1002 | ||
T=0.7 | (30, 20, 15) | 0.1877 | 0.0107 | 0.1846 | 0.0008 | 0.1130 | 0.0040 | 0.1052 | |
(40, 20, 15) | 0.3373 | 0.0014 | 0.4115 | 0.0066 | 0.2144 | 0.0106 | 0.2268 | ||
(60, 30, 20) | 0.1610 | 0.0039 | 0.1703 | 0.0030 | 0.1106 | 0.0064 | 0.1009 | ||
T=1.5 | (30, 20, 15) | 0.1982 | 0.0107 | 0.1950 | 0.0007 | 0.1223 | 0.0041 | 0.1140 | |
(40, 20, 15) | 0.3659 | 0.0018 | 0.4368 | 0.0062 | 0.2275 | 0.0103 | 0.2443 | ||
(60, 30, 20) | 0.1717 | 0.0001 | 0.1788 | 0.0068 | 0.1167 | 0.0103 | 0.1076 |
Bayesian | |||||||||
\widehat{\mu }_{BS} | \widehat{\mu }_{BL} | \widehat{\mu }_{BE} | |||||||
Sch. | T | (n, m, k) | \widehat{\mu }_{ML} | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0410 | 0.0066 | 0.0361 | 0.0065 | 0.0337 | 0.0064 | 0.0320 |
(40, 20, 15) | 0.0307 | 0.0051 | 0.0270 | 0.0051 | 0.0257 | 0.0050 | 0.0250 | ||
(60, 30, 20) | 0.0236 | 0.0046 | 0.0214 | 0.0046 | 0.0207 | 0.0046 | 0.0203 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0070 | 0.0246 | 0.0068 | 0.0235 | 0.0066 | 0.0229 | |
(40, 20, 15) | 0.0304 | 0.0054 | 0.0259 | 0.0053 | 0.0248 | 0.0051 | 0.0239 | ||
(60, 30, 20) | 0.0187 | 0.0047 | 0.0163 | 0.0046 | 0.0158 | 0.0046 | 0.0155 | ||
T=1.5 | (30, 20, 15) | 0.0301 | 0.0069 | 0.0257 | 0.0067 | 0.0246 | 0.0066 | 0.0238 | |
(40, 20, 15) | 0.0299 | 0.0060 | 0.0259 | 0.0059 | 0.0248 | 0.0058 | 0.0240 | ||
(60, 30, 20) | 0.0185 | 0.0047 | 0.0161 | 0.0046 | 0.0156 | 0.0046 | 0.0152 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0310 | 0.0054 | 0.0272 | 0.0054 | 0.0259 | 0.0053 | 0.0253 | ||
(60, 30, 20) | 0.0215 | 0.0046 | 0.0190 | 0.0045 | 0.0184 | 0.0044 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0287 | 0.0066 | 0.0248 | 0.0066 | 0.0237 | 0.0064 | 0.0228 | |
(40, 20, 15) | 0.0256 | 0.0052 | 0.0220 | 0.0051 | 0.0210 | 0.0050 | 0.0202 | ||
(60, 30, 20) | 0.0176 | 0.0042 | 0.0153 | 0.0041 | 0.0148 | 0.0041 | 0.0144 | ||
T=1.5 | (30, 20, 15) | 0.0308 | 0.0069 | 0.0268 | 0.0067 | 0.0255 | 0.0066 | 0.0246 | |
(40, 20, 15) | 0.0279 | 0.0053 | 0.0243 | 0.0053 | 0.0231 | 0.0052 | 0.0221 | ||
(60, 30, 20) | 0.0161 | 0.0046 | 0.0140 | 0.0045 | 0.0136 | 0.0044 | 0.0133 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0459 | 0.0069 | 0.0409 | 0.0067 | 0.0382 | 0.0066 | 0.0364 |
(40, 20, 15) | 0.0462 | 0.0046 | 0.0423 | 0.0046 | 0.0393 | 0.0046 | 0.0370 | ||
(60, 30, 20) | 0.0248 | 0.0043 | 0.0226 | 0.0042 | 0.0216 | 0.0042 | 0.0207 | ||
T=0.7 | (30, 20, 15) | 0.0350 | 0.0062 | 0.0304 | 0.0062 | 0.0286 | 0.0061 | 0.0272 | |
(40, 20, 15) | 0.0428 | 0.0051 | 0.0394 | 0.0050 | 0.0369 | 0.0049 | 0.0348 | ||
(60, 30, 20) | 0.0232 | 0.0041 | 0.0208 | 0.0040 | 0.0199 | 0.0040 | 0.0192 | ||
T=1.5 | (30, 20, 15) | 0.0401 | 0.0067 | 0.0354 | 0.0066 | 0.0333 | 0.0065 | 0.0318 | |
(40, 20, 15) | 0.0469 | 0.0050 | 0.0420 | 0.0050 | 0.0392 | 0.0049 | 0.0371 | ||
(60, 30, 20) | 0.0254 | 0.0045 | 0.0224 | 0.0044 | 0.0214 | 0.0043 | 0.0205 | ||
EB | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0556 | 0.0107 | 0.0453 | 0.0083 | 0.0378 | 0.0038 | 0.0247 |
(40, 20, 15) | 0.0338 | 0.0057 | 0.0263 | 0.0039 | 0.0204 | 0.0006 | 0.0095 | ||
(60, 30, 20) | 0.0248 | 0.0047 | 0.0194 | 0.0032 | 0.0150 | 0.0003 | 0.0069 | ||
T=0.7 | (30, 20, 15) | 0.0335 | 0.0084 | 0.0246 | 0.0061 | 0.0194 | 0.0015 | 0.0096 | |
(40, 20, 15) | 0.0446 | 0.0077 | 0.0333 | 0.0059 | 0.0285 | 0.0025 | 0.0198 | ||
(60, 30, 20) | 0.0269 | 0.0064 | 0.0210 | 0.0050 | 0.0178 | 0.0021 | 0.0118 | ||
T=1.5 | (30, 20, 15) | 0.0426 | 0.0090 | 0.0324 | 0.0067 | 0.0273 | 0.0022 | 0.0181 | |
(40, 20, 15) | 0.0439 | 0.0092 | 0.0337 | 0.0074 | 0.0291 | 0.0041 | 0.0205 | ||
(60, 30, 20) | 0.0319 | 0.0063 | 0.0260 | 0.0048 | 0.0229 | 0.0020 | 0.0171 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0350 | 0.0081 | 0.0258 | 0.0064 | 0.0200 | 0.0030 | 0.0093 | ||
(60, 30, 20) | 0.0262 | 0.0073 | 0.0200 | 0.0058 | 0.0157 | 0.0030 | 0.0077 | ||
T=0.7 | (30, 20, 15) | 0.0438 | 0.0082 | 0.0348 | 0.0059 | 0.0293 | 0.0015 | 0.0194 | |
(40, 20, 15) | 0.0426 | 0.0073 | 0.0339 | 0.0056 | 0.0291 | 0.0023 | 0.0203 | ||
(60, 30, 20) | 0.0305 | 0.0056 | 0.0224 | 0.0042 | 0.0192 | 0.0014 | 0.0133 | ||
T=1.5 | (30, 20, 15) | 0.0473 | 0.0086 | 0.0378 | 0.0062 | 0.0327 | 0.0018 | 0.0234 | |
(40, 20, 15) | 0.0494 | 0.0045 | 0.0384 | 0.0028 | 0.0335 | 0.0005 | 0.0248 | ||
(60, 30, 20) | 0.0239 | 0.0031 | 0.0184 | 0.0017 | 0.0153 | 0.0011 | 0.0095 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0592 | 0.0104 | 0.0480 | 0.0081 | 0.0403 | 0.0036 | 0.0272 |
(40, 20, 15) | 0.0701 | 0.0073 | 0.0608 | 0.0057 | 0.0534 | 0.0026 | 0.0413 | ||
(60, 30, 20) | 0.0404 | 0.0066 | 0.0353 | 0.0051 | 0.0310 | 0.0024 | 0.0233 | ||
T=0.7 | (30, 20, 15) | 0.0516 | 0.0070 | 0.0422 | 0.0048 | 0.0360 | 0.0005 | 0.0252 | |
(40, 20, 15) | 0.0656 | 0.0084 | 0.0581 | 0.0068 | 0.0510 | 0.0037 | 0.0391 | ||
(60, 30, 20) | 0.0388 | 0.0054 | 0.0332 | 0.0040 | 0.0291 | 0.0013 | 0.0215 | ||
T=1.5 | (30, 20, 15) | 0.0561 | 0.0073 | 0.0464 | 0.0050 | 0.0402 | 0.0007 | 0.0296 | |
(40, 20, 15) | 0.0685 | 0.0077 | 0.0595 | 0.0061 | 0.0524 | 0.0030 | 0.0404 | ||
(60, 30, 20) | 0.0444 | 0.0082 | 0.0375 | 0.0068 | 0.0332 | 0.0041 | 0.0256 |
Bayesian | |||||||||
\widehat{S(t) }_{BS} | \widehat{S(t) }_{BL} | \widehat{S(t) }_{BE} | |||||||
Sch. | T | (n, m, k) | \widehat{S(t) }_{ML} | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0005 | 3.90\times10^{-6} | 0.0016 | 3.90\times10^{-6} | 0.0014 | 2.60\times10^{-6} | 0.0003 |
(40, 20, 15) | 0.0010 | 3.90\times10^{-6} | 0.0026 | 3.90\times10^{-6} | 0.0025 | 1.30\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0007 | 3.90\times10^{-6} | 0.0016 | 3.90\times10^{-6} | 0.0014 | 2.60\times10^{-6} | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20\times10^{-6} | 0.0012 | 5.20\times10^{-6} | 0.0010 | 2.60\times10^{-6} | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90\times10^{-6} | 0.0014 | 3.90\times10^{-6} | 0.0014 | 2.60\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20\times10^{-6} | 0.0007 | 5.20\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90\times10^{-6} | 0.0008 | 3.90\times10^{-6} | 0.0008 | 2.60\times10^{-6} | 0.0003 | |
(40, 20, 15) | 0.0005 | 5.20\times10^{-6} | 0.0012 | 5.20\times10^{-6} | 0.0012 | 2.60\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0003 | 5.20\times10^{-6} | 0.0005 | 5.20\times10^{-6} | 0.0005 | 2.60\times10^{-6} | 0.0001 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0007 | 3.90\times10^{-6} | 0.0018 | 3.90\times10^{-6} | 0.0017 | 2.60\times10^{-6} | 0.0004 |
(40, 20, 15) | 0.0012 | 3.90\times10^{-6} | 0.0029 | 3.90\times10^{-6} | 0.0027 | 2.60\times10^{-6} | 0.0005 | ||
(60, 30, 20) | 0.0008 | 3.90\times10^{-6} | 0.0017 | 3.90\times10^{-6} | 0.0016 | 2.60\times10^{-6} | 0.0005 | ||
T=0.7 | (30, 20, 15) | 0.0005 | 5.20\times10^{-6} | 0.0010 | 5.20\times10^{-6} | 0.0010 | 2.60\times10^{-6} | 0.0004 | |
(40, 20, 15) | 0.0005 | 3.90\times10^{-6} | 0.0012 | 3.90\times10^{-6} | 0.0012 | 2.60\times10^{-6} | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20\times10^{-6} | 0.0005 | 5.20\times10^{-6} | 0.0005 | 2.60\times10^{-6} | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0004 | 5.20\times10^{-6} | 0.0008 | 5.20\times10^{-6} | 0.0008 | 2.60\times10^{-6} | 0.0003 | |
(40, 20, 15) | 0.0004 | 3.90\times10^{-6} | 0.0009 | 3.90\times10^{-6} | 0.0009 | 2.60\times10^{-6} | 0.0003 | ||
(60, 30, 20) | 0.0003 | 5.20\times10^{-6} | 0.0004 | 5.20\times10^{-6} | 0.0004 | 2.60\times10^{-6} | 0.0001 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0007 | 3.90\times10^{-6} | 0.0018 | 3.90\times10^{-6} | 0.0017 | 2.60\times10^{-6} | 0.0004 |
(40, 20, 15) | 0.0007 | 2.60\times10^{-6} | 0.0017 | 2.60\times10^{-6} | 0.0016 | 1.30\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0004 | 3.90\times10^{-6} | 0.0008 | 3.90\times10^{-6} | 0.0008 | 2.60\times10^{-6} | 0.0003 | ||
T=0.7 | (30, 20, 15) | 0.0003 | 3.90\times10^{-6} | 0.0007 | 3.90\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0003 | |
(40, 20, 15) | 0.0007 | 3.90\times10^{-6} | 0.0017 | 3.90\times10^{-6} | 0.0016 | 1.30\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90\times10^{-6} | 0.0007 | 3.90\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0001 | ||
T=1.5 | (30, 20, 15) | 0.0003 | 3.90\times10^{-6} | 0.0007 | 3.90\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0001 | |
(40, 20, 15) | 0.0008 | 3.90\times10^{-6} | 0.0018 | 3.90\times10^{-6} | 0.0017 | 1.30\times10^{-6} | 0.0004 | ||
(60, 30, 20) | 0.0003 | 3.90\times10^{-6} | 0.0007 | 3.90\times10^{-6} | 0.0007 | 2.60\times10^{-6} | 0.0001 | ||
EB | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0070 | 0.0014 | 0.0270 | 0.0014 | 0.0260 | 0.0007 | 0.0014 |
(40, 20, 15) | 0.0120 | 0.0014 | 0.0350 | 0.0014 | 0.0340 | 0.0007 | 0.0003 | ||
(60, 30, 20) | 0.0090 | 0.0013 | 0.0250 | 0.0013 | 0.0250 | 0.0007 | 0.0004 | ||
T=0.7 | (30, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0013 | 0.0210 | 0.0007 | 0.0009 | |
(40, 20, 15) | 0.0073 | 0.0013 | 0.0230 | 0.0013 | 0.0230 | 0.0007 | 0.0007 | ||
(60, 30, 20) | 0.0049 | 0.0014 | 0.0150 | 0.0013 | 0.0150 | 0.0005 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0012 | 0.0170 | 0.0012 | 0.0170 | 0.0008 | 0.0004 | |
(40, 20, 15) | 0.0069 | 0.0014 | 0.0220 | 0.0014 | 0.0220 | 0.0007 | 0.0001 | ||
(60, 30, 20) | 0.0032 | 0.0012 | 0.0120 | 0.0012 | 0.0120 | 0.0007 | 0.0008 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0130 | 0.0014 | 0.0360 | 0.0014 | 0.0350 | 0.0007 | 0.0010 | ||
(60, 30, 20) | 0.0096 | 0.0014 | 0.0250 | 0.0014 | 0.0250 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0055 | 0.0012 | 0.0190 | 0.0012 | 0.0190 | 0.0008 | 0.0010 | |
(40, 20, 15) | 0.0062 | 0.0013 | 0.0210 | 0.0013 | 0.0210 | 0.0007 | 0.0008 | ||
(60, 30, 20) | 0.0039 | 0.0013 | 0.0140 | 0.0013 | 0.0140 | 0.0007 | 0.0003 | ||
T=1.5 | (30, 20, 15) | 0.0045 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0003 | |
(40, 20, 15) | 0.0038 | 0.0012 | 0.0190 | 0.0012 | 0.0180 | 0.0008 | 0.0021 | ||
(60, 30, 20) | 0.0034 | 0.0013 | 0.0130 | 0.0013 | 0.0120 | 0.0007 | 0.0008 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0082 | 0.0014 | 0.0280 | 0.0014 | 0.0280 | 0.0007 | 0.0003 |
(40, 20, 15) | 0.0074 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0025 | ||
(60, 30, 20) | 0.0055 | 0.0013 | 0.0170 | 0.0013 | 0.0170 | 0.0007 | 0.0010 | ||
T=0.7 | (30, 20, 15) | 0.0035 | 0.0013 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0020 | |
(40, 20, 15) | 0.0070 | 0.0013 | 0.0260 | 0.0013 | 0.0260 | 0.0008 | 0.0027 | ||
(60, 30, 20) | 0.0041 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 | ||
T=1.5 | (30, 20, 15) | 0.0039 | 0.0012 | 0.0170 | 0.0012 | 0.0160 | 0.0008 | 0.0017 | |
(40, 20, 15) | 0.0080 | 0.0014 | 0.0270 | 0.0013 | 0.0260 | 0.0007 | 0.0020 | ||
(60, 30, 20) | 0.0042 | 0.0013 | 0.0150 | 0.0013 | 0.0150 | 0.0007 | 0.0018 |
Bayesian | |||||||||
\widehat{H(t)}_{BS} | \widehat{H(t)}_{BL} | \widehat{H(t)}_{BE} | |||||||
Sch. | T | (n, m, k) | \widehat{H(t) }_{ML} | IP | NIP | IP | NIP | IP | NIP |
MSE | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0250 | 4.20\times10^{-5} | 0.0390 | 4.20\times10^{-5} | 0.0320 | 4.20\times10^{-5} | 0.0200 |
(40, 20, 15) | 0.0220 | 4.20\times10^{-5} | 0.0350 | 4.20\times10^{-5} | 0.0300 | 4.20\times10^{-5} | 0.0190 | ||
(60, 30, 20) | 0.0250 | 5.60\times10^{-5} | 0.0370 | 5.60\times10^{-5} | 0.0270 | 5.60\times10^{-5} | 0.0240 | ||
T=0.7 | (30, 20, 15) | 0.0110 | 5.60\times10^{-5} | 0.0130 | 5.60\times10^{-5} | 0.0130 | 7.00\times10^{-5} | 0.0095 | |
(40, 20, 15) | 0.0290 | 5.60\times10^{-5} | 0.0400 | 5.60\times10^{-5} | 0.0330 | 5.60\times10^{-5} | 0.0220 | ||
(60, 30, 20) | 0.0084 | 8.40\times10^{-5} | 0.0110 | 8.40\times10^{-5} | 0.0100 | 8.40\times10^{-5} | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0120 | 7.00\times10^{-5} | 0.0150 | 7.00\times10^{-5} | 0.0140 | 7.00\times10^{-5} | 0.0110 | |
(40, 20, 15) | 0.0240 | 5.60\times10^{-5} | 0.0350 | 5.60\times10^{-5} | 0.0300 | 5.60\times10^{-5} | 0.0210 | ||
(60, 30, 20) | 0.0100 | 7.00\times10^{-5} | 0.0130 | 8.40\times10^{-5} | 0.0120 | 8.40\times10^{-5} | 0.0095 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0260 | 4.20\times10^{-5} | 0.0390 | 4.20\times10^{-5} | 0.0340 | 5.60\times10^{-5} | 0.0220 |
(40, 20, 15) | 0.0220 | 4.20\times10^{-5} | 0.0340 | 4.20\times10^{-5} | 0.0300 | 4.20\times10^{-5} | 0.0190 | ||
(60, 30, 20) | 0.0120 | 5.60\times10^{-5} | 0.0170 | 5.60\times10^{-5} | 0.0150 | 5.60\times10^{-5} | 0.0110 | ||
T=0.7 | (30, 20, 15) | 0.0130 | 5.60\times10^{-5} | 0.0180 | 5.60\times10^{-5} | 0.0170 | 7.00\times10^{-5} | 0.0120 | |
(40, 20, 15) | 0.0190 | 5.60\times10^{-5} | 0.0280 | 5.60\times10^{-5} | 0.0250 | 5.60\times10^{-5} | 0.0160 | ||
(60, 30, 20) | 0.0086 | 7.00\times10^{-5} | 0.0110 | 7.00\times10^{-5} | 0.0110 | 8.40\times10^{-5} | 0.0081 | ||
T=1.5 | (30, 20, 15) | 0.0130 | 7.00\times10^{-5} | 0.0170 | 7.00\times10^{-5} | 0.0160 | 7.00\times10^{-5} | 0.0120 | |
(40, 20, 15) | 0.0260 | 4.20\times10^{-5} | 0.0420 | 4.20\times10^{-5} | 0.0350 | 5.60\times10^{-5} | 0.0230 | ||
(60, 30, 20) | 0.0076 | 7.00\times10^{-5} | 0.0100 | 7.00\times10^{-5} | 0.0096 | 7.00\times10^{-5} | 0.0074 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0260 | 4.20\times10^{-5} | 0.0390 | 4.20\times10^{-5} | 0.0340 | 5.60\times10^{-5} | 0.0220 |
(40, 20, 15) | 0.0750 | 4.20\times10^{-5} | 0.2200 | 4.20\times10^{-5} | 0.1100 | 4.20\times10^{-5} | 0.0680 | ||
(60, 30, 20) | 0.0150 | 5.60\times10^{-5} | 0.0230 | 5.60\times10^{-5} | 0.0210 | 5.60\times10^{-5} | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0260 | 5.60\times10^{-5} | 0.0430 | 5.60\times10^{-5} | 0.0340 | 5.60\times10^{-5} | 0.0240 | |
(40, 20, 15) | 0.0660 | 4.20\times10^{-5} | 0.1500 | 4.20\times10^{-5} | 0.0910 | 4.20\times10^{-5} | 0.0570 | ||
(60, 30, 20) | 0.0160 | 5.60\times10^{-5} | 0.0230 | 5.60\times10^{-5} | 0.0210 | 5.60\times10^{-5} | 0.0140 | ||
T=1.5 | (30, 20, 15) | 0.0250 | 5.60\times10^{-5} | 0.0430 | 5.60\times10^{-5} | 0.0340 | 5.60\times10^{-5} | 0.0230 | |
(40, 20, 15) | 0.0870 | 4.20\times10^{-5} | 0.2000 | 4.20\times10^{-5} | 0.1000 | 4.20\times10^{-5} | 0.0700 | ||
(60, 30, 20) | 0.0170 | 5.60\times10^{-5} | 0.0260 | 5.60\times10^{-5} | 0.0230 | 5.60\times10^{-5} | 0.0150 | ||
EB | |||||||||
Sch-I | T=0.3 | (30, 20, 15) | 0.0600 | 1.70\times10^{-4} | 0.0880 | 3.20\times10^{-4} | 0.0800 | 0.0027 | 0.0320 |
(40, 20, 15) | 0.0510 | 3.60\times10^{-4} | 0.0810 | 5.20\times10^{-4} | 0.0730 | 0.0028 | 0.0240 | ||
(60, 30, 20) | 0.0360 | 2.80\times10^{-5} | 0.0540 | 1.10\times10^{-4} | 0.0490 | 0.0024 | 0.0180 | ||
T=0.7 | (30, 20, 15) | 0.0330 | 3.80\times10^{-4} | 0.0400 | 5.20\times10^{-4} | 0.0370 | 0.0028 | 0.0110 | |
(40, 20, 15) | 0.0610 | 9.80\times10^{-5} | 0.0810 | 5.60\times10^{-5} | 0.0740 | 0.0024 | 0.0370 | ||
(60, 30, 20) | 0.0290 | 1.10\times10^{-5} | 0.0370 | 1.50\times10^{-4} | 0.0350 | 0.0024 | 0.0160 | ||
T=1.5 | (30, 20, 15) | 0.0400 | 2.40\times10^{-4} | 0.0480 | 9.80\times10^{-5} | 0.0450 | 0.0021 | 0.0200 | |
(40, 20, 15) | 0.0550 | 1.50\times10^{-4} | 0.0740 | 3.10\times10^{-4} | 0.0680 | 0.0025 | 0.0330 | ||
(60, 30, 20) | 0.0340 | 5.90\times10^{-4} | 0.0440 | 4.50\times10^{-4} | 0.0420 | 0.0017 | 0.0230 | ||
Sch-II | T=0.3 | (30, 20, 15) | 0.0640 | 3.40\times10^{-4} | 0.0920 | 4.90\times10^{-4} | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.0510 | 3.50\times10^{-4} | 0.0780 | 5.00\times10^{-4} | 0.0700 | 0.0028 | 0.0230 | ||
(60, 30, 20) | 0.0330 | 1.40\times10^{-5} | 0.0490 | 1.40\times10^{-4} | 0.0450 | 0.0024 | 0.0140 | ||
T=0.7 | (30, 20, 15) | 0.0440 | 3.80\times10^{-4} | 0.0550 | 2.20\times10^{-4} | 0.0510 | 0.0021 | 0.0240 | |
(40, 20, 15) | 0.0550 | 4.20\times10^{-5} | 0.0770 | 1.10\times10^{-4} | 0.0720 | 0.0024 | 0.0340 | ||
(60, 30, 20) | 0.0330 | 4.90\times10^{-4} | 0.0410 | 3.50\times10^{-4} | 0.0390 | 0.0018 | 0.0190 | ||
T=1.5 | (30, 20, 15) | 0.0460 | 2.50\times10^{-4} | 0.0570 | 1.10\times10^{-4} | 0.0540 | 0.0021 | 0.0280 | |
(40, 20, 15) | 0.0670 | 4.20\times10^{-4} | 0.0920 | 2.80\times10^{-4} | 0.0850 | 0.0020 | 0.0450 | ||
(60, 30, 20) | 0.0280 | 1.30\times10^{-4} | 0.0370 | 1.10\times10^{-5} | 0.0350 | 0.0023 | 0.0160 | ||
Sch-III | T=0.3 | (30, 20, 15) | 0.0640 | 3.40\times10^{-4} | 0.0920 | 4.90\times10^{-4} | 0.0840 | 0.0028 | 0.0350 |
(40, 20, 15) | 0.1100 | 3.40\times10^{-4} | 0.2000 | 1.80\times10^{-4} | 0.1600 | 0.0021 | 0.0860 | ||
(60, 30, 20) | 0.0460 | 3.90\times10^{-4} | 0.0700 | 2.40\times10^{-4} | 0.0650 | 0.0020 | 0.0340 | ||
T=0.7 | (30, 20, 15) | 0.0560 | 1.30\times10^{-4} | 0.0770 | 1.10\times10^{-5} | 0.0710 | 0.0024 | 0.0370 | |
(40, 20, 15) | 0.0970 | 2.90\times10^{-4} | 0.1700 | 1.40\times10^{-4} | 0.1400 | 0.0023 | 0.0740 | ||
(60, 30, 20) | 0.0460 | 3.60\times10^{-4} | 0.0680 | 2.10\times10^{-4} | 0.0640 | 0.0021 | 0.0330 | ||
T=1.5 | (30, 20, 15) | 0.0600 | 1.10\times10^{-4} | 0.0830 | 4.20\times10^{-5} | 0.0760 | 0.0024 | 0.0410 | |
(40, 20, 15) | 0.1100 | 8.40\times10^{-5} | 0.1800 | 7.00\times10^{-5} | 0.1500 | 0.0024 | 0.0810 | ||
(60, 30, 20) | 0.0500 | 5.70\times10^{-4} | 0.0730 | 4.20\times10^{-4} | 0.0680 | 0.0018 | 0.0370 |
\widehat{\lambda}_{B} | |||||||||||||
\widehat{\lambda}_{ML} | IP | NIP | |||||||||||
90\% | 95\% | 90\% | 95\% | 90\% | 95\% | ||||||||
T | (n, m, k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch. I | |||||||||||||
T=0.3 | (30, 20, 15) | 2.733 | 0.918 | 3.161 | 0.950 | 0.911 | 0.940 | 1.078 | 0.965 | 2.683 | 0.863 | 3.138 | 0.928 |
(40, 20, 15) | 2.871 | 0.930 | 3.309 | 0.945 | 0.828 | 0.947 | 0.986 | 0.970 | 2.810 | 0.879 | 3.317 | 0.925 | |
(60, 30, 20) | 2.135 | 0.907 | 2.544 | 0.941 | 0.769 | 0.948 | 0.920 | 0.969 | 2.098 | 0.867 | 2.511 | 0.922 | |
T=0.7 | (30, 20, 15) | 1.665 | 0.873 | 1.935 | 0.943 | 0.741 | 0.934 | 0.877 | 0.965 | 1.614 | 0.851 | 1.864 | 0.927 |
(40, 20, 15) | 2.012 | 0.924 | 2.417 | 0.935 | 0.674 | 0.945 | 0.803 | 0.964 | 1.956 | 0.877 | 2.360 | 0.892 | |
(60, 30, 20) | 1.393 | 0.878 | 1.638 | 0.946 | 0.623 | 0.931 | 0.737 | 0.969 | 1.355 | 0.856 | 1.596 | 0.918 | |
T=1.5 | (30, 20, 15) | 1.420 | 0.901 | 1.692 | 0.942 | 0.658 | 0.945 | 0.780 | 0.965 | 1.378 | 0.871 | 1.634 | 0.927 |
(40, 20, 15) | 1.748 | 0.931 | 2.067 | 0.945 | 0.602 | 0.946 | 0.708 | 0.965 | 1.707 | 0.864 | 2.015 | 0.907 | |
(60, 30, 20) | 1.208 | 0.907 | 1.461 | 0.940 | 0.554 | 0.937 | 0.656 | 0.965 | 1.173 | 0.889 | 1.420 | 0.913 | |
Sch. II | |||||||||||||
T=0.3 | (30, 20, 15) | 2.727 | 0.908 | 3.181 | 0.940 | 0.909 | 0.930 | 1.079 | 0.965 | 2.653 | 0.858 | 3.143 | 0.912 |
(40, 20, 15) | 2.917 | 0.920 | 3.260 | 0.937 | 0.824 | 0.955 | 0.972 | 0.965 | 2.883 | 0.867 | 3.243 | 0.923 | |
(60, 30, 20) | 2.098 | 0.899 | 2.499 | 0.930 | 0.766 | 0.946 | 0.908 | 0.968 | 2.047 | 0.865 | 2.456 | 0.907 | |
T=0.7 | (30, 20, 15) | 1.648 | 0.886 | 1.984 | 0.942 | 0.738 | 0.944 | 0.876 | 0.961 | 1.592 | 0.858 | 1.930 | 0.917 |
(40, 20, 15) | 2.328 | 0.905 | 2.408 | 0.943 | 0.673 | 0.944 | 0.795 | 0.964 | 2.296 | 0.848 | 2.355 | 0.913 | |
(60, 30, 20) | 1.367 | 0.901 | 1.661 | 0.941 | 0.616 | 0.947 | 0.734 | 0.970 | 1.334 | 0.875 | 1.612 | 0.913 | |
T=1.5 | (30, 20, 15) | 1.481 | 0.879 | 1.726 | 0.935 | 0.654 | 0.934 | 0.782 | 0.959 | 1.455 | 0.858 | 1.683 | 0.907 |
(40, 20, 15) | 1.866 | 0.938 | 2.224 | 0.951 | 0.596 | 0.948 | 0.710 | 0.966 | 1.811 | 0.863 | 2.189 | 0.922 | |
(60, 30, 20) | 1.203 | 0.900 | 1.442 | 0.946 | 0.547 | 0.945 | 0.653 | 0.965 | 1.169 | 0.881 | 1.407 | 0.913 | |
Sch. III | |||||||||||||
T=0.3 | (30, 20, 15) | 2.425 | 0.915 | 3.181 | 0.940 | 0.887 | 0.927 | 1.079 | 0.965 | 2.382 | 0.879 | 3.143 | 0.912 |
(40, 20, 15) | 3.676 | 0.928 | 4.329 | 0.951 | 0.798 | 0.948 | 0.945 | 0.974 | 3.932 | 0.857 | 4.748 | 0.912 | |
(60, 30, 20) | 2.083 | 0.913 | 2.451 | 0.945 | 0.742 | 0.951 | 0.875 | 0.964 | 2.057 | 0.854 | 2.459 | 0.911 | |
T=0.7 | (30, 20, 15) | 1.771 | 0.919 | 2.142 | 0.949 | 0.721 | 0.940 | 0.855 | 0.966 | 1.727 | 0.866 | 2.120 | 0.920 |
(40, 20, 15) | 3.077 | 0.924 | 3.378 | 0.952 | 0.656 | 0.942 | 0.773 | 0.968 | 3.272 | 0.844 | 3.600 | 0.916 | |
(60, 30, 20) | 1.670 | 0.913 | 1.993 | 0.949 | 0.601 | 0.949 | 0.715 | 0.967 | 1.669 | 0.859 | 1.986 | 0.917 | |
T=1.5 | (30, 20, 15) | 1.544 | 0.924 | 1.920 | 0.951 | 0.644 | 0.925 | 0.762 | 0.970 | 1.512 | 0.886 | 1.913 | 0.907 |
(40, 20, 15) | 2.793 | 0.927 | 3.096 | 0.943 | 0.580 | 0.948 | 0.685 | 0.967 | 2.910 | 0.837 | 3.291 | 0.896 | |
(60, 30, 20) | 1.517 | 0.913 | 1.792 | 0.955 | 0.534 | 0.937 | 0.634 | 0.957 | 1.502 | 0.844 | 1.792 | 0.917 |
Bayesian | |||||||||||||
\widehat{\mu}_{ML} | IP | NIP | |||||||||||
90\% | 95\% | 90\% | 95\% | 90\% | 95\% | ||||||||
T | (n, m, k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch. I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.933 | 0.901 | 1.101 | 0.983 | 0.456 | 0.955 | 0.541 | 0.989 | 0.910 | 0.891 | 1.055 | 0.961 |
(40, 20, 15) | 0.833 | 0.904 | 0.979 | 0.968 | 0.393 | 0.940 | 0.466 | 0.991 | 0.804 | 0.876 | 0.937 | 0.951 | |
(60, 30, 20) | 0.710 | 0.915 | 0.837 | 0.963 | 0.366 | 0.952 | 0.427 | 0.987 | 0.695 | 0.890 | 0.805 | 0.931 | |
T=0.7 | (30, 20, 15) | 0.726 | 0.917 | 0.855 | 0.962 | 0.423 | 0.963 | 0.496 | 0.984 | 0.706 | 0.898 | 0.819 | 0.942 |
(40, 20, 15) | 0.688 | 0.916 | 0.814 | 0.960 | 0.364 | 0.957 | 0.432 | 0.990 | 0.671 | 0.896 | 0.783 | 0.931 | |
(60, 30, 20) | 0.556 | 0.895 | 0.661 | 0.945 | 0.335 | 0.939 | 0.396 | 0.986 | 0.542 | 0.882 | 0.642 | 0.927 | |
T=1.5 | (30, 20, 15) | 0.645 | 0.918 | 0.766 | 0.959 | 0.387 | 0.952 | 0.457 | 0.983 | 0.632 | 0.901 | 0.739 | 0.938 |
(40, 20, 15) | 0.614 | 0.928 | 0.735 | 0.966 | 0.331 | 0.954 | 0.393 | 0.970 | 0.594 | 0.893 | 0.707 | 0.930 | |
(60, 30, 20) | 0.500 | 0.917 | 0.599 | 0.949 | 0.306 | 0.954 | 0.363 | 0.987 | 0.488 | 0.899 | 0.578 | 0.927 | |
Sch. II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.931 | 0.908 | 1.106 | 0.973 | 0.455 | 0.955 | 0.537 | 0.990 | 0.900 | 0.893 | 1.061 | 0.935 |
(40, 20, 15) | 0.820 | 0.905 | 0.971 | 0.971 | 0.388 | 0.955 | 0.462 | 0.983 | 0.797 | 0.882 | 0.929 | 0.949 | |
(60, 30, 20) | 0.700 | 0.918 | 0.834 | 0.975 | 0.362 | 0.962 | 0.426 | 0.982 | 0.681 | 0.905 | 0.798 | 0.949 | |
T=0.7 | (30, 20, 15) | 0.719 | 0.912 | 0.858 | 0.972 | 0.417 | 0.958 | 0.494 | 0.991 | 0.703 | 0.888 | 0.834 | 0.952 |
(40, 20, 15) | 0.757 | 0.918 | 0.816 | 0.970 | 0.358 | 0.957 | 0.423 | 0.985 | 0.735 | 0.899 | 0.785 | 0.956 | |
(60, 30, 20) | 0.555 | 0.907 | 0.662 | 0.969 | 0.334 | 0.960 | 0.391 | 0.983 | 0.545 | 0.879 | 0.637 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.654 | 0.909 | 0.768 | 0.966 | 0.384 | 0.952 | 0.456 | 0.984 | 0.640 | 0.874 | 0.744 | 0.933 |
(40, 20, 15) | 0.633 | 0.907 | 0.751 | 0.971 | 0.331 | 0.960 | 0.388 | 0.980 | 0.615 | 0.874 | 0.721 | 0.954 | |
(60, 30, 20) | 0.506 | 0.890 | 0.593 | 0.971 | 0.307 | 0.939 | 0.357 | 0.988 | 0.490 | 0.872 | 0.578 | 0.953 | |
Sch. III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.915 | 0.926 | 1.106 | 0.973 | 0.447 | 0.941 | 0.537 | 0.990 | 0.891 | 0.891 | 1.061 | 0.935 |
(40, 20, 15) | 0.918 | 0.906 | 1.080 | 0.970 | 0.377 | 0.942 | 0.445 | 0.987 | 0.884 | 0.862 | 1.031 | 0.937 | |
(60, 30, 20) | 0.693 | 0.925 | 0.832 | 0.972 | 0.351 | 0.960 | 0.417 | 0.990 | 0.675 | 0.900 | 0.801 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.772 | 0.922 | 0.914 | 0.980 | 0.415 | 0.955 | 0.485 | 0.997 | 0.750 | 0.902 | 0.884 | 0.964 |
(40, 20, 15) | 0.834 | 0.925 | 0.990 | 0.974 | 0.345 | 0.950 | 0.411 | 0.987 | 0.806 | 0.876 | 0.941 | 0.935 | |
(60, 30, 20) | 0.641 | 0.919 | 0.760 | 0.968 | 0.326 | 0.955 | 0.383 | 0.992 | 0.623 | 0.890 | 0.729 | 0.947 | |
T=1.5 | (30, 20, 15) | 0.704 | 0.921 | 0.842 | 0.971 | 0.382 | 0.942 | 0.446 | 0.992 | 0.686 | 0.896 | 0.808 | 0.947 |
(40, 20, 15) | 0.773 | 0.914 | 0.911 | 0.963 | 0.318 | 0.956 | 0.377 | 0.979 | 0.739 | 0.878 | 0.860 | 0.923 | |
(60, 30, 20) | 0.589 | 0.928 | 0.702 | 0.970 | 0.297 | 0.949 | 0.354 | 0.987 | 0.573 | 0.904 | 0.677 | 0.940 |
\widehat{S(t) }_{B} | |||||||||||||
\widehat{S(t) }_{ML} | IP | NIP | |||||||||||
90\% | 95\% | 90\% | 95\% | 90\% | 95\% | ||||||||
T | (n, m, k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch. I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.088 | 0.736 | 0.110 | 0.797 | 0.021 | 0.980 | 0.026 | 0.985 | 0.138 | 0.922 | 0.185 | 0.949 |
(40, 20, 15) | 0.113 | 0.771 | 0.140 | 0.813 | 0.022 | 0.987 | 0.026 | 0.993 | 0.164 | 0.919 | 0.215 | 0.948 | |
(60, 30, 20) | 0.091 | 0.803 | 0.110 | 0.849 | 0.021 | 0.976 | 0.026 | 0.978 | 0.123 | 0.907 | 0.158 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.789 | 0.088 | 0.856 | 0.020 | 0.965 | 0.024 | 0.963 | 0.099 | 0.903 | 0.133 | 0.946 |
(40, 20, 15) | 0.069 | 0.727 | 0.092 | 0.799 | 0.020 | 0.954 | 0.024 | 0.948 | 0.105 | 0.926 | 0.144 | 0.919 | |
(60, 30, 20) | 0.057 | 0.812 | 0.069 | 0.875 | 0.019 | 0.980 | 0.023 | 0.985 | 0.075 | 0.914 | 0.097 | 0.929 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.790 | 0.069 | 0.838 | 0.018 | 0.965 | 0.022 | 0.918 | 0.084 | 0.918 | 0.108 | 0.939 |
(40, 20, 15) | 0.066 | 0.758 | 0.083 | 0.809 | 0.018 | 0.954 | 0.022 | 0.985 | 0.098 | 0.909 | 0.132 | 0.934 | |
(60, 30, 20) | 0.049 | 0.833 | 0.058 | 0.856 | 0.018 | 0.980 | 0.021 | 0.903 | 0.066 | 0.948 | 0.083 | 0.929 | |
Sch. II | |||||||||||||
T=0.3 | (30, 20, 15) | 0.089 | 0.743 | 0.113 | 0.769 | 0.021 | 0.980 | 0.026 | 0.985 | 0.140 | 0.921 | 0.188 | 0.943 |
(40, 20, 15) | 0.111 | 0.754 | 0.143 | 0.802 | 0.021 | 0.965 | 0.026 | 0.963 | 0.159 | 0.904 | 0.215 | 0.954 | |
(60, 30, 20) | 0.092 | 0.814 | 0.110 | 0.859 | 0.021 | 0.954 | 0.026 | 0.948 | 0.125 | 0.921 | 0.156 | 0.934 | |
T=0.7 | (30, 20, 15) | 0.068 | 0.794 | 0.080 | 0.802 | 0.020 | 0.943 | 0.024 | 0.933 | 0.098 | 0.910 | 0.124 | 0.944 |
(40, 20, 15) | 0.105 | 0.730 | 0.088 | 0.802 | 0.020 | 0.932 | 0.024 | 0.918 | 0.150 | 0.912 | 0.139 | 0.940 | |
(60, 30, 20) | 0.055 | 0.821 | 0.066 | 0.836 | 0.019 | 0.980 | 0.023 | 0.985 | 0.074 | 0.913 | 0.094 | 0.930 | |
T=1.5 | (30, 20, 15) | 0.054 | 0.765 | 0.067 | 0.793 | 0.018 | 0.943 | 0.022 | 0.888 | 0.078 | 0.905 | 0.104 | 0.928 |
(40, 20, 15) | 0.063 | 0.735 | 0.073 | 0.781 | 0.018 | 0.932 | 0.022 | 0.985 | 0.096 | 0.895 | 0.123 | 0.950 | |
(60, 30, 20) | 0.048 | 0.827 | 0.059 | 0.884 | 0.018 | 0.980 | 0.021 | 0.873 | 0.064 | 0.913 | 0.085 | 0.934 | |
Sch. III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.101 | 0.782 | 0.113 | 0.769 | 0.021 | 0.979 | 0.026 | 0.985 | 0.144 | 0.919 | 0.188 | 0.943 |
(40, 20, 15) | 0.089 | 0.668 | 0.114 | 0.730 | 0.021 | 0.943 | 0.026 | 0.933 | 0.132 | 0.888 | 0.180 | 0.926 | |
(60, 30, 20) | 0.070 | 0.778 | 0.085 | 0.808 | 0.021 | 0.932 | 0.025 | 0.918 | 0.093 | 0.901 | 0.120 | 0.936 | |
T=0.7 | (30, 20, 15) | 0.065 | 0.766 | 0.074 | 0.815 | 0.020 | 0.921 | 0.024 | 0.903 | 0.093 | 0.908 | 0.119 | 0.951 |
(40, 20, 15) | 0.088 | 0.684 | 0.105 | 0.758 | 0.020 | 0.910 | 0.024 | 0.888 | 0.129 | 0.891 | 0.170 | 0.933 | |
(60, 30, 20) | 0.063 | 0.803 | 0.074 | 0.830 | 0.019 | 0.980 | 0.023 | 0.985 | 0.083 | 0.906 | 0.107 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.058 | 0.788 | 0.069 | 0.797 | 0.018 | 0.921 | 0.022 | 0.858 | 0.084 | 0.947 | 0.109 | 0.941 |
(40, 20, 15) | 0.078 | 0.684 | 0.099 | 0.747 | 0.018 | 0.910 | 0.023 | 0.985 | 0.116 | 0.883 | 0.158 | 0.927 | |
(60, 30, 20) | 0.057 | 0.787 | 0.069 | 0.803 | 0.018 | 0.980 | 0.022 | 0.903 | 0.077 | 0.899 | 0.098 | 0.939 |
\widehat{H(t) }_{B} | |||||||||||||
\widehat{H(t) }_{ML} | IP | NIP | |||||||||||
90\% | 95\% | 90\% | 95\% | 90\% | 95\% | ||||||||
T | (n, m, k) | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP | AL | CP |
Sch. I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.472 | 0.716 | 0.537 | 0.769 | 0.078 | 0.961 | 0.093 | 0.966 | 0.475 | 0.943 | 0.556 | 0.963 |
(40, 20, 15) | 0.473 | 0.750 | 0.533 | 0.784 | 0.078 | 0.980 | 0.092 | 1.000 | 0.474 | 0.933 | 0.559 | 0.956 | |
(60, 30, 20) | 0.344 | 0.781 | 0.408 | 0.819 | 0.078 | 1.000 | 0.091 | 1.000 | 0.345 | 0.922 | 0.416 | 0.959 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.767 | 0.354 | 0.825 | 0.074 | 1.031 | 0.087 | 1.000 | 0.300 | 0.924 | 0.343 | 0.953 |
(40, 20, 15) | 0.344 | 0.707 | 0.417 | 0.770 | 0.067 | 0.963 | 0.080 | 0.955 | 0.339 | 0.946 | 0.417 | 0.925 | |
(60, 30, 20) | 0.256 | 0.790 | 0.301 | 0.843 | 0.072 | 1.000 | 0.086 | 1.000 | 0.249 | 0.926 | 0.294 | 0.937 | |
T=1.5 | (30, 20, 15) | 0.288 | 0.768 | 0.343 | 0.808 | 0.072 | 1.000 | 0.085 | 1.000 | 0.280 | 0.931 | 0.332 | 0.938 |
(40, 20, 15) | 0.332 | 0.737 | 0.397 | 0.780 | 0.067 | 0.975 | 0.079 | 0.995 | 0.330 | 0.930 | 0.395 | 0.942 | |
(60, 30, 20) | 0.243 | 0.810 | 0.296 | 0.825 | 0.071 | 1.000 | 0.084 | 1.000 | 0.235 | 0.959 | 0.290 | 0.931 | |
Sch.I I | |||||||||||||
T=0.3 | (30, 20, 15) | 0.470 | 0.722 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 0.975 | 0.466 | 0.936 | 0.562 | 0.949 |
(40, 20, 15) | 0.485 | 0.733 | 0.527 | 0.773 | 0.078 | 0.967 | 0.092 | 0.989 | 0.494 | 0.924 | 0.547 | 0.955 | |
(60, 30, 20) | 0.333 | 0.792 | 0.398 | 0.828 | 0.077 | 1.035 | 0.091 | 1.000 | 0.329 | 0.937 | 0.401 | 0.945 | |
T=0.7 | (30, 20, 15) | 0.310 | 0.773 | 0.375 | 0.773 | 0.074 | 0.967 | 0.088 | 1.000 | 0.299 | 0.925 | 0.369 | 0.955 |
(40, 20, 15) | 0.429 | 0.710 | 0.438 | 0.773 | 0.074 | 0.967 | 0.087 | 0.959 | 0.434 | 0.935 | 0.440 | 0.949 | |
(60, 30, 20) | 0.253 | 0.798 | 0.308 | 0.806 | 0.073 | 1.007 | 0.086 | 1.000 | 0.247 | 0.926 | 0.300 | 0.940 | |
T=1.5 | (30, 20, 15) | 0.315 | 0.744 | 0.357 | 0.765 | 0.072 | 0.956 | 0.085 | 1.000 | 0.314 | 0.925 | 0.350 | 0.935 |
(40, 20, 15) | 0.387 | 0.715 | 0.455 | 0.753 | 0.073 | 0.941 | 0.086 | 0.965 | 0.380 | 0.926 | 0.461 | 0.961 | |
(60, 30, 20) | 0.248 | 0.805 | 0.290 | 0.852 | 0.071 | 1.000 | 0.084 | 1.000 | 0.239 | 0.925 | 0.285 | 0.941 | |
Sch. III | |||||||||||||
T=0.3 | (30, 20, 15) | 0.417 | 0.761 | 0.546 | 0.742 | 0.078 | 0.927 | 0.093 | 1.000 | 0.420 | 0.935 | 0.562 | 0.949 |
(40, 20, 15) | 0.663 | 0.649 | 0.779 | 0.704 | 0.078 | 0.880 | 0.093 | 0.877 | 0.771 | 0.906 | 0.944 | 0.933 | |
(60, 30, 20) | 0.348 | 0.756 | 0.412 | 0.779 | 0.077 | 0.973 | 0.091 | 1.000 | 0.349 | 0.917 | 0.427 | 0.948 | |
T=0.7 | (30, 20, 15) | 0.362 | 0.745 | 0.429 | 0.786 | 0.074 | 0.983 | 0.088 | 1.000 | 0.358 | 0.930 | 0.437 | 0.962 |
(40, 20, 15) | 0.607 | 0.666 | 0.665 | 0.731 | 0.075 | 0.914 | 0.089 | 0.898 | 0.695 | 0.912 | 0.758 | 0.946 | |
(60, 30, 20) | 0.332 | 0.781 | 0.394 | 0.800 | 0.074 | 1.000 | 0.087 | 1.000 | 0.338 | 0.923 | 0.405 | 0.952 | |
T=1.5 | (30, 20, 15) | 0.338 | 0.766 | 0.429 | 0.769 | 0.073 | 0.961 | 0.086 | 1.000 | 0.335 | 0.962 | 0.443 | 0.953 |
(40, 20, 15) | 0.621 | 0.666 | 0.689 | 0.720 | 0.073 | 0.900 | 0.087 | 0.898 | 0.686 | 0.903 | 0.796 | 0.936 | |
(60, 30, 20) | 0.331 | 0.765 | 0.394 | 0.774 | 0.072 | 0.968 | 0.086 | 1.000 | 0.333 | 0.923 | 0.408 | 0.950 |