Citation: Shilong Li, Xia Zhao, Chuancun Yin, Zhiyue Huang. Stochastic interest model driven by compound Poisson process and Brownian motion with applications in life contingencies[J]. Quantitative Finance and Economics, 2018, 2(1): 246-260. doi: 10.3934/QFE.2018.1.246
[1] | Beekman J, Fueling C (1990) Interest and mortality randomness in some annuities. Insur Math Econ 9: 185–196. doi: 10.1016/0167-6687(90)90033-A |
[2] | Beekman J, Fueling C (1991) Extra randomness in certain annuity models. Insur Math Econ 10: 275–287. |
[3] | Bellhouse DR, Panjer HH (1980)Stochastic modelling of interest rates with applications to life contingencies: Part I. J Risk Insur 47: 91–110. |
[4] | Bellhouse DR, Panjer HH (1981) Stochastic modelling of interest rates with applications to life contingencies: Part II. J Risk Insur 48: 628–637. doi: 10.2307/252824 |
[5] | Boulier J, Huang S, Taillard G (2001) Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund. Insur Math Econ 28: 173–189. doi: 10.1016/S0167-6687(00)00073-1 |
[6] | Bowers NL, Gerber HU, Hickman JC, et al. (1997) Actuarial mathematics, 2 Eds., Schaumburg, IL: Society of Actuaries. |
[7] | Brigo D, Mercurio F (2006) Interest rate models-theory and practice, 2 Eds., Berlin: Springer. |
[8] | Cai J, Dickson DCM (2004) Ruin probabilities with a Markov chain interest model. Insur Math Econ 35: 513–525. doi: 10.1016/j.insmatheco.2004.06.004 |
[9] | Deng G (2015) Pricing American put option on zero-coupon bond in a jump-extended CIR model. Commun Nonlinear Sci Numer Simulat 22: 186–196. doi: 10.1016/j.cnsns.2014.10.003 |
[10] | Dhaene J (1989)Stochastic interest rates and autoregressive integrated moving average processes. Astin Bull 19: 131–138. |
[11] | Dufresne D (2007) Stochastic life annuities. N Am Actuar J 11: 136–157. |
[12] | Hoedemakrs T, Darkiewicz GJ, Goovaerts M (2004) Approximations for life annuity contracts in a stochastic financial environment. Insur Math Econ 37: 239–269. |
[13] | Hu S, Chen S (2016) On the stationary property of a reflected Cox-Ingersoll-Ross interest rate model driven by a Levy process. Chin J Appl Probab Stat 32: 290–300. |
[14] | Klebaner F (2005) Introduction to stochastic calculus with applications, London: Imperial College Press. |
[15] | Li L, Mendoza-Arriaga R, Mitchell D (2016) Analytical representations for the basic affine jump diffusion. Oper Res Lett 44: 121–128. doi: 10.1016/j.orl.2015.12.003 |
[16] | Li C, Lin L, Lu Y, et al. (2017) Analysis of survivorship life insurance portfolios with stochastic rates of return. Insur Math Econ 75: 16–31. doi: 10.1016/j.insmatheco.2017.04.001 |
[17] | Li S, Yin C, Zhao X, et al. (2017) Stochastic interest model based on compound Poisson process and applications in actuarial science. Math Probl Eng 1–12. |
[18] | Liang J, Yin H, Chen X, et al. (2017) On a Corporate Bond Pricing Model with Credit Rating Migration Risks and Stochastic Interest Rate. Quanti Financ Econ 1: 300–319. doi: 10.3934/QFE.2017.3.300 |
[19] | Parker G (1994a) Moments of the present value of a portfolio of policies. Scand Actuar J 77: 53–67. |
[20] | Parker G (1994b) Stochastic analysis of portfolio of endowment insurance policies. Scand Actuar J 77: 119–130. |
[21] | Parker G (1994c) Two stochastic approaches for discounting actuarial functions. Astin Bull 24: 167–181. |
[22] | Ross SM (1996) Stochastic processes, 2 Eds., New York: John Wiley & Sons, Inc. |
[23] | Zhao X, Zhang B, Mao Z (2007) Optimal dividend payment strategy under stochastic interest force. Qual Quant 41: 927–936. doi: 10.1007/s11135-006-9019-5 |
[24] | Zhao X, Zhang B (2012) Pricing perpetual options with stochastic discount interest. Qual Quant 46: 341–349. doi: 10.1007/s11135-010-9358-0 |