Processing math: 100%
Research article

On the Durability of Nuclear Waste Forms from the Perspective of Long-Term Geologic Repository Performance

  • Received: 20 November 2013 Accepted: 19 December 2013 Published: 19 December 2013
  • High solid/water ratios and slow water percolation cause the water in a repository to quickly (on a repository time scale) reach radionuclide solubility controlled by the equilibrium with alteration products; the total release of radionuclides then becomes insensitive to the dissolution rates of primary waste forms. It is therefore suggested that future waste form development be focused on conditioning waste forms or repository environments to minimize radionuclide solubility, rather than on marginally improving the durability of primary waste forms.

    Citation: Yifeng Wang, Carlos F. Jove-Colon, Robert J. Finch. On the Durability of Nuclear Waste Forms from the Perspective of Long-Term Geologic Repository Performance[J]. AIMS Environmental Science, 2014, 1(1): 26-35. doi: 10.3934/environsci.2013.1.26

    Related Papers:

    [1] Farrukh Dekhkonov . On one boundary control problem for a pseudo-parabolic equation in a two-dimensional domain. Communications in Analysis and Mechanics, 2025, 17(1): 1-14. doi: 10.3934/cam.2025001
    [2] Yonghui Zou . Global regularity of solutions to the 2D steady compressible Prandtl equations. Communications in Analysis and Mechanics, 2023, 15(4): 695-715. doi: 10.3934/cam.2023034
    [3] Huiyang Xu . Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials. Communications in Analysis and Mechanics, 2023, 15(2): 132-161. doi: 10.3934/cam.2023008
    [4] Yao Sun, Pan Wang, Xinru Lu, Bo Chen . A boundary integral equation method for the fluid-solid interaction problem. Communications in Analysis and Mechanics, 2023, 15(4): 716-742. doi: 10.3934/cam.2023035
    [5] Ho-Sik Lee, Youchan Kim . Boundary Riesz potential estimates for parabolic equations with measurable nonlinearities. Communications in Analysis and Mechanics, 2025, 17(1): 61-99. doi: 10.3934/cam.2025004
    [6] Yuxuan Chen . Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity. Communications in Analysis and Mechanics, 2023, 15(4): 658-694. doi: 10.3934/cam.2023033
    [7] Xiulan Wu, Yaxin Zhao, Xiaoxin Yang . On a singular parabolic $ p $-Laplacian equation with logarithmic nonlinearity. Communications in Analysis and Mechanics, 2024, 16(3): 528-553. doi: 10.3934/cam.2024025
    [8] Yang Liu, Xiao Long, Li Zhang . Long-time dynamics for a coupled system modeling the oscillations of suspension bridges. Communications in Analysis and Mechanics, 2025, 17(1): 15-40. doi: 10.3934/cam.2025002
    [9] Andrea Brugnoli, Ghislain Haine, Denis Matignon . Stokes-Dirac structures for distributed parameter port-Hamiltonian systems: An analytical viewpoint. Communications in Analysis and Mechanics, 2023, 15(3): 362-387. doi: 10.3934/cam.2023018
    [10] Enzo Vitillaro . Nontrivial solutions for the Laplace equation with a nonlinear Goldstein-Wentzell boundary condition. Communications in Analysis and Mechanics, 2023, 15(4): 811-830. doi: 10.3934/cam.2023039
  • High solid/water ratios and slow water percolation cause the water in a repository to quickly (on a repository time scale) reach radionuclide solubility controlled by the equilibrium with alteration products; the total release of radionuclides then becomes insensitive to the dissolution rates of primary waste forms. It is therefore suggested that future waste form development be focused on conditioning waste forms or repository environments to minimize radionuclide solubility, rather than on marginally improving the durability of primary waste forms.


    Consider the pseudo-parabolic equation in the domain $ \Omega = \{(x, t): 0 < x < l, \ \ t > 0 \} $:

    $ ut=2tx(k(x)ux)+x(k(x)ux),(x,t)Ω,
    $
    (1.1)

    with boundary conditions

    $ u(0,t)= μ(t),u(l,t)=0,t>0,
    $
    (1.2)

    and initial condition

    $ u(x,0)=0,0xl.
    $
    (1.3)

    Assume that the function $ k(x)\in C^{2}\big([0, l]\big) $ satisfies the conditions

    $ k(x) > 0, \quad k'(x)\leq 0, \quad 0\leq x \leq l. $

    The condition (1.2) means that there is a magnitude of output given by a measurable real-valued function $ \mu(t) $ (See [1,2,3] for more information).

    Definition 1. If function $ \mu(t)\in W_{2}^{1}(\mathbb{R_{+}}) $ satisfies the conditions $ \mu(0) = 0 $ and $ |\mu(t)| \leq 1 $, we say that this function is an admissible control.

    Problem B. For the given function $ \theta(t) $ Problem B consists looking for the admissible control $ \mu(t) $ such that the solution $ u(x, t) $ of the initial-boundary problem (1.1)-(1.3) exists and for all $ t\geq0 $ satisfies the equation

    $ l0u(x,t)dx=θ(t).
    $
    (1.4)

    One of the models is the theory of incompressible simple fluids with decaying memory, which can be described by equation (1) (see [1]). In [2], stability, uniqueness, and availability of solutions of some classical problems for the considered equation were studied (see also [4,5]). Point control problems for parabolic and pseudo-parabolic equations were considered. Some problems with distributed parameters impulse control problems for systems were studied in [3,6]. More recent results concerned with this problem were established in [7,8,9,10,11,12,13,14,15]. Detailed information on the problems of optimal control for distributed parameter systems is given in [16] and in the monographs [17,18,19,20]. General numerical optimization and optimal boundary control have been studied in a great number of publications such as [21]. The practical approaches to optimal control of the heat conduction equation are described in publications like [22].

    Control problems for parabolic type equations are considered in works [13,14] and [15]. In this work, such control problems are considered for the pseudo-parabolic equation.

    Consider the following eigenvalue problem

    $ ddx(k(x)dvk(x)dx)=λkvk(x),0<x<l,
    $
    (1.5)

    with boundary condition

    $ vk(0)=vk(l)=0,0xl.
    $
    (1.6)

    It is well-know that this problem is self-adjoint in $ L_{2}(\Omega) $ and there exists a sequence of eigenvalues $ \{\lambda_{k}\} $ so that $ 0 < \lambda_{1}\leq\lambda_{2}\leq...\leq\lambda_{k}\rightarrow \infty, \ \ k\rightarrow \infty $. The corresponding eigenfuction $ v_{k} $ form a complete orthonormal system $ \{v_{k}\}_{k \epsilon N} $ in $ L_{2}(\Omega) $ and these function belong to $ C(\bar{\Omega}) $, where $ \bar{\Omega} = \Omega\cup\partial\Omega $ (see, [23,24]).

    Definition 2. By the solution of the problem (1.1)–(1.3) we understand the function $ u(x, t) $ represented in the form

    $ u(x,t)=lxlμ(t)v(x,t),
    $
    (2.1)

    where the function $ v(x, t) \in C_{x, t}^{2, 1}(\Omega)\cap C(\bar{\Omega}) $, $ v_{x} \in C(\bar{\Omega}) $ is the solution to the problem:

    $ v_{t} = \frac{\partial^{2}}{\partial t\partial x}\bigg(k(x)\frac{\partial v}{\partial x}\bigg) + \frac{\partial}{\partial x}\bigg(k(x)\frac{\partial v}{\partial x}\bigg)+ $
    $ +\frac{k'(x)}{l}\mu(t)+\frac{k'(x)}{l}\mu'(t)+\frac{l-x}{l}\mu'(t), $

    with boundary conditions

    $ v(0, t) = 0, \quad v(l, t) = 0, $

    and initial condition

    $ v(x, 0) = 0. $

    Set

    $ βk=(λkakbk)γk,
    $
    (2.2)

    where

    $ ak=l0lxlvk(x)dx,bk=l0k(x)lvk(x)dx,
    $
    (2.3)

    and

    $ γk=l0vk(x)dx.
    $
    (2.4)

    Consequently, we have

    $ v(x,t)=k=1vk(x)1+λkt0eμk(ts)(μ(s)ak+μ(s)bk+μ(s)bk)ds,
    $
    (2.5)

    where $ a_k $, $ b_k $ defined by (2.3) and $ \mu_{k} = \frac{\lambda_{k}}{1+\lambda_{k}} $.

    From (2.1) and (2.5) we get the solution of the problem (1.1)–(1.3) (see, [23,25]):

    $ u(x, t) = \frac{l-x}{l}\mu(t) -\sum\limits_{k = 1}^\infty \frac{v_{k}(x)}{1+\lambda_{k}} \int\limits_0^t e^{-\mu_{k}\, (t-s)}\big(\mu'(s)\, a_{k}+\mu'(s)\, b_{k}+\mu(s)\, b_{k}\big)\, ds. $

    According to condition (1.4) and the solution of the problem (1.1)-(1.3), we may write

    $ θ=l0u(x,t)dx=μ(t)l0lxldxk=111+λk(t0eμk(ts)(μ(s)ak+μ(s)bk+μ(s)bk)ds)l0vk(x)dx=μ(t)l0lxldxk=1bkγk1+λkt0eμk(ts)μ(s)dsk=1(ak+bk)γk1+λkt0eμk(ts)μ(s)ds=μ(t)l0lxldxk=1bkγk1+λkt0eμk(ts)μ(s)dsμ(t)k=1(ak+bk)γk1+λk+k=1(ak+bk)λkγk(1+λk)2t0eμk(ts)μ(s)ds.
    $
    (2.6)

    where $ \gamma_{k} $ defined by (2.4).

    Note that

    $ l0lxldx=l0(k=1akvk(x))dx=k=1akγk.
    $
    (2.7)

    Thus, from (2.6) and (2.7) we get

    $ θ(t)=μ(t)k=1βk1+λk+k=1βk(1+λk)2t0eμk(ts)μ(s)ds,t>0,
    $
    (2.8)

    where $ \beta_{k} $ defined by (2.2).

    Set

    $ B(t)=k=1βk(1+λk)2eμkt,t>0,
    $
    (2.9)

    and

    $ \delta = \sum\limits_{k = 1}^\infty \frac{\beta_{k}}{1+\lambda_{k}}. $

    According to (2.8) and (2.9), we have the following integral equation

    $ δμ(t)+t0B(ts)μ(s)ds=θ(t),t>0.
    $
    (2.10)

    Proposition 1. For the cofficients $ \{\beta_{k}\}_{k = 1}^{\infty} $ the estimate

    $ 0\leq \beta_k \leq C, \quad k = 1, 2, ... $

    is valid.

    Proof. Step 1. Now we use (1.5) and (2.3). Then consider the following equality

    $ \lambda_{k}\, a_{k} = \int\limits_0^l \frac{l-x}{l}\lambda_{k}\, v_{k}(x)dx = - \int\limits_0^l \frac{l-x}{l}\frac{d}{d x}\bigg(k(x)\, \frac{d v_{k}(x)}{d x}\bigg)dx $
    $ = -\bigg( \frac{l-x}{l}k(x)v_{k}'(x)\bigg|_{x = 0}^{x = l}+ \frac{1}{l} \int\limits_0^l k(x)\, v_{k}'(x)dx\bigg) = k(0)v_{k}'(0)-\frac{1}{l}\int\limits_0^l k(x)\, v_{k}'(x)dx $
    $ = k(0)v_{k}'(0)-\frac{1}{l}\bigg(k(l)v_{k}(l)-k(0)v_{k}(0)\bigg)+\int\limits_0^l \frac{k'(x)}{l}\, v_{k}(x)dx $
    $ = k(0)v_{k}'(0)+b_{k}. $

    Then we have

    $ λkakbk=k(0)vk(0).
    $
    (2.11)

    Step 2. Now we integrate the Eq. (1.5) from $ 0 $ to $ x $

    $ k(x)v_k'(x)-k(0)v_k'(0) = -\lambda_k\int\limits_0^xv_k(\tau)d\tau, $

    and according to $ k(x) > 0, \ x\in[0, l] $, we can write

    $ vk(x)1k(x)k(0)vk(0)=λkk(x)x0vk(τ)dτ.
    $
    (2.12)

    Thus, we integrate the Eq. (2.12) from $ 0 $ to $ l $. Then we have

    $ vk(l)vk(0)k(0)vk(0)l0dxk(x)=λkl01k(x)(x0vk(τ)dτ)dx.
    $
    (2.13)

    From (1.6) and (2.13) we get

    $ k(0)v_k'(0)\int\limits_0^l\frac{dx}{k(x)} = \lambda_k\int\limits_0^l\frac{1}{k(x)}\Big(\int\limits_0^x v_k(\tau)d\tau\Big)dx. $

    Then

    $ k(0)vk(0)=λkl0G(τ)vk(τ)dτ,
    $
    (2.14)

    where

    $ G(\tau) = \int\limits_\tau^l\frac{dx}{k(x)}\Big(\int\limits_0^l\frac{dx}{k(x)}\Big)^{-1}. $

    According to $ G(\tau) > 0 $ and from (2.14) we have (see, [24])

    $ vk(0)l0vk(τ)dτ0.
    $
    (2.15)

    Consequently, from (2.11) and (2.15) we get the following estimate

    $ \beta_{k} = (\lambda_{k}\, b_{k}-a_{k})\, \gamma_{k} = k(0)v_{k}'(0)\cdot \int\limits_0^l v_{k}(x)dx \geq0. $

    Step 3. It is clear that if $ k(x)\in C^1([0, l]) $, we may write the estimate (see, [24,26])

    $ \max\limits_{0\leq x\leq l}|v_k'(x)|\leq C\lambda_k^{1/2}. $

    Therefore,

    $ |vk(0)|Cλ1/2k,|vk(l)|Cλ1/2k,
    $
    (2.16)

    Then from Eq. (1.5), we can write

    $ k(l)vk(l)k(0)vk(0)=λkl0vk(x)dx=λkγk.
    $
    (2.17)

    According to (2.16) and (2.17) we have the estimate

    $ |\gamma_k|\leq \Big|\frac{1}{\lambda_k}\Big(k(l)v_k'(l)-k(0)v_k'(0)\Big)\Big|\leq C\lambda_k^{-1/2}. $

    Then

    $ \beta_k \leq k(0)\, \big| v_k'(0)\gamma_k\big| \leq C. $

    Proposition 2. A function $ B(t) $ is continuous on the half-line $ t\geq 0 $.

    Proof. Indeed, according to Proposition 1 and (2.9), we can write

    $ 0 < B(t)\leq \text{const} \sum\limits_{k = 1}^\infty \frac{1}{(1+\lambda_{k})^{2}}. $

    Denote by $ W(M) $ the set of function $ \theta\in W_{2}^{2}(-\infty, +\infty) $, $ \theta(t) = 0 $ for $ t\leq 0 $ which satisfies the condition

    $ \|\theta\|_{W_{2}^{2}(R_{+})}\leq M. $

    Theorem 1. There exists $ M > 0 $ such that for any function $ \theta\in W(M) $ the solution $ \mu(t) $ of the equation (2.10) exists, and satisfies condition

    $ |\mu(t)|\ \leq\ 1. $

    We write integral equation (2.10)

    $ \delta\, \mu(t)+\int\limits_0^t B(t-s)\mu(s)ds = \theta(t), \quad t > 0. $

    By definition of the Laplace transform we have

    $ \widetilde{\mu}(p) = \int\limits_0^\infty e^{-pt}\, \mu(t)\, dt. $

    Applying the Laplace transform to the second kind Volterra integral equation (2.10) and taking into account the properties of the transform convolution we get

    $ \widetilde{\theta}(p) = \delta\, \widetilde{\mu}(p)+\widetilde{B}(p)\, \widetilde{\mu}(p). $

    Consequently, we obtain

    $ \widetilde{\mu}(p) = \frac{\widetilde{\theta}(p)}{\delta+\widetilde{B}(p)}, \quad \text{where} \ \ p = a+i\xi, \quad a > 0, $

    and

    $ μ(t)=12πia+iξaiξ˜θ(p)δ+˜B(p)eptdp=12π+˜θ(a+iξ)δ+˜B(a+iξ)e(a+iξ)tdξ.
    $
    (3.1)

    Then we can write

    $ \widetilde{B}(p) = \int\limits_0^\infty B(t)e^{-pt}\, dt = \sum\limits_{k = 1}^\infty \frac{\beta_{k}}{(1+\lambda_{k})^{2}}\int\limits_0^\infty e^{-(p+\mu_{k})t}\, dt = \sum\limits_{k = 1}^\infty \frac{\rho_{k}}{p+\mu_{k}}, $

    where $ \rho_{k} = \frac{\beta_{k}}{(1+\lambda_{k})^{2}}\geq 0 $ and

    $ \widetilde{B}(a+i\xi) = \sum\limits_{k = 1}^\infty \frac{\rho_{k}}{a+\mu_{k}+i\xi} = \sum\limits_{k = 1}^\infty \frac{\rho_{k}\, (a+\mu_{k})}{(a+\mu_{k})^{2}+\xi^{2}}-i\xi\, \sum\limits_{k = 1}^\infty \frac{\rho_{k}}{(a+\mu_{k})^{2}+\xi^{2}}. $

    It is clear that

    $ (a+\mu_{k})^{2}+\xi^{2}\leq [(a+\mu_{k})^{2}+1](1+\xi^{2}), $

    and we have the inequality

    $ 1(a+μk)2+ξ211+ξ21(a+μk)2+1.
    $
    (3.2)

    Consequently, according to (3.2) we can obtain the estimates

    $ |Re(δ+˜B(a+iξ))|=δ+k=1ρk(a+μk)(a+μk)2+ξ211+ξ2k=1ρk(a+μk)(a+μk)2+1=C1a1+ξ2,
    $
    (3.3)

    and

    $ |Im(δ+˜B(a+iξ))|=|ξ|k=1ρk(a+μk)2+ξ2|ξ|1+ξ2k=1ρk(a+μk)2+1=C2a|ξ|1+ξ2,
    $
    (3.4)

    where $ C_{1a} $, $ C_{2a} $ as follows

    $ C_{1a} = \sum\limits_{k = 1}^\infty \frac{\rho_{k}\, (a+\mu_{k})}{(a+\mu_{k})^{2}+1}, \ \ C_{2a} = \sum\limits_{k = 1}^\infty \frac{\rho_{k}}{(a+\mu_{k})^{2}+1}. $

    From (3.3) and (3.4), we have the estimate

    $ |\delta+\widetilde{B}(a+i\xi)|^{2} = | \text{Re}(\delta+\widetilde{B}(a+i\xi))|^{2}+| \text{Im}(\delta+\widetilde{B}(a+i\xi))|^{2}\geq \frac{ \text{min}(C_{1a}^{2}, C_{2a}^{2})}{1+\xi^{2}}, $

    and

    $ |δ+˜B(a+iξ)|Ca1+ξ2,whereCa=min(C1a,C2a).
    $
    (3.5)

    Then, by passing to the limit at $ a\rightarrow 0 $ from (3.1), we can obtain the equality

    $ μ(t)=12π+˜θ(iξ)δ+˜B(iξ)eiξtdξ.
    $
    (3.6)

    Lemma 1. Let $ \theta(t)\in W(M) $. Then for the image of the function $ \theta(t) $ the following inequality

    $ \int\limits_{-\infty}^{+\infty} |\widetilde{\theta}(i\xi)|\sqrt{1+\xi^{2}}d\xi \leq C\, \| \theta\|_{W_{2}^{2}(R_{+})}, $

    is valid.

    Proof. We use integration by parts in the integral representing the image of the given function $ \theta(t) $

    $ \widetilde{\theta}(a+i\xi) = \int\limits_0^\infty e^{-(a+i\xi)t}\theta(t)\, dt = - \theta(t)\, \frac{e^{-(a+i\xi)t}}{a+i\xi}\bigg|_{t = 0}^{t = \infty}+\frac{1}{a+i\xi}\int\limits_0^\infty e^{-(a+i\xi)t}\, \theta'(t)\, dt. $

    Then using the obtained inequality and multiplying by the corresponding coefficient we get

    $ (a+i\xi)\, \widetilde{\theta}(a+i\xi) = \int\limits_0^\infty e^{-(a+i\xi)t}\, \theta'(t)\, dt, $

    and for $ a\rightarrow 0 $ we have

    $ i\xi\, \widetilde{\theta}(i\xi) = \int\limits_0^\infty e^{-i\xi t}\, \theta'(t)\, dt. $

    Also, we can write the following equality

    $ (i\xi)^{2}\, \widetilde{\theta}(i\xi) = \int\limits_0^\infty e^{-i\xi t}\, \theta''(t)\, dt. $

    Then we have

    $ +|˜θ(iξ)|2(1+ξ2)2dξC1θ2W22(R+).
    $
    (3.7)

    Consequently, according to (3.7) we get the following estimate

    $ \int\limits_{-\infty}^{+\infty} |\widetilde{\theta}(i\xi)|\sqrt{1+\xi^{2}}d\xi = \int\limits_{-\infty}^{+\infty} \frac{|\widetilde{\theta}(i\xi)|(1+\xi^{2})}{\sqrt{1+\xi^{2}}} $
    $ \leq \bigg(\int\limits_{-\infty}^{+\infty} |\widetilde{\theta}(i\xi)|^{2}(1+\xi^{2})^{2}d\xi\bigg)^{1/2}\bigg(\int\limits_{-\infty}^{+\infty} \frac{1}{1+\xi^{2}}d\xi\bigg)^{1/2} \leq C\, \| \theta\|_{W_{2}^{2}(R_{+})}. $

    Proof of the Theorem 1. We prove that $ \mu\in W_2^1(\mathbb{R}_+) $. Indeed, according to (3.5) and (3.6), we obtain

    $ \int\limits_{-\infty}^{+\infty}|\widetilde{\mu}(\xi)|^2 (1+|\xi|^2)\, d\xi\ = \ \int\limits_{-\infty}^{+\infty} \left|\frac{\widetilde{\theta}(i\xi)}{\delta+\widetilde{B}(i\xi)}\right|^2 (1+|\xi|^2)\, d\xi\ $
    $ \leq C \int\limits_{-\infty}^{+\infty} |\widetilde{\theta}(i\xi)|^2 (1+|\xi|^2)^2\, d\xi\ = \ C\|\theta\|_{W_2^2(\mathbb{R})}^2. $

    Further,

    $ |\mu(t) - \mu(s)|\ = \ \left|\int\limits_s^t \mu'(\tau)\, d\tau\right|\ \leq \ \|\mu'\|_{L_2} \sqrt{t-s}. $

    Hence, $ \mu\in \text{Lip}\, \alpha $, where $ \alpha = 1/2 $. Then from (3.5), (3.6) and (3.7), we have

    $ |\mu(t)|\leq \frac{1}{2\pi}\int\limits_{-\infty}^{+\infty}\frac{|\widetilde{\theta}(i\xi)|}{|\delta+\widetilde{B}(i\xi)|}d\xi\leq \frac{1}{2\pi C_{0}}\int\limits_{-\infty}^{+\infty} |\widetilde{\theta}(i\xi)|\sqrt{1+\xi^{2}}d\xi $
    $ \leq \frac{C}{2\pi C_{0}}\| \theta\|_{W_{2}^{2}(R_{+})}\leq \frac{C\, M}{2\pi C_{0}} = 1, $

    as $ M $ we took

    $ M = \frac{2\pi C_{0}}{C}. $

    An auxiliary boundary value problem for the pseudo-parabolic equation was considered. The restriction for the admissible control is given in the integral form. By the separation variables method, the desired problem was reduced to Volterra's integral equation. The last equation was solved by the Laplace transform method. Theorem on the existence of an admissible control is proved. Later, it is also interesting to consider this problem in the $ n- $ dimensional domain. We assume that the methods used in the present problem can also be used in the $ n- $ dimensional domain.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The author declare there is no conflict of interest.

    [1] Ringwood AE, Kesson SE, Revve KD, et al. (1988) Synroc (for radiowaste solidification), in Radioactive Waste Forms for the Future, W. Lutze and R. C. Ewing (eds), North-Holland, Amsterdam, 233-334.
    [2] Ewing RC (1999) Nuclear waste forms for actinides. Proc Natl Acad Sci 96: 3432-3439. doi: 10.1073/pnas.96.7.3432
    [3] Peters MT, Ewing RC (2007) A science-based approach to understanding waste form durability in open and closed nuclear fuel cycles. J Nucl Mater 362: 395-401. doi: 10.1016/j.jnucmat.2007.01.085
    [4] Grambow B (2006) Nuclear waste glasses – how durable? Elements 2: 357-364. doi: 10.2113/gselements.2.6.357
    [5] Lumpkin GR (2006) Ceramic Waste Forms for Actinides Elements 2: 365-372.
    [6] SNL (Sandia National Laboratories) (2008) Total System Performance Assessment Model/Analysis for the License Application, Sandia National Laboratories, Albuquerque, New Mexico.
    [7] IAEA (2003) Technical Reports Series No. 4I3, Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes.
    [8] Murphy WM (2004) Measures of geologic isolation. Mat Res Soc Symp Proc 824: cc3.5.1-cc3.5.9.
    [9] Kienzler B, Metz V, Lutzenkirchen J, et al. (2007) Geochemically based safety assessment. J Nucl Sci Technol 44: 470-476. doi: 10.1080/18811248.2007.9711310
    [10] Hearn PP, Steinkampf WC, Bortleson GC, et al. (1985) Geochemical Controls on Dissolved Sodium in Basalt Aquifers of the Columbia Plateau, Washington. Water-Resources Investigations Report 84-4304. Tacoma, Washington: U.S. Geological Survey.
    [11] Lu L, Chen F, Ewing RC, et al. (2007) Trace element immobilization by uranyl minerals in granite-hosted uranium ores: Evidences from the Xiazhuang ore field of Guangdong province, China. Radiochim Acta 95: 25-32.
    [12] Ortoleva P, Merino E, Moore C, et al. (1987) Geochemical self-organization, I. Feedbacks, quantitative modeling. Am J Sci 287: 979–1007.
    [13] Wang Y, Jove-Colon CF, Mattie PD, et al. (2010), Thermal, hydrodynamic, and chemical constraints on water availability inside breached waste packages in the Yucca mountain repository. Nucl Technol 171: 201-219.
    [14] Helton JC, Bean JE, Berglund JW, et al. (1998) Uncertainty and Sensitivity Analysis Results Obtained in the 1996 Performance Assessment for the Waste Isolation Pilot Plant. Sandia National Laboratories, Albuquerque, New Mexico.
    [15] ANDRA (2005) Dossier 2005 Argile: Evaluation of the feasibility of a geological repository in an argillaceous formation.
    [16] Wang Y, Brush LH, Bynum RV (1997) Use of MgO to mitigate the effect of microbial CO2 production in the Waste Isolation Pilot Plant. WM'97, March 2-6, 1997, Tucson, Arizona..
    [17] Bates JK, Bradley JP, Teetsov A, et al. (1992) Colloid formation during waste form reaction: Implications for nuclear waste disposal. Science 256: 649-651. doi: 10.1126/science.256.5057.649
    [18] Buck EC, Bates JK (1999) Microanalysis of colloids and suspended particles from nuclear waste glass alteration. Appl Geochem 14: 635-653. doi: 10.1016/S0883-2927(98)00088-2
    [19] S. B. Chen, Y. G. Zhu, Y. B. Ma (2006) The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. J. Hazardous Mater 134: 74-79. doi: 10.1016/j.jhazmat.2005.10.027
    [20] Ndiba P, Axe L, Boonfueng T (2008) Heavy Metal immobilization through phosphate and thermal treatment of dredged sediments. Environ. Sci Technol 42: 920-926. doi: 10.1021/es072082y
    [21] Kim CW, Day D (2003) Immobilization of Hanford LAW in iron phosphate glasses. J Non-Crystalline Solids 331: 20-31. doi: 10.1016/j.jnoncrysol.2003.08.070
    [22] Ojovan MI, Hand RJ, Ojovan NV, et al. (2005) Corrosion of alkali-boro silicate waste glass K-26 in nono-saturated conditions. J Nucl Mater 340: 12-24. doi: 10.1016/j.jnucmat.2004.10.095
    [23] BSC (Bechtel SAIC Company) (2004) CSNF Waste Form Degradation: Summary Abstraction. ANL-EBS-MD-000015 REV 02. Las Vegas, Nevada: Bechtel SAIC Company.
    [24] Strachan DM, Scheele RD, Buck EC, et al. (2005) Radiation damage effects in candidate titanates for Pu Pu disposition: Pyrochlore, J Nucl Mater 345: 109-135.
    [25] Begg BD, Hess NJ, Weber WJ, et al. (2001) Heavy-ion irradiation effects on structures and acidic dissolution of pyrochlores. J Nucl Mater 288: 208-216. doi: 10.1016/S0022-3115(00)00708-X
    [26] Zhang Y, Hart KP, Bourcier WL, et al. (2001) Kinetics of uranium release from Synroc phases. J Nucl Mater 289: 254-262. doi: 10.1016/S0022-3115(01)00423-8
    [27] Ewing RC, Haaker RF, Lutze W (1982) Leachability of zircon as a function of alpha dose, in Scientific Basis for Nuclear Waste Management V., Lutze W (ed), Elsevier, New York, 389-397.
    [28] ANDRA (2005) Dossier 2005 Argile: Evaluation of the feasibility of a geological repository in an argillaceous formation. December 2005 and Dossier 2005 Granite: Assets of granite formations for deep geological disposal.
    [29] Lumpkin GR (2001) Alpha-decay damage and aqueous durability of actinide host phases in natural systems. J Nucl Mater 289: 136-166. doi: 10.1016/S0022-3115(00)00693-0
    [30] Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3: 43-50. doi: 10.2113/gselements.3.1.43
    [31] Tromans J (2006) Solubility of crystalline and metamict zircon: A thermodynamic analysis. J Nucl Mater 357: 221-223. doi: 10.1016/j.jnucmat.2006.06.012
  • This article has been cited by:

    1. Jiazhuo Cheng, Qiru Wang, Global existence and finite-time blowup for a mixed pseudo-parabolic r(x)-Laplacian equation, 2024, 13, 2191-950X, 10.1515/anona-2023-0133
    2. Guangwei Du, Xinjing Wang, Monotonicity of solutions for parabolic equations involving nonlocal Monge-Ampère operator, 2024, 13, 2191-950X, 10.1515/anona-2023-0135
    3. Yuxuan Chen, Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity, 2023, 15, 2836-3310, 658, 10.3934/cam.2023033
    4. Farrukh Dekhkonov, On one boundary control problem for a pseudo-parabolic equation in a two-dimensional domain, 2025, 17, 2836-3310, 1, 10.3934/cam.2025001
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4604) PDF downloads(910) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog