Loading [MathJax]/jax/output/SVG/jax.js
Research article

Optimal time two-mesh mixed finite element method for a nonlinear fractional hyperbolic wave model

  • In this article, a second-order time discrete algorithm with a shifted parameter θ combined with a fast time two-mesh (TT-M) mixed finite element (MFE) scheme was considered to look for the numerical solution of the nonlinear fractional hyperbolic wave model. The second-order backward difference formula including a shifted parameter θ (BDF2-θ) with the weighted and shifted Grünwald difference (WSGD) approximation for fractional derivative was used to discretize time direction at time tnθ, the H1-Galerkin MFE method was applied to approximate the spatial direction, and the fast TT-M method was used to save computing time of the developed MFE system. A priori error estimates for the fully discrete TT-M MFE system were analyzed and proved in detail, where the second-order space-time convergence rate in both L2-norm and H1-norm were derived. Detailed numerical algorithms with smooth and weakly regular solutions were provided. Finally, some numerical examples were provided to illustrate the feasibility and effectiveness for our scheme.

    Citation: Yining Yang, Cao Wen, Yang Liu, Hong Li, Jinfeng Wang. Optimal time two-mesh mixed finite element method for a nonlinear fractional hyperbolic wave model[J]. Communications in Analysis and Mechanics, 2024, 16(1): 24-52. doi: 10.3934/cam.2024002

    Related Papers:

    [1] Choukri Derbazi, Hadda Hammouche . Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory. AIMS Mathematics, 2020, 5(3): 2694-2709. doi: 10.3934/math.2020174
    [2] Abdelkader Amara . Existence results for hybrid fractional differential equations with three-point boundary conditions. AIMS Mathematics, 2020, 5(2): 1074-1088. doi: 10.3934/math.2020075
    [3] Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059
    [4] Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312
    [5] Muhammed Jamil, Rahmat Ali Khan, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad . Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations. AIMS Mathematics, 2022, 7(10): 18708-18728. doi: 10.3934/math.20221029
    [6] Ala Eddine Taier, Ranchao Wu, Naveed Iqbal . Boundary value problems of hybrid fractional integro-differential systems involving the conformable fractional derivative. AIMS Mathematics, 2023, 8(11): 26260-26274. doi: 10.3934/math.20231339
    [7] Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037
    [8] Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas . Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099
    [9] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
    [10] Mohamed Hannabou, Muath Awadalla, Mohamed Bouaouid, Abd Elmotaleb A. M. A. Elamin, Khalid Hilal . One class class of coupled system fractional impulsive hybrid integro- differential equations. AIMS Mathematics, 2024, 9(7): 18670-18687. doi: 10.3934/math.2024908
  • In this article, a second-order time discrete algorithm with a shifted parameter θ combined with a fast time two-mesh (TT-M) mixed finite element (MFE) scheme was considered to look for the numerical solution of the nonlinear fractional hyperbolic wave model. The second-order backward difference formula including a shifted parameter θ (BDF2-θ) with the weighted and shifted Grünwald difference (WSGD) approximation for fractional derivative was used to discretize time direction at time tnθ, the H1-Galerkin MFE method was applied to approximate the spatial direction, and the fast TT-M method was used to save computing time of the developed MFE system. A priori error estimates for the fully discrete TT-M MFE system were analyzed and proved in detail, where the second-order space-time convergence rate in both L2-norm and H1-norm were derived. Detailed numerical algorithms with smooth and weakly regular solutions were provided. Finally, some numerical examples were provided to illustrate the feasibility and effectiveness for our scheme.



    Hybrid differential equations have been considered more important and served as special cases of dynamical systems. Dhage and Lakshmikantham [1] were the first to study ordinary hybrid differential equation and studied the existence of solutions for this boundary value problem. In recent years, with the wide study of fractional differential equations, the theory of hybrid fractional differential equations were also studied by several researchers, see [2,3,4,5,6,7,8,9,10] and the references therein.

    Zhao et al. [2] studied existence and uniqueness results for the following hybrid differential equations involving Riemann-Liouville fractional derivative

    Dq0+(x(t)f(t,x(t)))=g(t,x(t)),  a.e.tJ=[0,T]
    x(0)=0,

    where 0<q<1,fC(J×RR{0}) and gC(J×R,R).

    Zidane Baitiche et al. [11] considered the following boundary value problem of nonlinear fractional hybrid differential equations involving Caputo's derivative

    CDα0+(x(t)f(t,x(μ(t))))=g(t,x(μ(t))),  tI=[0,1]
    a[x(t)f(t,x(μ(t)))]|t=0+b[x(t)f(t,x(μ(t)))]|t=1=c,

    where 0<α1,CDα0+ is the Caputo fractional derivative. fC(I×RR{0}),gC(I×R,R).

    As we all known, the hadamard fractional differential equations are also popular in the literature, see [12,13,14,15,16], so some authors began to study the theory of fractional hybrid differential equation of hadamard type.

    Zidane Baitiche et al. [17] studied the existence of solutions for fractional hybrid differential equation of hadamard type with dirichlet boundary conditions

    HDα(x(t)f(t,x(t)))=g(t,x(t)),  1<t<e, 1<α2,
    x(1)=0,   x(e)=0,

    where 1<α2, HDα is the Hadamard fractional derivative, fC([1,e]×RR{0}) and gC([1,e]×R,R).

    In [18], M. Jamil et al. discussed the existence result for the boundary value problem of hybrid fractional integro-differential equations involving Caputo's derivative given by

    CDα(CDωu(t)mi=1Iβifi(t,u(t))g(t,u(t)))=h(t,u(t),Iγu(t)),  tJ=[0,1],
    u(0)=0, Dωu(0)=0, u(1)=δu(η),  0<δ<1,  0<η<1,

    where CDα is the Caputo fractional derivative of order α, CDω is the Caputo fractional derivative of order ω, 0<α1, 1<ω2.

    In order to analyze fractional differential equations in a generic way, a fractional derivative with respect to another function called φ-Caputo derivative was proposed [19].

    By mixing idea of the above works, we derived an existence result for the nonlocal boundary value problems of hybrid φ-Caputo fractional integro-differential equations

    CDα φ(CDβ φu(t)mi=1Iωi φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t))g(t,u(t),Iγ1 φu(t),,Iγp φu(t)))=h(t,u(t)),tJ=[0,1], (1.1)
    u(0)=0, CDβ φu(0)=0, u(1)=kj=1δju(ξj), (1.2)

    where 0<α1, 1<β2, CDα φ is the φ-Caputo fractional derivative of order α, CDβ φ is the φ-Caputo fractional derivative of order β, the function φ: [0,1]R is a strictly increasing function such that φC2[0,1] with φ(x)>0 for all x[0,1], Iμ φ denote the φ-Riemann-Liouville fractional integral of order μ, gC(J×Rp+1,R{0}), hC(J×R,R) and fiC(J×Rn+1,R) with fi(0,0,,0n+1)=0, wi>0, i=1,2,,m, μ1,,μn>0 and γ1,,γp>0, 0<δj<1, j=1,2,,k, 0<ξ1<ξ2<<ξk<1.

    It is notable that the fractional hybrid integro-differential equation presented in this paper is the novel in the sense that the fractional derivative with respect to another function called φ-Caputo fractional derivative. Note that the hybrid fractional integro-differential equations involving Caputo's derivative in [18] is a special case of our hybrid φ-Caputo fractional integro-differential equations with φ(t)=t. Moreover, all dependent functions fi and g in our paper are in the form of multi-term. Furthermore, our problem is more general than the work in [8], as we consider the problem with multi-point boundary conditions, while the authors in [8] only investigated two-point boundary condition.

    The organization of this work is as follows. Section 2 contains some preliminary facts that we need in the sequel. In section 3, we present the solution for the hybrid fractional integro-differential equation (1.1), (1.2) and then prove our main existence results. Finally, we illustrate the obtained results by an example.

    In the following and throughtout the text, a>0 is a real, x:[a,b]R an integrable function and φC2[a,b] an increasing function such that with φ(t)0 for all t[a,b].

    Definition 2.1 The φ-Riemann-Liouville fractional integral of x of order α is defined as follows

    Iα φa+x(t):=1Γ(α)taφ(s)(φ(t)φ(s))α1x(s)ds.

    Definition 2.2 The φ-Riemann-Liouville fractional derivative of x of order α is defined as follows

    Dα φa+x(t):=(1φ(t)ddt)nInα φa+x(t)=1Γ(nα)(1φ(t)ddt)ntaφ(s)(φ(t)φ(s))nα1x(s)ds,

    here n=[α]+1.

    Remark 2.1 Let α,β>0, then the relation holds

    Iα φa+Iβ φa+x(t)=Iα+β φa+x(t).

    Definition 2.3 Let α>0 and xCn1[a,b], the φ-Caputo fractional derivative of x of order α is defined as follows

    CDα φa+x(t):=Dα φa+[x(t)n1k=0x[k]φ(a)k!(φ(t)φ(a))k], n=[α]+1 for αN, n=α for αN,

    where x[k]φ(t):=(1φ(t)ddt\bigamma)kx(t).

    Theorem 2.1 [20] Let x:[a,b]R. The following results hold:

    1. If xC[a,b], then CDα φa+Iα φa+x(t)=x(t);

    2. If xCn1[a,b], then

    Iα φ Ca+Dα φa+x(t)=x(t)n1k=0x[k]φ(a)k!(φ(t)φ(a))k.

    Lemma 2.2 [18] Let S be a nonempty, convex, closed, and bounded set such that SE, and let A:EE and B:SE be two operators which satisfy the following :

    (H1)A is contraction;

    (H2)B is compact and continuous, and

    (H3)u=Au+Bv, vSuS.

    Then there exists a solution of the operator equation u=Au+Bu.

    Let E=C(J,R) be a Banach space equipped with the norm

    u=suptJ|u(t)|   and  (uv)(t)=u(t)v(t),   tJ.

    Then E is a Banach algebra with the above norm and multiplication.

    Lemma 3.1 Suppose that α,β,ωi,i=1,2,,m,γi,i=1,2,,p,μi,i=1,2,,n,δj,ξj,j=1,2,,k and functions g,h,fi,i=1,2,,m satisfy problem (1.1), (1.2). Then the unique solution of (1.1), (1.2) is given by

    u(t)=t0(φ(t)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t))+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))[10(φ(1)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(1,u(1),Iμ1 φu(1),,Iμn φu(1))kj=1δjξj0(φ(ξj)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτdskj=1δjmi=1Iωi+β φfi(ξj,u(ξj),Iμ1 φu(ξj),,Iμn φu(ξj))], (3.1)

    where

    Iωi+β φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t))=t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds;
    Iωi+β φfi(1,u(1),Iμ1 φu(1),,Iμn φu(1))=10(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds;
    Iωi+β φfi(ξj,u(ξj),Iμ1 φu(ξj),,Iμn φu(ξj))=ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds.

    Proof. We apply φ-Riemann-Liouville fractional integral Iα φ on both sides of (1.1), by Theorem 2.1, we have

    CDβ φu(t)mi=1Iωi φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t))g(t,u(t),Iγ1 φu(t),,Iγp φu(t))=Iα φh(t,u(t))+c0,

    then by u(0)=0, CDβ φu(0)=0, fi(0,0,,0n+1)=0, we get c0=0. i.e,

    CDβ φu(t)=g(t,u(t),Iγ1 φu(t),,Iγp φu(t))t0(φ(t)φ(s))α1Γ(α)φ(s)h(s,u(s))ds+mi=1Iωi φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t)). (3.2)

    Apply again fractional integral Iβ φ on both sides of (3.2) and by Theorem 2.1, we get

    u(t)=t0(φ(t)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t))+c1+c2(φ(t)φ(0)), (3.3)

    u(0)=0, fi(0,0,,0n+1)=0 yield c1=0, thus equation (3.3) is reduced to

    u(t)=t0(φ(t)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t))+c2(φ(t)φ(0)), (3.4)

    specially.

    u(1)=10(φ(1)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(1,u(1),Iμ1 φu(1),,Iμn φu(1))+c2(φ(1)φ(0)),
    u(ξj)=ξj0(φ(ξj)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(ξj,u(ξj),Iμ1 φu(ξj),,Iμn φu(ξj))+c2(φ(ξj)φ(0)),

    from u(1)=kj=1δju(ξj), we have

    c2=1kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))[10(φ(1)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(1,u(1),Iμ1 φu(1),,Iμn φu(1))kj=1δjξj0(φ(ξj)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτdskj=1δjmi=1Iωi+β φfi(ξj,u(ξj),Iμ1 φu(ξj),,Iμn φu(ξj))].

    Consequently, we can get the desired result. The proof is completed.

    Theorem 3.2 Suppose that functions gC(J×Rp+1,R{0}), hC(J×R,R) and fiC(J×Rn+1,R) with fi(0,0,,0n+1)=0. Furthermore, assume that

    (C1) there exist bounded mapping σ:[0,1]R+, λ:[0,1]R+ such that

    |g(t,k1,k2,,kp+1)g(t,k1,k2,,kp+1)|σ(t)p+1i=1|kiki|

    for tJ and (k1,k2,,kp+1),(k1,k2,,kp+1)Rp+1, and

    |h(t,u)h(t,v)|λ(t)|uv| for tJ and u,vR;

    (C2) there exist ϕi,Ω,χC(J,R+),i=1,2,,m such that

    |fi(t,k1,k2,,kn+1)|ϕi(t),  (t,k1,k2,,kn+1)J×Rn+1,
    |h(t,u)|Ω(t),  (t,u)J×R,
    |g(t,k1,k2,,kp+1)|χ(t),  (t,k1,k2,,kp+1)J×Rp+1;

    (C3) there exists r>0 such that

    (1+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|)(χΩ(φ(1)φ(0))αΓ(α+1)(φ(1)φ(0))βΓ(β+1)+mi=1ϕi(φ(1)φ(0))ωi+βΓ(ωi+β+1))r; (3.5)
    (χλ+Ωσp+1i=1(φ(1)φ(0))γiΓ(γi+1))(φ(1)φ(0))αΓ(α+1)(1+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|)(φ(1)φ(0))βΓ(β+1)<1, (3.6)

    where Ω=sup0t1|Ω(t)|, ϕi=sup0t1|ϕi(t)|, i=1,2,,p, χ=sup0t1|χ(t)|, λ=sup0t1|λ(t)|, σ=sup0t1|σ(t)|.

    Then the hybrid problem (1.1), (1.2) has at least one solution.

    Proof. Define a subset S of E as

    S={uE: ur},

    where r satisfies inequality (3.5). Clearly S is closed, convex and bounded subset of the Banach space E. Define two operators A:EE by

    Au(t)=t0(φ(t)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))10(φ(1)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))ξj0(φ(ξj)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds, (3.7)
    Bu(t)=mi=1t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds. (3.8)

    Then u(t) is a solution of problem (1.1), (1.2) if and only if u(t)=Au(t)+Bu(t). We shall show that the operators A and B satisfy all the conditions of Lemma 2.2. We split the proof into several steps.

    Step 1. We first show that A is a contraction mapping. Let u(t),v(t)S, we write

    G(s)=g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτg(s,v(s),Iγ1 φv(s),,Iγp φv(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,v(τ))dτ,

    then by (C1) we have

    |G(s)|=|g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτg(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,v(τ))dτ+g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,v(τ))dτg(s,v(s),Iγ1 φv(s),,Iγp φv(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,v(τ))dτ||g(s,u(s),Iγ1 φu(s),,Iγp φu(s))|s0(φ(s)φ(τ))α1Γ(α)φ(τ)|h(τ,u(τ))h(τ,v(τ))|dτ+s0(φ(s)φ(τ))α1Γ(α)φ(τ)|h(τ,v(τ))|dτ|g(s,u(s),Iγ1 φu(s),,Iγp φu(s))g(s,v(s),Iγ1 φv(s),,Iγp φv(s))|χλuv(φ(s)φ(0))αΓ(α+1)+Ω(φ(s)φ(0))αΓ(α+1)σp+1i=1(φ(s)φ(0))γiΓ(γi+1)uv(χλ+Ωσp+1i=1(φ(1)φ(0))γiΓ(γi+1))(φ(1)φ(0))αΓ(α+1)uv,

    thus we have

    |Au(t)Av(t)|t0(φ(t)φ(s))β1Γ(β)φ(s)G(s)ds+φ(t)φ(0)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|10(φ(1)φ(s))β1Γ(β)φ(s)G(s)ds+φ(t)φ(0)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|kj=1δjξj0(φ(ξj)φ(s))β1Γ(β)φ(s)G(s)ds(χλ+Ωσp+1i=1(φ(1)φ(0))γiΓ(γi+1))(φ(1)φ(0))αΓ(α+1)(1+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|)(φ(1)φ(0))βΓ(β+1)uv,

    which implies

    Au(t)Av(t)[(χλ+Ωσp+1i=1(φ(1)φ(0))γiΓ(γi+1))(φ(1)φ(0))αΓ(α+1)(1+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|)(φ(1)φ(0))βΓ(β+1)]uv,

    in view of (3.6), this shows that A is a contraction mapping.

    Step 2. The operator B is compact and continuous on S.

    First, we show that B is continuous on S. Let {un} be a sequence of functions in S converging to a function uS. Then by Lebesgue dominated convergence theorem,

    limnBun(t)=limn[mi=1t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,un(s),Iμ1 φun(s),,Iμn φun(s))ds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,un(s),Iμ1 φun(s),,Iμn φun(s))ds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,un(s),Iμ1 φun(s),,Iμn φun(s))ds].=mi=1t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)limnfi(s,un(s),Iμ1 φun(s),,Iμn φun(s))ds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)limnfi(s,un(s),Iμ1 φun(s),,Iμn φun(s))ds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)limnfi(s,un(s),Iμ1 φun(s),,Iμn φun(s))ds=mi=1t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φ(s),,Iμn φu(s))ds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds=Bu(t).

    This shows that B is continuous on S. It is sufficient to show that B(S) is a uniformly bounded and equicontinuous set in E.

    First, we note that

    |Bu(t)|mi=1t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)|fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))|ds+φ(t)φ(0)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)|fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))|ds+(φ(t)φ(0))kj=1δj|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)|fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))|dsmi=1ϕi(φ(1)φ(0))ωi+βΓ(ωi+β+1)+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|mi=1ϕi(φ(1)φ(0))ωi+βΓ(ωi+β+1)=(1+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|)mi=1ϕi(φ(1)φ(0))ωi+βΓ(ωi+β+1).

    This shows that B is uniformly bounded on S.

    Next, we show that B is an equicontinuous set in E. Let t1,t2J with t1<t2 and uS. Then we have

    |Bu(t2)Bu(t1)|=|mi=1t20(φ(t2)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))dsmi=1t10(φ(t1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds+φ(t2)φ(t1)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds(φ(t2)φ(t1))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds|mi=1ϕiΓ(ωi+β)[|t10[(φ(t2)φ(s))ωi+β1(φ(t1)φ(s))ωi+β1]φ(s)ds+t2t1[(φ(t2)φ(s))ωi+β1φ(s)ds|+φ(t2)φ(t1)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|10(φ(1)φ(s))ωi+β1φ(s)ds+(φ(t2)φ(t1))kj=1δj|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|ξj0(φ(ξj)φ(s))ωi+β1φ(s)ds]mi=1ϕiΓ(ωi+β+1)[|(φ(t2)φ(0))ωi+β(φ(t1)φ(0))ωi+β|+φ(t2)φ(t1)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|(φ(1)φ(0))ωi+β+(φ(t2)φ(t1))kj=1δj|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|(φ(ξj)φ(0))ωi+β].

    Let h(t)=(φ(t)φ(0))ωi+β. Then h is continuously differentiable function. Consequently, for all t1,t2[0,1], without loss of generality, let t1<t2, then there exist positive constants M such that

    |h(t2)h(t1)|=|h(ξ)||t2t1|M|t2t1|,   ξ(t1,t2).

    On the other hand, for φC[0,1], thus there exist positive constants N such that |φ(t2)φ(t1)|=|φ(ξ)||t2t1|N|t2t1|,   ξ(t1,t2), from which we deduce

    |Bu(t2)Bu(t1)|0    as  t2t10.

    Therefore, it follows from the Arzela-Ascoli theorem that B is a compact operator on S.

    Step 3. Next we show that hypothesis (H3) of Lemma 2.2 is satisfied. Let vS, then we have

    |u(t)|=|Au(t)+Bv(t)||Au(t)|+|Bv(t)||t0(φ(t)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))10(φ(1)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))ξj0(φ(ξj)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds|+|mi=1t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,v(s),Iμ1 φv(s),,Iμn φv(s))ds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,v(s),Iμ1 φv(s),,Iμn φv(s))ds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,v(s),Iμ1 φv(s),,Iμn φv(s))ds|(1+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|)(χΩ(φ(1)φ(0))αΓ(α+1)(φ(1)φ(0))βΓ(β+1)+mi=1ϕi(φ(1)φ(0))ωi+βΓ(ωi+β+1))r,

    which implies ur and so uS.

    Thus all the conditions of Lemma 2.2 are satisfied and hence the operator equation u=Au+Bu has a solution in S. In consequence, the problem (1.1), (1.2) has a solution on J. This completes the proof.

    In this section, we provide an example to illustrate our main result.

    Example 4.1 Consider the following hybrid φ-Caputo fractional integro-differential equations

    CD12 t4(CD32 t4u(t)2i=1Iωit4fi(t,u(t),I13t4u(t),I43t4u(t))14t2(|u(t)|1+|u(t)|+|I14t4u(t)|1+|I14t4u(t)|+sinI12t4u(t)))=25cos(t4)(|u(t)||u(t)|+1),  tJ=[0,1], (4.1)
    u(0)=0, CD32 t4u(0)=0, u(1)=13u(13), (4.2)

    where

    2i=1Iωit4fi(t,u(t),I13t4u(t),I43t4u(t))=I13t4(t[|u(t)|1+|u(t)|+sin(I13t4u(t))+cos(I43t4u(t))])+I23t4(t10[|u(t)|1+|u(t)|+arctan(I13t4u(t))+sin(I43t4u(t))]). (4.3)

    We note that α=12,β=32,m=2,n=2,p=2,k=1,δ=13,ξ=13,ω1=13,ω2=23,μ1=13,μ2=43,γ1=14,γ2=12,φ(t)=t4,

    f1(t,u(t),I13t4u(t),I43t4u(t))=t[|u(t)|1+|u(t)|+sin(I13t4u(t))+cos(I43t4u(t))],
    f2(t,u(t),I13t4u(t),I43t4u(t))=t10[|u(t)|1+|u(t)|+arctan(I13t4u(t))+sin(I43t4u(t))],
    g(t,u(t),I14t4u(t),I12t4u(t))=14t2(|u(t)|1+|u(t)|+|I14t4u(t)|1+|I14t4u(t)|+sinI12t4u(t)),
    h(t,u(t))=25cos(t4)(|u(t)||u(t)|+1).

    Thus we have

    |g(t,u(t),I14t4u(t),I12t4u(t))g(t,v(t),I14t4v(t),I12t4v(t))|σ(t)[1+t14Γ(54)+t12Γ(32)]|u(t)v(t)|=t24[1+t14Γ(54)+t12Γ(32)]|u(t)v(t)|,
    |h(t,u(t))h(t,v(t))|=25cos(t4)|u(t)v(t)|.

    Therefore,

    σ=sup0t1|σ(t)|=sup0t1t24[1+t14Γ(54)+t12Γ(32)]=14(1+1Γ(54)+1Γ(32))=14(1+10.9064+10.8862)=0.8079;
    λ=sup0t1|λ(t)|=sup0t125cos(t4)=0.4;
    ϕ1=sup0t1|ϕ1(t)|=sup0t1t(1+1+1)=3;
    ϕ2=sup0t1|ϕ2(t)|=sup0t1t10(1+π2+1)=110×3.57=0.357;
    Ω=sup0t1|Ω(t)|=sup0t125cos(t4)=0.4;
    χ=sup0t1|χ(t)|=sup0t1t24(1+1+1)=34=0.75.

    Choose r>0.5, then we have

    (1+14×4329)[0.75×0.4×(14)12Γ(32)×(14)32Γ(52)+3×(14)116Γ(176)+0.357×(14)136Γ(196)]=0.4016r.

    Moreover,

    (0.75×0.4+0.4×0.8079×((14)14Γ(54)+(14)12Γ(32)))(14)12Γ(32)(1+14×4329)(14)32Γ(52)=0.097<1.

    Now, by using Theorem 3.2, it is deduced that the fractional hybrid integro-differential problem (4.1), (4.2) has a solution.

    Hybrid fractional integro-differential equations have been considered more important and served as special cases of dynamical systems. In this paper, we introduced a new class of the hybrid φ-Caputo fractional integro-differential equations. By using famous hybrid fixed point theorem due to Dhage, we have developed adequate conditions for the existence of at least one solution to the hybrid problem (1.1), (1.2). The respective results have been verified by providing a suitable example.

    We express our sincere thanks to the anonymous reviewers for their valuable comments and suggestions. This work is supported by the Natural Science Foundation of Tianjin (No.(19JCYBJC30700)).

    The authors declare no conflict of interest in this paper.



    [1] S. W. Liu, H. Q. Wang, T. S. Li, Adaptive composite dynamic surface neural control for nonlinear fractional-order systems subject to delayed input, ISA Trans., 134 (2023), 122–133. https://doi.org/10.1016/j.isatra.2022.07.027 doi: 10.1016/j.isatra.2022.07.027
    [2] Y. Li, H. Wang, X. Zhao, N. Xu, Event-triggered adaptive tracking control for uncertain fractional-order nonstrict-feedback nonlinear systems via command filtering, Int. J. Robust Nonlinear Control, 32 (2022), 7987–8011. https://doi.org/10.1002/rnc.6255 doi: 10.1002/rnc.6255
    [3] M. M. A. Khater, De Broglie waves and nuclear element interaction; Abundant waves structures of the nonlinear fractional Phi-four equation, Chaos Solitons Fract., 163 (2022), 112549, https://doi.org/10.1016/j.chaos.2022.112549 doi: 10.1016/j.chaos.2022.112549
    [4] M. M. A. Khater, R. A. M. Attia, Simulating the behavior of the population dynamics using the non-local fractional Chaffee-Infante equation, Fractals, 2023. https://doi.org/10.1142/S0218348X23402004
    [5] Y. Cao, B. L. Yin, Y. Liu, H. Li, Crank-Nicolson WSGI difference scheme with finite element method for multi-dimensional time fractional wave problem, Comput. Appl. Math., 37 (2018), 5126–5145. https://doi.org/10.1007/s40314-018-0626-2 doi: 10.1007/s40314-018-0626-2
    [6] L. Feng, F. Liu, I. Turner, Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains, Commun. Nonlinear Sci. Numer. Simulat., 70 (2019), 354–371. https://doi.org/10.1016/j.cnsns.2018.10.016 doi: 10.1016/j.cnsns.2018.10.016
    [7] Y. Luchko, Fractional wave equation and damped waves, J. Math. Phys., 54 (2013), 031505. https://doi.org/10.1063/1.4794076 doi: 10.1063/1.4794076
    [8] B. L. Yin, Y. Liu, H. Li, F. H. Zeng, A class of efficient time-stepping methods for multi-term time-fractional reaction-diffusion-wave equations, Appl. Numer. Math., 165 (2021), 56–82. https://doi.org/10.1016/j.apnum.2021.02.007 doi: 10.1016/j.apnum.2021.02.007
    [9] Z. G. Zhao, C. P. Li, Fractional difference/finite element approximations for the time-space fractional telegraph equation, Appl. Math. Comput., 219 (2012), 2975–2988. https://doi.org/10.1016/j.amc.2012.09.022 doi: 10.1016/j.amc.2012.09.022
    [10] J. H. Jia, X. C. Zheng, H. Wang, Numerical discretization and fast approximation of a variably distributed-order fractional wave equation, ESAIM: Math. Model. Numer. Anal., 55 (2021), 2211–2232. https://doi.org/10.1051/m2an/2021045 doi: 10.1051/m2an/2021045
    [11] H. R. Ren, Y. Liu, B. L. Yin, H. Li, Finite element algorithm with a second-order shifted composite numerical integral formula for a nonlinear time fractional wave equation, Numer. Meth. Part. Differ. Equ., 40 (2024), e23066. https://doi.org/10.1002/num.23066 doi: 10.1002/num.23066
    [12] M. Li, C. M. Huang, Y. L. Zhao, Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation, Numer. Algor., 84 (2020), 1081–1119. https://doi.org/10.1007/s11075-019-00793-9 doi: 10.1007/s11075-019-00793-9
    [13] M. Li, M. F. Fei, N. Wang, C. M. Huang, A dissipation-preserving finite element method for nonlinear fractional wave equations on irregular convex domains, Math. Comput. Simulat., 177 (2020), 404–419. https://doi.org/10.1016/j.matcom.2020.05.005 doi: 10.1016/j.matcom.2020.05.005
    [14] M. Li, Y. L. Zhao, A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator, Appl. Math. Comput., 338 (2018), 758–773. https://doi.org/10.1016/j.amc.2018.06.010 doi: 10.1016/j.amc.2018.06.010
    [15] M. H. Heydari, M. R. Hooshmandasl, F. M. Ghaini, C. Cattani, Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A., 379 (2015) 71–76. https://doi.org/10.1016/j.physleta.2014.11.012 doi: 10.1016/j.physleta.2014.11.012
    [16] F. H. Zeng, Second-order stable finite difference schemes for the time-fractional diffusion-wave equation, J. Sci. Comput., 65 (2015), 411–430. https://doi.org/10.1007/s10915-014-9966-2 doi: 10.1007/s10915-014-9966-2
    [17] A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, J. Comput. Phys., 293 (2015), 104–114. https://doi.org/10.1016/j.jcp.2014.12.043 doi: 10.1016/j.jcp.2014.12.043
    [18] M. H. Chen, W. H. Deng, A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Lett., 68 (2017), 87–93. https://doi.org/10.1016/j.aml.2016.12.010 doi: 10.1016/j.aml.2016.12.010
    [19] H. F. Ding, A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation, Appl. Numer. Math., 135 (2019), 30–46. https://doi.org/10.1016/j.apnum.2018.08.005 doi: 10.1016/j.apnum.2018.08.005
    [20] Z. D. Luo, H. Wang, A highly efficient reduced-order extrapolated finite difference algorithm for time-space tempered fractional diffusion-wave equation, Appl. Math. Lett., 102 (2020), 106090. https://doi.org/10.1016/j.aml.2019.106090 doi: 10.1016/j.aml.2019.106090
    [21] W. McLean, K. Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer. Math., 105 (2007), 481–510. https://doi.org/10.1007/s00211-006-0045-y doi: 10.1007/s00211-006-0045-y
    [22] J. Ren, Z. Sun, Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions, J. Sci. Comput., 56 (2013), 381–408. https://doi.org/10.1007/s10915-012-9681-9 doi: 10.1007/s10915-012-9681-9
    [23] H. Sun, Z. Z. Sun, G. H. Gao, Some temporal second order difference schemes for fractional wave equations, Numer. Meth. Part. Differ. Equ., 32 (2016), 970–1001. https://doi.org/10.1002/num.22038 doi: 10.1002/num.22038
    [24] M. Dehghan, M. Abbaszadeh, A. Mohebbi, Analysis of a meshless method for the time fractional diffusion-wave equation, Numer. Algor., 73 (2016), 445–476. https://doi.org/10.1007/s11075-016-0103-1 doi: 10.1007/s11075-016-0103-1
    [25] G. Fairweather, X. H. Yang, D. Xu, H. X. Zhang, An ADI Crank-Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation, J. Sci. Comput., 65 (2015), 1217–1239. https://doi.org/10.1007/s10915-015-0003-x doi: 10.1007/s10915-015-0003-x
    [26] Y. Yang, Y. Chen, Y. Huang, H. Wei, Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, Comput. Math. Appl., 73 (2017), 1218–1232. https://doi.org/10.1016/j.camwa.2016.08.017 doi: 10.1016/j.camwa.2016.08.017
    [27] M. M. A. Khater, D. C. Lu, Analytical versus numerical solutions of the nonlinear fractional time-space telegraph equation, Modern Phys. Lett. B., 35 (2021), 2150324. https://doi.org/10.1142/S0217984921503243 doi: 10.1142/S0217984921503243
    [28] M. M. A. Khater, K. S. Nisar, M. S. Mohamed, Numerical investigation for the fractional nonlinear space-time telegraph equation via the trigonometric Quintic B-spline scheme, Math. Meth. Appl. Sci., 44 (2021), 4598–4606. https://doi.org/10.1002/mma.7052 doi: 10.1002/mma.7052
    [29] W. Y. Tian, H. Zhou, W. H. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput., 84 (2015), 1703–1727.
    [30] Z. B. Wang, S. W. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 277 (2014), 1–15. https://doi.org/10.1016/j.jcp.2014.08.012 doi: 10.1016/j.jcp.2014.08.012
    [31] Y. Liu, Y. W. Du, H. Li, J. F. Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable equation, Nonlinear Dyn., 85 (2016), 2535–2548. https://doi.org/10.1007/s11071-016-2843-9 doi: 10.1007/s11071-016-2843-9
    [32] C. Li, S. Zhao, Efficient numerical schemes for fractional water wave models, Comput. Math. Appl., 71 (2016), 238–254. https://doi.org/10.1016/j.camwa.2015.11.018 doi: 10.1016/j.camwa.2015.11.018
    [33] C. C. Ji, Z. Z. Sun, A high-order compact finite difference scheme for the fractional sub-diffusion equation, J. Sci. Comput., 64 (2015), 959–985. https://doi.org/10.1007/s10915-014-9956-4 doi: 10.1007/s10915-014-9956-4
    [34] Y. Liu, M. Zhang, H. Li, J. C. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation, Comput. Math. Appl., 73 (2017), 1298–1314. https://doi.org/10.1016/j.camwa.2016.08.015 doi: 10.1016/j.camwa.2016.08.015
    [35] Y. Liu, Y.W. Du, H. Li, F. Liu, Y.Wang, Some second-order θ schemes combined with finite element method for nonlinear fractional cable equation, Numer. Algor., 80 (2019), 533–555. https://doi.org/10.1007/s11075-018-0496-0 doi: 10.1007/s11075-018-0496-0
    [36] A. K. Pani, An H1-Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numer. Anal., 35 (1998), 712–727. https://doi.org/10.1137/S0036142995280808 doi: 10.1137/S0036142995280808
    [37] Y. Liu, H. Li, H1-Galerkin Mixed finite element methods for pseudo-hyperbolic equations, Appl. Math. Comput., 212 (2009), 446–457. https://doi.org/10.1016/j.amc.2009.02.039 doi: 10.1016/j.amc.2009.02.039
    [38] L. Guo, H. Z. Chen, H1-Galerkin Mixed finite element method for the regularized long wave equation, Computing, 77 (2006), 205–221. https://doi.org/10.1007/s00607-005-0158-7 doi: 10.1007/s00607-005-0158-7
    [39] D. Y. Shi, J. J. Wang, F. Yan, Unconditional superconvergence analysis of an H1-Galerkin mixed finite element method for nonlinear Sobolev equations, Numer. Meth. Part. Differ. Equ., 34 (2018) 145–166. https://doi.org/10.1002/num.22189 doi: 10.1002/num.22189
    [40] Z. G. Shi, Y. M. Zhao, F. Liu, Y. F. Tang, F. L. Wang, Y. H. Shi, High accuracy analysis of an H1-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations, Comput. Math. Appl., 74 (2017), 1903–1914. https://doi.org/10.1016/j.camwa.2017.06.057 doi: 10.1016/j.camwa.2017.06.057
    [41] C. Wen, Y. Liu, B. L. Yin, H. Li, J. F. Wang, Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model, Numer. Algor., 88 (2021), 523–553. https://doi.org/10.1007/s11075-020-01048-8 doi: 10.1007/s11075-020-01048-8
    [42] Y. Liu, Z.D. Yu, H. Li, F. Liu, J. F. Wang, Time two-mesh algorithm combined with finite element method for time fractional water wave model, Int. J. Heat Mass Transf., 120 (2018), 1132–1145. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.118 doi: 10.1016/j.ijheatmasstransfer.2017.12.118
    [43] W. L. Qiu, D. Xu, J. Guo, J. Zou, A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model, Numer. Algor., 85 (2020), 39–58. https://doi.org/10.1007/s11075-019-00801-y doi: 10.1007/s11075-019-00801-y
    [44] Y. X. Niu, Y. Liu, H. Li, F. W. Liu, Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media, Math. Comput. Simulat., 203 (2023), 387–407. https://doi.org/10.1016/j.matcom.2022.07.001 doi: 10.1016/j.matcom.2022.07.001
    [45] Z. C. Fang, J. Zhao, H. Li, Y. Liu, A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model, Numer. Algor., 93 (2023), 863–898. https://doi.org/10.1007/s11075-022-01444-2 doi: 10.1007/s11075-022-01444-2
    [46] B. Yin, Y. Liu, H. Li, S. He, Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solution, J. Comput. Phys., 379 (2019), 351–372. https://doi.org/10.1016/j.jcp.2018.12.004 doi: 10.1016/j.jcp.2018.12.004
    [47] Q. F. Li, Y. P. Chen, Y. Q. Huang, Y. Wang, Two-grid methods for nonlinear time fractional diffusion equations by L1-Galerkin FEM, Math. Comput. Simulat., 185 (2021), 436–451. https://doi.org/10.1016/j.matcom.2020.12.033 doi: 10.1016/j.matcom.2020.12.033
    [48] O. Ladijzenskaia, The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach, 1969.
    [49] E. Cuesta, C. Lubich, C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp., 75 (2006), 673–696. https://doi.org/10.1090/s0025-5718-06-01788-1 doi: 10.1090/s0025-5718-06-01788-1
    [50] F. H. Zeng, Z. Q. Zhang, G. E. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions, Comput. Methods Appl. Mech. Engrg., 327 (2017), 478–502. https://doi.org/10.1016/j.cma.2017.08.029 doi: 10.1016/j.cma.2017.08.029
    [51] B. Yin, Y. Liu, H. Li, A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations, Appl. Math. Comput., 368 (2020), 124799. https://doi.org/10.1016/j.amc.2019.124799 doi: 10.1016/j.amc.2019.124799
  • This article has been cited by:

    1. Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon, Nonlocal coupled hybrid fractional system of mixed fractional derivatives via an extension of Darbo's theorem, 2021, 6, 2473-6988, 3915, 10.3934/math.2021232
    2. Muath Awadalla, Nazim I. Mahmudov, Hüseyin Işık, On System of Mixed Fractional Hybrid Differential Equations, 2022, 2022, 2314-8888, 1, 10.1155/2022/1258823
    3. Ashwini D. Mali, Kishor D. Kucche, José Vanterler da Costa Sousa, On coupled system of nonlinear Ψ-Hilfer hybrid fractional differential equations, 2021, 0, 1565-1339, 10.1515/ijnsns-2021-0012
    4. Muath Awadalla, Kinda Abuasbeh, Muthaiah Subramanian, Murugesan Manigandan, On a System of ψ-Caputo Hybrid Fractional Differential Equations with Dirichlet Boundary Conditions, 2022, 10, 2227-7390, 1681, 10.3390/math10101681
    5. Hamid Beddani, Moustafa Beddani, Zoubir Dahmani, A new tripled system of hybrid differential equations with φ-Caputo derivatives, 2022, 55, 27044963, 12, 10.20948/mathmontis-2022-55-2
    6. Mohamed Benallou, Hamid Beddani, Moustafa Beddani, Existence of solution for a tripled system of fractional hybrid differential equations with laplacie involving Caputo derivatives, 2024, 5, 2764-0981, e11971, 10.54021/seesv5n2-734
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1210) PDF downloads(140) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog