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Abstract: Accurate flood forecasting is a crucial process for predicting the timing, occurrence, 

duration, and magnitude of floods in specific zones. This prediction often involves analyzing various 

hydrological, meteorological, and environmental parameters. In recent years, several soft computing 

techniques have been widely used for flood forecasting. In this study, flood forecasting for the Narmada 

River at the Hoshangabad gauging site in Madhya Pradesh, India, was conducted using an Artificial 

Neural Network (ANN) model, a Fuzzy Logic (FL) model, and an Adaptive Neuro-Fuzzy Inference 

System (ANFIS) model. To assess their capacity to handle different levels of information, three 

separate input data sets were used. Our objective was to compare the performance and evaluate the 

suitability of soft computing data-driven models for flood forecasting. For the development of these 

models, monthly discharge data spanning 33 years from six gauging sites were selected. Various 

performance measures, such as regression, root mean square error (RMSE), and percentage deviation, 

were used to compare and evaluate the performances of the different models. The results indicated that 

the ANN and ANFIS models performed similarly in some cases. However, the ANFIS model generally 

predicted much better than the ANN model in most cases. The ANFIS model, developed using the 

hybrid method, delivered the best performance with an RMSE of 211.97 and a coefficient of regression 

of 0.96, demonstrating the potential of using these models for flood forecasting. This research 

highlighted the effectiveness of soft computing techniques in flood forecasting and established useful 

suitability criteria that can be employed by flood control departments in various countries, regions, and 

states for accurate flood prognosis. 
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1. Introduction  

Hydrological forecasting, particularly flood prediction, is a critical concern in hydrology, playing 

a pivotal role in water resource planning and development. It serves as an essential tool for managing 

reservoir outflows during upper river flows, contributing to effective water resource management [1]. 

Traditionally, flood forecasting models have been developed using either a physical understanding of 

the involved processes or a systems theoretic approach [2]. The physical approach emphasizes studying 

and understanding physical phenomena, while the systems theoretic approach focuses on the system’s 

operation rather than its inherent nature or governing physical laws [3]. While conceptual (physics-

based) models offer reasonable accuracy, their implementation and calibration pose significant 

challenges, requiring advanced mathematical tools and substantial expertise [4]. Due to the complexity 

of the physical approach, a systems theoretic perspective is often adopted. This approach approximates 

major physical factors and allows the neglect of minor features [5]. In such cases, data-driven models, 

which do not require complete physical understanding, become preferable. This is especially true in 

river flow forecasting, where the primary objective is to make accurate predictions at specific 

watershed locations. 

In recent years, there has been an increased reliance on data-driven models for flood forecasting. 

Artificial Neural Networks (ANN) [2,6–8] and fuzzy logic have been successfully employed 

independently [9,10]. However, integrating their strengths has given rise to powerful intelligent 

systems known as neuro-fuzzy systems. For example, Nayak et al. [11] applied adaptive neuro-fuzzy 

inference systems (ANFIS) for hydrologic time series modeling of river flow, demonstrating 

superiority over traditional models in terms of computational speed, forecast errors, efficiency, and 

peak flow estimation. Similar results were also reported by Nayak et al. [12], where the performance 

of the ANFIS model was found to better capture the inherent nonlinearity in the rainfall-runoff process 

compared to independent fuzzy and ANN models. Advancements in computing power have facilitated 

the development of effective modeling tools. Emulating the human brain’s low level mechanisms 

through ANN [13] and the fuzzy rule-based approach introduced by Zadeh [14], have led to significant 

breakthroughs [11,15]. Both ANN and fuzzy logic exhibit intrinsic generality, flexibility, and global 

performance, making them valuable building blocks in today’s computational landscape [16]. 

ANNs, as semi-parametric regression estimators, are well-suited for hydrologic modeling [17–19], 

offering the ability to approximate virtually any measurable function with a high degree of accuracy [20]. 

The emergence of neural network technology has yielded many promising results in hydrology and 

water resource simulation [6]. Fuzzy rule-based modeling describes system behavior using natural 

language [21], finding applications in water resource forecasting [22–28]. The integration of these 

approaches into neuro-fuzzy systems capitalizes on the advantages of both fields, combining the 

learning capabilities of ANN with the fuzzy reasoning mechanism, thereby enhancing overall modeling 

capabilities [29–32]. The integration of neural networks and fuzzy logic in neuro-fuzzy systems 

represents a promising advancement in computational hydrology. This synergistic approach leverages 

the strengths of each technique, proving advantageous in handling large amounts of noisy data from 

dynamic and nonlinear systems, particularly when the underlying physical relationships are not well 

understood. Neuro-fuzzy systems, with their unique combination of neural network learning and fuzzy 

reasoning, hold great potential across various applications, from signal processing to database 

management [33]. 
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Our objective is to compare the performance and evaluate the suitability of three soft computing 

technique-based models for flood forecasting. The flood problem faced by India is unique due to the 

varied climate and rainfall patterns across different regions of the country. It is often observed that one 

part of the country experiences floods while another part suffers from severe drought. Heavy and 

intense rainfall is a significant factor contributing to floods. However, floods may also be caused by 

various other factors, including the failure of flood control structures, drainage congestion, sudden 

release of water due to removing ice jams or landslides in mountainous streams, and coastal flooding 

due to high tides. Despite implementing various short and long-term measures to prevent and mitigate 

the consequences of floods, significant damages and losses persist due to increased human interference 

in natural processes and the encroachment of floodplain zones and riverbeds. Flood forecasting serves 

as a crucial tool for providing warnings to people residing in floodplains, helping to alleviate distress 

and minimize damage. 

Atiya et al. [34] assessed the application of brain organizations to the issue of determining the 

progression of the Stream Nile in Egypt and used the time series as a benchmark to look at brain 

network estimating techniques. They compared four distinct strategies with preprocessing the 

information sources and results, including an original strategy proposed here in light of the discrete 

Fourier series. Khan et al. [35] combined three methods to reduce uncertainty in an FNN model for 

predicting the peak flow rate in Calgary’s Bow River. The methods included an ANPSFS method, a 

search algorithm for network architecture selection. This approach demonstrates data-driven 

modeling’s suitability for urban watershed flood modeling. Patel and Parekh [36] investigate the use 

of Artificial Intelligence Techniques (ANFIS) in flood forecasting for the Dharoi Dam in Gujarat, India. 

The technique combines neural network learning with fuzzy system representation. ANFIS models are 

trained and tested using statistical indices like RMSE, R2, and D. The results show that ANFIS can 

accurately and reliably forecast floods. Mistry and Parekh [37] used artificial neural networks (ANN) 

to predict river flow in the Deo River in Gujarat, India. The model considers rainfall and discharge 

parameters. Six alternative flood prediction models were developed using ANN, using different 

training algorithms. The best performance was achieved with an ANN model using the Cascade 

forward back-propagation training algorithm. The model’s performance was evaluated using statistical 

parameters, showing its effectiveness in predicting floods and being used by flood control departments 

for forecasting. Ahmadia and Moradinia [38] used the Adaptive Neuro-Fuzzy Inference System (ANFIS) 

model and Harris Hawks Optimization (HHO) and Arithmetic Optimization Algorithm (AOA) to 

predict floods in Iran’s Shahrchay River. Data from 2016 and 2017 was used for training and testing. 

The ANFIS-AOA model showed promising results, with NSE, RMSE, and Mapei values of 0.93, 1.34, 

and 0.69, respectively.  

2. Study area and data collection 

The Narmada River originates in Amarkantak, Madhya Pradesh, India, at an altitude of 1057 

meters. It spans a length of 1,312 kilometers, emptying into the Gulf of Khambhat in the Arabian Sea 

near Bharuch, Gujarat. The Narmada Basin covers an area of 98,796 square kilometers and is between 

72°32' E, 81°45' E, 21°20' N, and 23°45' N. The study area encompasses the upper basin of the 

Narmada River. The Narmada Basin survey G & D Hoshangabad site and flood forecast selected 

13,120 square kilometers of drainage area. Emission data from Dindori, Manot, Barmanghat, Mohgaon, 

and Sandia is accessible from 1989 to 2021. To develop a flood forecasting model at the 

Hoshangabad site, discharge measurements from Dindori, Manot, Barmanghat, Mohgaon, and 

Sandia have been utilized. To validate the model, discharge data from the Hoshangabad gauge si te 
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has been employed (see Figure 1). 

The Narmada’s 75% reliable flow is characterized by a flow coefficient of 0.29. Annual 

precipitation in the upper basin of the Narmada exceeds 1400 mm, with some areas surpassing 1650 mm. 

In 1999, the Narmada River Basin, particularly Hoshangabad, experienced unprecedented rainfall, 

prompting the construction of three major dams in the former catchment area: Bharji Dam, Barna Dam, 

and Tawa Dam. Consequently, large parts of Hoshangabad city were inundated for an extended period, 

resulting in significant damage to the local economy. Monthly discharge data from the Narmada River 

Basin’s six gauging sites for 33 years has been collected from the India Water Resources Information 

System (IWRIS). 

 

Figure 1. Study area map. 

3. Materials and methods 

3.1. Overview of ANN 

Artificial neural networks, as their name implies, are built to imitate biological neural networks 

of living organisms. Neural network models are a particularly potent computer tool for modeling 

complex nonlinear interactions, especially when the explicit form of the link between the variables 

involved is unknown. The model inputs and architecture of an ANN are thus defined in terms of the 

number of layers, the nodes in each layer, the activation functions in each layer, and the connections 

between the layers. An ANN normally has three layers: An input layer, which brings data into the 

network; one or more hidden layers, which process the data; and an output layer, which generates a 

result for a specific output (Figure 2). Weights act as connections between the neurons in each layer. 
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To produce the output, the input data is processed by a hidden layer and a nonlinear function of the 

output layer. A popular training algorithm with the benefit of being simple to learn and effective in 

many applications is the backpropagation method [13,39], having the advantage of easy 

understanding and can be successfully used in many applications. In this research, the Levenberg-

Marquardt (LM) [22,40,41], which helps to train many neural networks with just a few thousand 

instances and a few hundred parameters, the gradient descent algorithm with variable learning and 

momentum factor (GDX) [27,42], and the conjugate descent algorithm (CGF) backpropagation 

algorithm [11,43,44] were used to train the ANN models in order to save the memory and check their 

performance. 

 

Figure 2. Block diagram of ANN network. 

General steps for flood forecasting using ANN: 

(1) Data collection: Gather historical data on rainfall, river discharge, soil moisture, and other relevant 

variables. 

(2) Preprocessing: Clean and preprocess the data to remove noise and inconsistencies. 

(3) Model training: Train the ANN using historical data to learn the complex relationships between 

input variables and flood events. 

(4) Model validation: Validate the ANN’s performance using independent datasets or cross-validation 

techniques. 

(5) Forecasting: Utilize the trained ANN to predict future flood events based on current and forecasted 

meteorological conditions. 

3.2. Overview of fuzzy logic 

Natural, continuous logic, known as fuzzy logic, is based somewhat on how people think. 

Theoretical mathematics responds to variables that are continually changing, challenging conventional 

reasoning by not being constrained to the dual computer values of zero (0) and one (1). Alternately, 

partial truths and multivalued truths are supported by fuzzy logic. It is especially helpful for issues 

where mathematical modeling is difficult or impossible due to missing, imperfect, or complicated data. 

Engineers can integrate ambiguous reasoning that is similar to human logic into computers by 

employing linguistic modeling rather than mathematical modeling when using real language in fuzzy 
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control, which makes designing and modifying fuzzy logic systems more relevant.  

To consider situations where decision-makers must accurately interpret and process information 

that is intrinsically imperfect, the fuzzy set theory was established. Fuzzy sets offer an analytical tool 

and a conceptual framework (Figure 3) for dealing with practical issues that lack precise information. 

 

Figure 3. Block diagram of a fuzzy-based inference system [41]. 

On the other hand, the meaning of ambiguity and comparison is infused with human semantics. 

The discrepancy in raters can be eliminated using linguistic data at various granularities. Machines 

might be able to understand and react to hazy human ideas like hot, cold, huge, and little with the help 

of fuzzy logic algorithms. They could also offer a reasonably straightforward method for obtaining 

firm conclusions from false information. 

General steps for flood forecasting using fuzzy logic: 

(1) Linguistic variable definition: Define linguistic variables representing input and output parameters, 

such as rainfall intensity, river flow rate, and flood severity. 

(2) Fuzzy rule base construction: Develop a set of fuzzy rules that capture expert knowledge or 

historical relationships between input and output variables. 

(3) Fuzzy inference: Apply fuzzy logic inference techniques, such as Mamdani or Sugeno methods, to 

determine the degree of membership for each fuzzy rule. 

(4) Defuzzification: Convert the fuzzy output into crisp values representing forecasted flood conditions. 

3.3. Overview of ANFIS 

When creating an ANFIS to simulate a certain target system, choosing a FIS is crucial. In the 

literature, various FIS types are discussed [39,45,46] and each is distinguished only by the 

characteristics that come from it. A Takagi Sugeno Kang (TSK) fuzzy logic system [39,47–49] was 

utilized in the current work because fuzzy rules can be inferred using a related linear combination, and 

their factors may be evaluated using regression analysis. Do not forget that the FIS has one output (z) 

and two inputs (x, y). Figures show the design of the appropriate ANFIS for a TSK fuzzy inference 

system with two membership functions allocated to each input (x and y). 

Neuro-fuzzy adopts IF-THEN fuzzy rules to relate the connection between the input data and 

output data sets of a modeling problem. The basic structure of the ANFIS model is demonstrated in 
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Figure 4. In this model, the Takagi Sugeno inference method is essential in constructing the IF-THEN 

rules from input to end. 

Rule1: If x is D1 and y is C1, so g1=α1x+β1y+γ1, 

Rule2: If x is D2 and y is C2, so g2=α2x+β2y+γ2, 

where α1, β1, γ1, and α2, β2, γ2 denote the consequence parameters, and D1, D2, C1, and C2 are 

considered to be membership functions. The ANFIS comprises five levels with a greater amount of 

inputs and only one output. This structure is structured as follows: 

 

Figure 4. Block diagram of ANFIS Network. 

General steps for flood forecasting using ANFIS: 

(1) Hybrid model structure: Design the ANFIS architecture, which typically consists of a fuzzy 

inference system followed by a neural network. 

(2) Parameter initialization: Initialize the parameters of the ANFIS model, including fuzzy membership 

functions and neural network weights. 

(3) Hybrid learning algorithm: Train the ANFIS model using a hybrid learning algorithm, such as 

backpropagation or least squares estimation, to optimize both fuzzy and neural components. 

(4) Model evaluation: Evaluate the performance of the trained ANFIS model using validation datasets 

and performance metrics. 

(5) Forecast generation: Generate flood forecasts using the trained ANFIS model, incorporating current 

and forecasted meteorological inputs 

3.4. Model parameters 

A crucial phase in the model development process involves identifying significant input 

parameters, a task that requires careful consideration due to potential correlations, noise, or lack of 

substantial relationships with the output variable [44,50]. Typically, initial sets of candidate inputs are 

specified using some degree of a priori knowledge [45,51]. While widely used, a priori identification 

is subjective and dependent on expert knowledge, making it case-specific. An ideal approach for 

determining suitable inputs involves a blend of a priori knowledge and analytical methods [47,52–54].  

As mentioned in the previous section, three different types of models were constructed in this 
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study, which were ANN, fuzzy logic, and ANFIS. To develop models for monthly flood forecasting at 

the Hoshangabad gauging station in the Narmada River, 33 years of monthly discharge data were used 

to model development and validation. Discharge at Dindori, Mohgaon, Manot, Barmanghat, and 

Sandia, which are located at the Upper Narmada Basin, is selected as an input parameter, and discharge 

at Hoshangabad, which is located at the Middle Narmada Basin, is selected as an output parameter. 

The function representing the relationship between the parameters is shown in Eq 1. 

QHoshangabad = f (QBamni, QMohgaon, QManot, QBarmanghat, QSandia ) (1) 

The performance of the data-driven models was data-dependent, requiring the collection of 

sufficient amounts of data. The quality of the data should be carefully analyzed before application. 

This is important to improve the generalization capacity of the model. A detailed data analysis was 

performed to obtain the final data sets. Data sets with one or more of the input variables missing were 

excluded from further consideration. The training can be performed with 70% of overall datasets using. 

The testing and validation can be performed with 15% and 15%, respectively. To assess the model’s ability 

to process a distinct number of databases, three separate datasets are selected, as shown in Table 1. 

Table 1. Summary of model data. 

Sr. No. Model name Data (%) Data (Number) 

1 ANN-1 100 326 

2 FUZZY-1 100 326 

3 ANFIS-1 100 326 

4 ANN-2 66 Latest 217 

5 ANFIS-2 66 Latest 217 

6 ANN-3 33 Latest 109 

7 ANFIS-3 33 Latest 109 

3.5. Model performance evaluation 

To measure the effectiveness of model predictions, quantitative assessments comparing model 

simulations with observed data serve as a crucial evaluation of predictive capabilities. Assessments 

commonly employ a range of statistics and techniques, often called ‘goodness of fit’ statistics. While 

principal measurements in hydrological literature have been extensively reviewed by Legates and 

McCabe [48,55–57], the use of global goodness of fit statistics for forecasting flood hydrographs 

exhibits diversity. Given the absence of a single evaluation measure [49,58–61], we adopt a multi-

criteria assessment, employing various goodness of fit statistics. The parameters used to evaluate the 

performance of all models were the root mean square error (RMSE), coefficient of regression (R2), and 

percentage deviation (PD). RMSE assesses the overall accuracy of predictions, with lower values 

indicating better performance. R2 evaluates how well the model explains the variability in the data, 

where higher values indicate better fit. PD provides a measure of relative accuracy, highlighting how 

close predicted values are to actual observations.  

Root mean square error is calculated as 

𝑅𝑀𝑆𝐸 = [
∑ (𝑂𝑖 −𝑁

𝑖=1 𝑃𝑖)
2

𝑁 
]

1
2⁄

 (2) 
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where, N=total number of measurements, Oi=measured discharge, and Pi=calculated discharge. 

Coefficient of Regression is calculated as 

𝑅2 =

[
 
 
 ∑ (𝑂𝑖 − 𝑂𝑎𝑣𝑔) ∗ (𝑃𝑖 − 𝑃𝑎𝑣𝑔)𝑁

𝑖=1

√∑ (𝑂𝑖 − 𝑂𝑎𝑣𝑔)2𝑁
𝑖=1  ∗ √∑ (𝑃𝑖 − 𝑃𝑎𝑣𝑔)2𝑁

𝑖=1   
]
 
 
 
2

 (3) 

where, Oavg = average of measured discharge and Pavg = average of calculated discharge. 

Percentage deviation is defined as 

𝑃𝐷 =
(𝑃𝑝 − 𝑂𝑝)

𝑂𝑝
𝑋 100 (4) 

where Op and Pp = average measured and average calculated discharge values. 

4. Result and discussion 

We use data driven models for developing a model for monthly flood forecasting over the 

Hoshangabad site of the Narmada River. The ANN, FL, and ANFIS models were used for the 

development of the model for the study area. Through the appropriate model, results are shown in this 

section using a graphical representation of the data. The overall performance of this model in the 

Narmada basin for the different data sets in terms of Regression, RMSE, and Percentage Deviation. 

The performance graphs for the different soft-computing models (i.e., ANN, Fuzzy Logic, and 

ANFIS) for flood forecasting in the Narmada basin for the data set are shown in Figure 5. Results 

evidenced regression values of 0.9582, 0.7769, and 0.9665 for the ANN, the Fuzzy Logic, and the 

ANFIS model, respectively. Differently from the ANN and the ANFIS models, the performance of the 

Fuzzy Logic model is so poor that it has not been used in further procedures. 
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Figure 5. Observed and predicted values for the ANN-1 model, Fuzzy-1 model, and ANFIS-1 model. 
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The performance graphs for the different soft-computing models (i.e., ANN and ANFIS) for flood 

forecasting in the Narmada basin for the latest 66% of data sets are shown in Figure 6. Results 

evidenced regression values of 0.966 and 0.9746 for the ANN and the ANFIS models, respectively, 

thus evidencing a good performance of both models.  

 

 

Figure 6. Observed and predicted ANN-2 model and ANFIS-2 model. 

Finally, the performance graphs for the different soft-computing models (i.e., ANN and ANFIS) 

for flood forecasting in the Narmada basin for the latest 33% of data sets are shown in Figure 7. Results 

evidenced regression values of 0.848 and 0.9837 for the ANN and the ANFIS model, respectively.  
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Figure 7. Observed and predicted ANN-3 model and ANFIS-3 model. 

Table 2 shows the overall performance of the different soft-computing models (i.e., ANN, Fuzzy 

Logic, and ANFIS) for flood forecasting in the Narmada basin for the different data sets in Regression, 

RMSE, and Percentage Deviation. As a result, the performance of the Fuzzy Logic model compared 

to the ANN and ANFIS models is very poor, and thus it is possible to conclude that the Fuzzy Logic 

model is not suitable for flood forecasting on the Upper Narmada Basin. In fact, the performance 

measures for the Fuzzy Logic model evidenced a regression value of 0.7769, a RMSE of 960.88, and 

a Percentage Deviation of 135.051. On the contrary, the ANN model performance is very good, 

presenting a high regression value, equal to 0.9582, and low values of RMSE and of the Percentage 

Deviation, equal to 237.24 and 0.087, respectively. It is noteworthy that the performance of the ANN 

model decreases when the number of data sets decreases. Moreover, the ANFIS model’s performance 

is higher than that of the ANN model for the same data sets, and, unlike the ANN model, the 

performance of the ANFIS model increases when the number of data sets decreases. 
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Table 2. Performance measures of ANN, Fuzzy Logic and ANFIS models. 

Sr. No. Model Name R2 RMSE Percentage 

Deviation 

1 ANN-1 0.9582 237.24 –0.0870 

2 FUZZY-1 0.7769 960.88 +135.0510 

3 ANFIS-1 0.9665 211.97 –0.0013 

4 ANN-2 0.9188 219.03 +1.1341 

5 ANFIS-2 0.9788 110.27 +0.0006 

6 ANN-3 0.9154 262.62 +59.7005 

7 ANFIS-3 0.9855 54.23 +0.0001 

Overall, the results of the data-driven models show that the ANN and ANFIS models are accurate 

for monthly flood forecasting for the Narmada River. However, its accuracy depends on the quantity 

of data. Additionally, ANN model accuracy can improve by expanding the data, and for ANFIS, it can 

be done by reducing the data up to a specific point. 

In this study, the ANFIS model performs better than the ANN model, and the same results have 

been found by Chatterjee et al. [62]. The ANN model of Chang et al. [2] had R2 values ranging from 0.8 

to 0.95, which are generally comparable with other ANN and ANFIS model results. The Fuzzy Logic 

model of Nayak et al. [9] had R2 values ranging from 0.8 to 0.95, which is better than our fuzzy Logic 

model results. The ANN and ANFIS model of Nayak et al. [11] had R2 values ranging from 0.8 to 0.95, 

similar to our ANN and ANFIS results. Folorunsho et al. [63] evaluated different data driven models 

for flood prediction in urban areas. They reported that while ANN showed promising results, ANFIS 

provided more robust predictions with lower error rates, especially during extreme floods. A study by 

He et al. [64] compared ANN, ANFIS, and SVM for flood forecasting in river basins of a certain region. 

They found that ANFIS consistently outperformed ANN and SVM models in terms of accuracy and 

reliability. 

Overall, the ANN and ANFIS models in this study generally perform well, with R2 values ranging 

from 0.9154 to 0.9855, which are comparable with other the studies related to flood forecasting. 

However, the fuzzy logic model seems to have slightly lower R2 values compared to some of the 

referenced studies. This could be due to various factors, such as differences in data, model architecture, 

or training methodologies. 

5. Conclusions 

We aimed to assess the performance of various data-driven models, including ANN, Fuzzy Logic, 

and ANFIS, for flood forecasting in the Narmada Basin. The following conclusions were drawn from 

the results: 

a) The ANFIS model consistently outperformed the ANN and Fuzzy Logic models regarding 

flood forecasting accuracy, especially when the same number of data points was used. Additionally, 

the accuracy of the ANFIS model increased as the number of data points decreased. 

b) The ANN model provided accurate flood forecasts, but its performance was slightly inferior 

to the ANFIS model when considering the same dataset size. Moreover, the accuracy of the ANN 

model decreased as the number of data points decreased. 

c) In contrast, the Fuzzy Logic model exhibited lower accuracy than the ANN and ANFIS 

models when applied to the same dataset. The poor performance of the Fuzzy Logic model suggests 
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its unsuitability for monthly flood forecasting in the studied area. 

d) The study highlights that both ANN and ANFIS models are effective for flood forecasting. 

However, ANFIS is more suitable when the dataset size is smaller, whereas ANN is preferable for 

larger dataset sizes. 

Additionally, we found that the models used in this study can accurately predict the near future 

within the next 30 years. This prediction limitation is attributed to the temporal relevance of rainfall, 

influenced by environmental variability and anthropogenic factors. 

From the previous discussion, it is seen that various researchers have studied the applicability of 

ANN, ANFIS, and adaptive neuro-GA integrated system (ANGIS) models in flood forecasting. Also, 

comparative studies have been carried out to compare the performances of ANN, ANFIS, and ANGIS 

models for flood forecasting [62] and for the performances of ANN and ANGIS models for rainfall-

runoff modeling [65]. However, a comprehensive study to compare the performances of ANN, Fuzzy, 

and ANFIS models in forecasting floods is missing. In this study, flood forecasting at the Hoshangabad 

gauging site of the Narmada River Basin in Madhya Pradesh, India is carried out using ANN, Fuzzy, 

and ANFIS models. The relative performances of these models are also compared. 

Future research should extend the techniques to other catchments and forecasting with various 

lead time and lag time factors. Researchers can use other parameters like rainfall, temperature, soil 

moisture, etc. Several researchers have used ANN models for hydrology-related studies. Therefore, we 

suggest examining the performance of advanced ML architecture, such as deep neural networks, 

generative adversarial networks (GAN), and artificial neural networks (ANN), for the proposed work. 
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