In this study, we sought to prepare sangorache encapsulate (Amaranthus quitensis L.) by spray- and freeze-drying, using three different concentrations (3, 5 and 7%) of the encapsulating agent, maltodextrin. To atomize the powder, we used a Buchi mini spray-dryer B-290 with three inlet temperatures (140, 160 and 180 ℃) and a laboratory freeze dryer with a −0.8 bar pressure for 4 days. During atomization, the powders presented lower moisture content and water activity with the addition of maltodextrin; however, there were no significant changes in the moisture of the freeze-dried powders. Colorimetric analysis revealed that the luminosity (L) and chroma (C) values changed as maltodextrin concentration increased. The structures of particles were examined by scanning electron microscopy (SEM) SEM, and very different morphological characteristics resulted from the two drying methods. Also, apparent density, hygroscopy and dissolution testing revealed significant differences between the powders. Sangorache antioxidant compounds were preserved to a greater extent by applying low concentrations of the encapsulating agent and by the freeze-drying technique. The natural colorant from sangorache inflorescences could serve as an additive to improve food color in the industry.
Citation: María Quelal, Elena Villacrés, Karla Vizuete, Alexis Debut. Physicochemical characterization of sangorache natural colorant extracts (Amaranthus quitensis L.) prepared via spray- and freeze-drying[J]. AIMS Agriculture and Food, 2023, 8(2): 343-358. doi: 10.3934/agrfood.2023019
In this study, we sought to prepare sangorache encapsulate (Amaranthus quitensis L.) by spray- and freeze-drying, using three different concentrations (3, 5 and 7%) of the encapsulating agent, maltodextrin. To atomize the powder, we used a Buchi mini spray-dryer B-290 with three inlet temperatures (140, 160 and 180 ℃) and a laboratory freeze dryer with a −0.8 bar pressure for 4 days. During atomization, the powders presented lower moisture content and water activity with the addition of maltodextrin; however, there were no significant changes in the moisture of the freeze-dried powders. Colorimetric analysis revealed that the luminosity (L) and chroma (C) values changed as maltodextrin concentration increased. The structures of particles were examined by scanning electron microscopy (SEM) SEM, and very different morphological characteristics resulted from the two drying methods. Also, apparent density, hygroscopy and dissolution testing revealed significant differences between the powders. Sangorache antioxidant compounds were preserved to a greater extent by applying low concentrations of the encapsulating agent and by the freeze-drying technique. The natural colorant from sangorache inflorescences could serve as an additive to improve food color in the industry.
[1] | Cai Y, Sun M, Wu H, et al. (1998) Characterization and quantification of betacyanin pigments from diverse amaranthus species. J Agric Food Chem 46: 2063–70. https://doi.org/10.1021/jf9709966 doi: 10.1021/jf9709966 |
[2] | Li H, Deng Z, Liu R, et al. (2015) Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J Food Compos Anal 37: 75–81. https://doi.org/10.1016/j.jfca.2014.09.003 doi: 10.1016/j.jfca.2014.09.003 |
[3] | Peralta E (2009) Amaranto y Ataco: Preguntas y respuestas. Quito, Ecuador: INIAP, Estación Experimental Santa Catalina, Programa Nacional de Leguminosas y Granos Andinos. (Boletín Divulgativo no. 359). |
[4] | Peralta E, Villacrés E, Mazón N, et al. (2008) El ataco, sangorache o amaranto negro (Amaranthus hybridus L.) en Ecuador. Quito, Ecuador, INIAP, Estación Experimental Santa Catalina, Programa Nacional de Leguminosas y Granos Andinos. (Publicación Miscelánea no. 143). |
[5] | Castro-Enríquez DD, Montaño-Leyva B, Del Toro-Sánchez CL, et al. (2020) Stabilization of betalains by encapsulation-a review. J Food Sci Technol 57: 1587–1600. https://doi.org/10.1007/s13197-019-04120-x doi: 10.1007/s13197-019-04120-x |
[6] | Cai Y, Sun M, Corke H (2003) Antioxidant activity of betalains from plants of the Amaranthaceae. J Agric Food Chem 51: 2288–94. https://doi.org/10.1021/jf030045u doi: 10.1021/jf030045u |
[7] | Janiszewska-Turak E, Pisarska A, Królczyk J (2016) Natural food pigments application in food products. Nauk Przyr Technol 10: #51. https://doi.org/10.17306/J.NPT.2016.4.51 |
[8] | Otálora MC, Carriazo JG, Iturriaga L, et al. (2015) Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem 187: 174–81. https://doi.org/10.1016/j.foodchem.2015.04.090 doi: 10.1016/j.foodchem.2015.04.090 |
[9] | Desai KGH, Park HJ (2005) Recent developments in microencapsulation of food ingredients. Dry Technol 23: 1361–94. https://doi.org/10.1081/DRT-200063478 doi: 10.1081/DRT-200063478 |
[10] | Gharsallaoui A, Roudaut G, Chambin O, et al. (2007) Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res Int 40: 1107–21. https://doi.org/10.1016/j.foodres.2007.07.004 doi: 10.1016/j.foodres.2007.07.004 |
[11] | Cai Y, Corke H (2000) Production and properties of spray-dried Amaranthus betacyanin pigments. J Food Sci 65: 1248–52. https://doi.org/10.1016/j.cep.2006.06.020 doi: 10.1016/j.cep.2006.06.020 |
[12] | AOAC (1996) Official methods of analysis. Method 930.15–942.15. 16th ed. Gaithersburg, MD. |
[13] | Quek SY, Chok NK, Swedlund P (2007) The physicochemical properties of spray-dried watermelon powders. Chem Eng Process Process Intensif 46: 386–92. https://doi.org/10.1016/j.cep.2006.06.020 doi: 10.1016/j.cep.2006.06.020 |
[14] | Waterhouse AL (2002) Determination of total phenolics. Curr Protoc food Anal Chem 6: l1-1.1–l1-1.8. |
[15] | Benzie IFF, Strain JJ (1996) The Ferric Reducing Ability of Plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal Biochem 239: 70–6. https://doi.org/10.1006/abio.1996.0292 doi: 10.1006/abio.1996.0292 |
[16] | Di Rienzo J, Casanoves F, Balzarini MG, et al. (2015) InfoStat[Internet]. Grupo InfoStat, FCA, Universidad Nacional de Cordoba, Argentina. Available from: http://www.infostat.com.ar. |
[17] | Ravichandran K, Palaniraj R, Saw NMMT, et al. (2014) Effects of different encapsulation agents and drying process on stability of betalains extract. J Food Sci Technol 51: 2216–21. https://doi.org/10.1007/s13197-012-0728-6 doi: 10.1007/s13197-012-0728-6 |
[18] | Aguilar-Tuesta S, Mamani-Navarro W, Espinoza-Silva C, et al. (2018) Microencapsulated betacyanin from colored organic quinoa (Chenopodium quinoa Willd.): optimization, physicochemical characterization and accelerated storage stability. J Sci Food Agri 98: 5873–83. https://doi.org/10.1002/jsfa.9152 |
[19] | Laokuldilok T, Kanha N (2015) Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT-Food Sci Technol 64: 405–11. https://doi.org/10.1016/j.lwt.2015.05.015 |
[20] | Dayal A, Bhat A, Rashid R (2018) Effect of maltodextrin on the properties of lyophilized Aloe vera (Aloe Barbadensis Mill) powder. J Pharmacogn Phytochem 7: 1604–8. |
[21] | Arrazola G, Herazo I, Alvis A (2014) Microencapsulación de Antocianinas de Berenjena (Solanum melongena L.) mediante Secado por Aspersión y Evaluación de la Estabilidad de su Color y Capacidad Antioxidante. Inf Tecnológica 25: 31–42. http://dx.doi.org/10.4067/S0718-07642014000300006 |
[22] | Oberoi DPS, Sogi DS (2015) Effect of drying methods and maltodextrin concentration on pigment content of watermelon juice powder. J Food Eng 165: 172–8. https://doi.org/10.1016/j.jfoodeng.2015.06.024 doi: 10.1016/j.jfoodeng.2015.06.024 |
[23] | Caliskan G, Dirim SN (2016) The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technol 287: 308–14. https://doi.org/10.1016/j.powtec.2015.10.019 doi: 10.1016/j.powtec.2015.10.019 |
[24] | Tonon RV, Brabet C, Hubinger MD (2008) Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J Food Eng 88: 411–8. https://doi.org/10.1016/j.jfoodeng.2008.02.029 |
[25] | Caliskan G, Nur Dirim S (2013) The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food Bioprod Process 91: 539–48. https://doi.org/10.1016/j.fbp.2013.06.004 doi: 10.1016/j.fbp.2013.06.004 |
[26] | Sarabandi K, Jafari SM, Mahoonak AS, et al. (2019) Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. Int J Biol Macromol 140: 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133 doi: 10.1016/j.ijbiomac.2019.08.133 |
[27] | Ray S, Raychaudhuri U, Chakraborty R (2016) An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci 13: 76–83. https://doi.org/10.1016/j.fbio.2015.12.009 doi: 10.1016/j.fbio.2015.12.009 |
[28] | Castro-Muñoz R, Barragán-Huerta BE, Yáñez-Fernández J (2015) Use of gelatin-maltodextrin composite as an encapsulation support for clarified juice from purple cactus pear (Opuntia stricta). LWT-Food Sci Technol 62: 242–8. https://doi.org/10.1016/j.lwt.2014.09.042 doi: 10.1016/j.lwt.2014.09.042 |
[29] | Boligon AA, Machado MM, Athayde ML (2014) Technical evaluation of antioxidant activity. Med Chem 4: 517–22. https://doi.org/10.4172/2161-0444.1000188 doi: 10.4172/2161-0444.1000188 |
[30] | Londoño J (2012) Antioxidantes: importancia biológica y métodos para medir su actividad. In: Desarrollo y transversalidad. Antoquia: Universidad LaSallista. |
[31] | Wang H, Tong X, Yuan Y, et al. (2020) Effect of spray-drying and freeze-drying on the properties of soybean hydrolysates. J Chem 2020: 9201457. https://doi.org/10.1155/2020/9201457 doi: 10.1155/2020/9201457 |
[32] | Tolun A, Altintas Z, Artik N (2016) Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. J Biotechnol 239: 23–33. https://doi.org/10.1016/j.jbiotec.2016.10.001 doi: 10.1016/j.jbiotec.2016.10.001 |
[33] | Jordán-Suárez O, Glorio-Paulet P, Vidal L (2018) Microstructure of Annona muricata L. leaves extract microcapsules linked to physical and chemical characteristics. J Encapsulation Adsorpt Sci 8: 178. https://doi.org/10.4236/jeas.2018.83009 |
[34] | Camaño IH, Paternina GA, Perez EP (2016) Aspecto estructural mediante microscopia electronica de barrido (sem) de antocianinas obtenidas mediante atomización. Rev La Facultad Cincias básicas. 14: 43–51. https://doi.org/10.24054/01204211.v2.n2.2016.2180 |
[35] | Ezhilarasi PN, Indrani D, Jena BS, et al. (2013) Freeze drying technique for microencapsulation of Garcinia fruit extract and its effect on bread quality. J Food Eng 117: 513–20. https://doi.org/10.1016/j.jfoodeng.2013.01.009 doi: 10.1016/j.jfoodeng.2013.01.009 |
[36] | Guo J, Li P, Kong L, et al. (2020) Microencapsulation of curcumin by spray drying and freeze drying. LWT 132: 109892. https://doi.org/10.1016/j.lwt.2020.109892 doi: 10.1016/j.lwt.2020.109892 |
[37] | Ramírez MJ, Giraldo GI, Orrego CE (2015) Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates. Powder Technol 277: 89–96. https://doi.org/10.1016/j.powtec.2015.02.060 doi: 10.1016/j.powtec.2015.02.060 |