Citation: Elisa Magosso, Giulia Ricci, Mauro Ursino. Modulation of brain alpha rhythm and heart rate variability by attention-related mechanisms[J]. AIMS Neuroscience, 2019, 6(1): 1-24. doi: 10.3934/Neuroscience.2019.1.1
[1] | Takao Komatsu, Ram Krishna Pandey . On hypergeometric Cauchy numbers of higher grade. AIMS Mathematics, 2021, 6(7): 6630-6646. doi: 10.3934/math.2021390 |
[2] | Takao Komatsu, Huilin Zhu . Hypergeometric Euler numbers. AIMS Mathematics, 2020, 5(2): 1284-1303. doi: 10.3934/math.2020088 |
[3] | Nadia N. Li, Wenchang Chu . Explicit formulae for Bernoulli numbers. AIMS Mathematics, 2024, 9(10): 28170-28194. doi: 10.3934/math.20241366 |
[4] | Taekyun Kim, Hye Kyung Kim, Dae San Kim . Some identities on degenerate hyperbolic functions arising from $ p $-adic integrals on $ \mathbb{Z}_p $. AIMS Mathematics, 2023, 8(11): 25443-25453. doi: 10.3934/math.20231298 |
[5] | Jizhen Yang, Yunpeng Wang . Congruences involving generalized Catalan numbers and Bernoulli numbers. AIMS Mathematics, 2023, 8(10): 24331-24344. doi: 10.3934/math.20231240 |
[6] | Taekyun Kim, Dae San Kim, Jin-Woo Park . Degenerate $ r $-truncated Stirling numbers. AIMS Mathematics, 2023, 8(11): 25957-25965. doi: 10.3934/math.20231322 |
[7] | Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541 |
[8] | Aimin Xu . Some identities connecting Stirling numbers, central factorial numbers and higher-order Bernoulli polynomials. AIMS Mathematics, 2025, 10(2): 3197-3206. doi: 10.3934/math.2025148 |
[9] | Waseem A. Khan, Abdulghani Muhyi, Rifaqat Ali, Khaled Ahmad Hassan Alzobydi, Manoj Singh, Praveen Agarwal . A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Mathematics, 2021, 6(11): 12680-12697. doi: 10.3934/math.2021731 |
[10] | Xhevat Z. Krasniqi . Approximation of functions in a certain Banach space by some generalized singular integrals. AIMS Mathematics, 2024, 9(2): 3386-3398. doi: 10.3934/math.2024166 |
L. Carlitz ([1]) introduced analogues of Bernoulli numbers for the rational function (finite) field $ K = \mathbb F_r(T) $, which are called Bernoulli-Carlitz numbers now. Bernoulli-Carlitz numbers have been studied since then (e.g., see [2,3,4,5,6]). According to the notations by Goss [7], Bernoulli-Carlitz numbers $ BC_n $ are defined by
$ xeC(x)=∞∑n=0BCnΠ(n)xn. $
|
(1.1) |
Here, $ e_C(x) $ is the Carlitz exponential defined by
$ eC(x)=∞∑i=0xriDi, $
|
(1.2) |
where $ D_i = [i][i-1]^r\cdots [1]^{r^{i-1}} $ ($ i\ge 1 $) with $ D_0 = 1 $, and $ [i] = T^{r^i}-T $. The Carlitz factorial $ \Pi(i) $ is defined by
$ Π(i)=m∏j=0Dcjj $
|
(1.3) |
for a non-negative integer $ i $ with $ r $-ary expansion:
$ i=m∑j=0cjrj(0≤cj<r). $
|
(1.4) |
As analogues of the classical Cauchy numbers $ c_n $, Cauchy-Carlitz numbers $ CC_n $ ([8]) are introduced as
$ xlogC(x)=∞∑n=0CCnΠ(n)xn. $
|
(1.5) |
Here, $ \log_C(x) $ is the Carlitz logarithm defined by
$ logC(x)=∞∑i=0(−1)ixriLi, $
|
(1.6) |
where $ L_i = [i][i-1]\cdots [1] $ ($ i\ge 1 $) with $ L_0 = 1 $.
In [8], Bernoulli-Carlitz numbers and Cauchy-Carlitz numbers are expressed explicitly by using the Stirling-Carlitz numbers of the second kind and of the first kind, respectively. These properties are the extensions that Bernoulli numbers and Cauchy numbers are expressed explicitly by using the Stirling numbers of the second kind and of the first kind, respectively.
On the other hand, for $ N\ge 1 $, hypergeometric Bernoulli numbers $ B_{N, n} $ ([9,10,11,12]) are defined by the generating function
$ 11F1(1;N+1;x)=xN/N!ex−∑N−1n=0xn/n!=∞∑n=0BN,nxnn!, $
|
(1.7) |
where
$ {}_1 F_1(a;b;z) = \sum\limits_{n = 0}^\infty\frac{(a)^{(n)}}{(b)^{(n)}}\frac{z^n}{n!} $ |
is the confluent hypergeometric function with $ (x)^{(n)} = x(x+1)\cdots(x+n-1) $ ($ n\ge 1 $) and $ (x)^{(0)} = 1 $. When $ N = 1 $, $ B_n = B_{1, n} $ are classical Bernoulli numbers defined by
$ \frac{x}{e^x-1} = \sum\limits_{n = 0}^\infty B_n\frac{x^n}{n!}\,. $ |
In addition, hypergeometric Cauchy numbers $ c_{N, n} $ (see [13]) are defined by
$ 12F1(1,N;N+1;−x)=(−1)N−1xN/Nlog(1+t)−∑N−1n=1(−1)n−1xn/n=∞∑n=0cN,nxnn!, $
|
(1.8) |
where
$ {}_2 F_1(a,b;c;z) = \sum\limits_{n = 0}^\infty\frac{(a)^{(n)}(b)^{(n)}}{(c)^{(n)}}\frac{z^n}{n!} $ |
is the Gauss hypergeometric function. When $ N = 1 $, $ c_n = c_{1, n} $ are classical Cauchy numbers defined by
$ \frac{x}{\log(1+x)} = \sum\limits_{n = 0}^\infty c_n\frac{x^n}{n!}\,. $ |
In [14], for $ N\ge 0 $, the truncated Bernoulli-Carlitz numbers $ BC_{N, n} $ and the truncated Cauchy-Carlitz numbers $ CC_{N, n} $ are defined by
$ xrN/DNeC(x)−∑N−1i=0xri/Di=∞∑n=0BCN,nΠ(n)xn $
|
(1.9) |
and
$ (−1)NxrN/LNlogC(x)−∑N−1i=0(−1)ixri/Li=∞∑n=0CCN,nΠ(n)xn, $
|
(1.10) |
respectively. When $ N = 0 $, $ BC_n = BC_{0, n} $ and $ CC_n = CC_{0, n} $ are the original Bernoulli-Carlitz numbers and Cauchy-Carlitz numbers, respectively. These numbers $ BC_{N, n} $ and $ CC_{N, n} $ in (1.9) and (1.10) in function fields are analogues of hypergeometric Bernoulli numbers in (1.7) and hypergeometric Cauchy numbers in (1.8) in complex numbers, respectively. In [15], the truncated Euler polynomials are introduced and studied in complex numbers.
It is known that any real number $ \alpha $ can be expressed uniquely as the simple continued fraction expansion:
$ α=a0+1a1+1a2+1a3+⋱, $
|
(1.11) |
where $ a_0 $ is an integer and $ a_1, a_2, \dots $ are positive integers. Though the expression is not unique, there exist general continued fraction expansions for real or complex numbers, and in general, analytic functions $ f(x) $:
$ f(x)=a0(x)+b1(x)a1(x)+b2(x)a2(x)+b3(x)a3(x)+⋱, $
|
(1.12) |
where $ a_0(x), a_1(x), \dots $ and $ b_1(x), b_2(x), \dots $ are polynomials in $ x $. In [16,17] several continued fraction expansions for non-exponential Bernoulli numbers are given. For example,
$ ∞∑n=1B2n(4x)n=x1+12+x12+13+x13+14+x⋱. $
|
(1.13) |
More general continued fractions expansions for analytic functions are recorded, for example, in [18]. In this paper, we shall give expressions for truncated Bernoulli-Carlitz numbers and truncated Cauchy-Carlitz numbers.
In [19], the hypergeometric Bernoulli numbers $ B_{N, n} $ ($ N\ge 1 $, $ n\ge 1 $) can be expressed as
$ B_{N,n} = (-1)^n n!\left| N!(N+1)!10N!(N+2)!N!(N+1)!⋮⋮⋱10N!(N+n−1)!N!(N+n−2)!⋯N!(N+1)!1N!(N+n)!N!(N+n−1)!⋯N!(N+2)!N!(N+1)! \right|\,. $
|
When $ N = 1 $, we have a determinant expression of Bernoulli numbers ([20,p.53]). In addition, relations between $ B_{N, n} $ and $ B_{N-1, n} $ are shown in [19].
In [21,22], the hypergeometric Cauchy numbers $ c_{N, n} $ ($ N\ge 1 $, $ n\ge 1 $) can be expressed as
$ c_{N,n} = n!\left| NN+110NN+2NN+1⋮⋮⋱10NN+n−1NN+n−2⋯NN+11NN+nNN+n−1⋯NN+2NN+1 \right|\,. $
|
When $ N = 1 $, we have a determinant expression of Cauchy numbers ([20,p.50]).
Recently, in ([23]) the truncated Euler-Carlitz numbers $ EC_{N, n} $ ($ N\ge 0 $), introduced as
$ \frac{x^{q^{2 N}}/D_{2 N}}{{\rm Cosh}_C(x)-\sum_{i = 0}^{N-1}x^{q^{2 i}}/D_{2 i}} = \sum\limits_{n = 0}^\infty\frac{EC_{N,n}}{\Pi(n)}x^n\,, $ |
are shown to have some determinant expressions. When $ N = 0 $, $ EC_n = EC_{0, n} $ are the Euler-Carlitz numbers, denoted by
$ \frac{x}{{\rm Cosh}_C(x)} = \sum\limits_{n = 0}^\infty\frac{EC_{n}}{\Pi(n)}x^n\,, $ |
where
$ {\rm Cosh}_C(x) = \sum\limits_{i = 0}^\infty\frac{x^{q^{2 i}}}{D_{2 i}} $ |
is the Carlitz hyperbolic cosine. This reminds us that the hypergeometric Euler numbers $ E_{N, n} $ ([24]), defined by
$ \frac{t^{2 N}/(2 N)!}{\cosh t-\sum_{n = 0}^{N-1}t^{2 n}/(2 n)!} = \sum\limits_{n = 0}^\infty E_{N,n}\frac{x^n}{n!}\,, $ |
have a determinant expression [25,Theorem 2.3] for $ N\ge 0 $ and $ n\ge 1 $,
$ E_{N, 2 n} = (-1)^n(2 n)! \left| (2N)!(2N+2)!10(2N)!(2N+4)!⋱⋱0⋮⋱1(2N)!(2N+2n)!⋯(2N)!(2N+4)!(2N)!(2N+2)! \right|\,. $
|
When $ N = 0 $, we have a determinant expression of Euler numbers (cf. [20,p.52]). More general cases are studied in [26].
In this paper, we also give similar determinant expressions of truncated Bernoulli-Carlitz numbers and truncated Cauchy-Carlitz numbers as natural extensions of those of hypergeometric numbers.
Let the $ n $-th convergent of the continued fraction expansion of (1.12) be
$ Pn(x)Qn(x)=a0(x)+b1(x)a1(x)+b2(x)a2(x)+⋱+bn(x)an(x). $
|
(2.1) |
There exist the fundamental recurrence formulas:
$ Pn(x)=an(x)Pn−1(x)+bn(x)Pn−2(x)(n≥1),Qn(x)=an(x)Qn−1(x)+bn(x)Qn−2(x)(n≥1), $
|
(2.2) |
with $ P_{-1}(x) = 1 $, $ Q_{-1}(x) = 0 $, $ P_0(x) = a_0(x) $ and $ Q_0(x) = 1 $.
From the definition in (1.9), truncated Bernoulli-Carlitz numbers satisfy the relation
$ \left(D_N\sum\limits_{i = 0}^\infty\frac{x^{r^{N+i}-r^N}}{D_{N+i}}\right)\left(\sum\limits_{n = 0}^\infty\frac{BC_{N,n}}{\Pi(n)}x^n\right) = 1\,. $ |
Thus,
$ P_m(x) = \frac{D_{N+m}}{D_N},\quad Q_m(x) = D_{N+m}\sum\limits_{i = 0}^m\frac{x^{r^{N+i}-r^N}}{D_{N+i}} $ |
yield that
$ Q_m(x)\sum\limits_{n = 0}^\infty\frac{BC_{N,n}}{\Pi(n)}x^n\sim P_m(x)\quad(m\to\infty)\,. $ |
Notice that the $ n $-th convergent $ p_n/q_n $ of the simple continued fraction (1.11) of a real number $ \alpha $ yields the approximation property
$ |q_n\alpha-p_n| \lt \frac{1}{q_{n+1}}\,. $ |
Now,
$ \frac{P_0(x)}{Q_0(x)} = 1 = \frac{1}{1},\quad \frac{P_1(x)}{Q_1(x)} = 1-\frac{x^{r^{N+1}-r^N}}{D_{N+1}/D_N+x^{r^{N+1}-r^N}} $ |
and $ P_n(x) $ and $ Q_n(x) $ ($ n\ge 2 $) satisfy the recurrence relations
$ Pn(x)=(DN+nDN+n−1+xrN+n−rN+n−1)Pn−1(x)−DN+n−1DN+n−2xrN+n−rN+n−1Pn−2(x)Qn(x)=(DN+nDN+n−1+xrN+n−rN+n−1)Qn−1(x)−DN+n−1DN+n−2xrN+n−rN+n−1Qn−2(x) $
|
(They are proved by induction). Since by (2.2) for $ n\ge 2 $
$ a_n(x) = \frac{D_{N+n}}{D_{N+n-1}}+x^{r^{N+n}-r^{N+n-1}}\quad\hbox{and}\quad b_n(x) = -\frac{D_{N+n-1}}{D_{N+n-2}}x^{r^{N+n}-r^{N+n-1}}\,, $ |
we have the following continued fraction expansion.
Theorem 1.
$ \sum\limits_{n = 0}^\infty\frac{BC_{N,n}}{\Pi(n)}x^n = 1-\cfrac{x^{r^{N+1}-r^N}}{\frac{D_{N+1}}{D_N}+x^{r^{N+1}-r^N}-\cfrac{\frac{D_{N+1}}{D_N}x^{r^{N+2}-r^{N+1}}}{\frac{D_{N+2}}{D_{N+1}}+x^{r^{N+2}-r^{N+1}}-\cfrac{\frac{D_{N+2}}{D_{N+1}}x^{r^{N+3}-r^{N+2}}}{\frac{D_{N+3}}{D_{N+2}}+x^{r^{N+3}-r^{N+2}}-{\atop\ddots}}}}\,. $ |
Put $ N = 0 $ in Theorem 1 to illustrate a simpler case. Then, we have a continued fraction expansion concerning the original Bernoulli-Carlitz numbers.
Corollary 1.
$ \sum\limits_{n = 0}^\infty\frac{BC_{n}}{\Pi(n)}x^n = 1-\cfrac{x^{r-1}}{D_{1}+x^{r-1}-\cfrac{D_{1}x^{r^{2}-r}}{\frac{D_{2}}{D_{1}}+x^{r^{2}-r}-\cfrac{\frac{D_{2}}{D_{1}}x^{r^{3}-r^{2}}}{\frac{D_{3}}{D_{2}}+x^{r^{3}-r^{2}}-{\atop\ddots}}}}\,. $ |
From the definition in (1.10), truncated Cauchy-Carlitz numbers satisfy the relation
$ \left(L_N\sum\limits_{i = 0}^\infty\frac{(-1)^i x^{r^{N+i}-r^N}}{L_{N+i}}\right)\left(\sum\limits_{n = 0}^\infty\frac{CC_{N,n}}{\Pi(n)}x^n\right) = 1\,. $ |
Thus,
$ P_m(x) = \frac{L_{N+m}}{L_N},\quad Q_m(x) = L_{N+m}\sum\limits_{i = 0}^m\frac{(-1)^i x^{r^{N+i}-r^N}}{L_{N+i}} $ |
yield that
$ Q_m(x)\sum\limits_{n = 0}^\infty\frac{CC_{N,n}}{\Pi(n)}x^n\sim P_m(x)\quad(m\to\infty)\,. $ |
Now,
$ \frac{P_0(x)}{Q_0(x)} = 1 = \frac{1}{1},\quad \frac{P_1(x)}{Q_1(x)} = 1+\frac{x^{r^{N+1}-r^N}}{L_{N+1}/L_N-x^{r^{N+1}-r^N}} $ |
and $ P_n(x) $ and $ Q_n(x) $ ($ n\ge 2 $) satisfy the recurrence relations
$ Pn(x)=(LN+nLN+n−1−xrN+n−rN+n−1)Pn−1(x)+LN+n−1LN+n−2xrN+n−rN+n−1Pn−2(x)Qn(x)=(LN+nLN+n−1−xrN+n−rN+n−1)Qn−1(x)+LN+n−1LN+n−2xrN+n−rN+n−1Qn−2(x). $
|
Since by (2.2) for $ n\ge 2 $
$ a_n(x) = \frac{L_{N+n}}{L_{N+n-1}}-x^{r^{N+n}+r^{N+n-1}}\quad\hbox{and}\quad b_n(x) = \frac{L_{N+n-1}}{L_{N+n-2}}x^{r^{N+n}-r^{N+n-1}}\,, $ |
we have the following continued fraction expansion.
Theorem 2.
$ \sum\limits_{n = 0}^\infty\frac{CC_{N,n}}{\Pi(n)}x^n = 1+\cfrac{x^{r^{N+1}-r^N}}{\frac{L_{N+1}}{L_N}-x^{r^{N+1}-r^N}+\cfrac{\frac{L_{N+1}}{L_N}x^{r^{N+2}-r^{N+1}}}{\frac{L_{N+2}}{L_{N+1}}-x^{r^{N+2}-r^{N+1}}+\cfrac{\frac{L_{N+2}}{L_{N+1}}x^{r^{N+3}-r^{N+2}}}{\frac{L_{N+3}}{L_{N+2}}-x^{r^{N+3}-r^{N+2}}+{\atop\ddots}}}}\,. $ |
In [14], some expressions of truncated Cauchy-Carlitz numbers have been shown. One of them is for integers $ N\ge 0 $ and $ n\ge 1 $,
$ CCN,n=Π(n)n∑k=1(−LN)k∑i1,…,ik≥1rN+i1+⋯+rN+ik=n+krN(−1)i1+⋯+ikLN+i1⋯LN+ik $
|
(3.1) |
[14,Theorem 2].
Now, we give a determinant expression of truncated Cauchy-Carlitz numbers.
Theorem 3. For integers $ N\ge 0 $ and $ n\ge 1 $,
$ CC_{N,n} = \Pi(n)\left| −a110a2−a1⋱⋮⋱⋱0⋮−a11(−1)nan⋯⋯a2−a1 \right|\,, $
|
where
$ a_l = \frac{(-1)^{i}L_N\delta_l^\ast}{L_{N+i}}\quad(l\ge 1) $ |
with
$ δ∗l={1if l=rN+i−rN(i=0,1,…);0otherwise. $
|
(3.2) |
We need the following Lemma in [27] in order to prove Theorem 3.
Lemma 1. Let $ \{\alpha_n\}_{n\ge 0} $ be a sequence with $ \alpha_0 = 1 $, and $ R(j) $ be a function independent of $ n $. Then
$ αn=|R(1)10R(2)R(1)⋮⋮⋱10R(n−1)R(n−2)⋯R(1)1R(n)R(n−1)⋯R(2)R(1)|. $
|
(3.3) |
if and only if
$ αn=n∑j=1(−1)j−1R(j)αn−j(n≥1) $
|
(3.4) |
with $ \alpha_0 = 1 $.
Proof of Theorem 3. By the definition (1.10) with (1.6), we have
$ 1=(∞∑i=0(−1)iLNLN+i)xrN+i−rN(∞∑m=0CCmΠ(m)xm)=(∞∑l=0alxl)(∞∑m=0CCmΠ(m)xm)=∞∑n=0∞∑l=0alCCn−lΠ(n−l)xn. $
|
Thus, for $ n\ge 1 $, we get
$ \sum\limits_{l = 0}^\infty a_l\frac{CC_{n-l}}{\Pi(n-l)} = 0\,. $ |
By Lemma 1, we have
$ CCnΠ(n)=−n∑l=1alCCn−lΠ(n−l)=n∑l=1(−1)l−1(−1)lalCCn−lΠ(n−l)=|−a110a2−a1⋱⋮⋱⋱0⋮−a11(−1)nan⋯⋯a2−a1|. $
|
Examples. When $ n = r^{N+1}-r^N $,
$ CCrN+1−rNΠ(rN+1−rN)=|01⋮⋱01(−1)rN+1−rNarN+1−rN0⋯0|=(−1)rN+1−rN+1(−1)rN+1−rN(−1)2N+1LNLN+1=LNLN+1. $
|
Let $ n = r^{N+2}-r^N $. For simplicity, put
$ ˉa=(−1)rN+1−rN(−1)2N+1LNLN+1,ˆa=(−1)rN+2−rN(−1)2N+2LNLN+2. $
|
Then by expanding at the first column, we have
$ CCrN+1−rNΠ(rN+1−rN)=|010⋮⋱0ˉa0⋱⋮0⋱ˆa0⋯0⏟rN+2−rN+1ˉa⋱010⋯0⏟rN+1−rN−1|=(−1)rN+1−rN+1ˉa|1⋱1ˉa⋱⋱⏟rN+1−rN−101⋱⋱ˉa⏟2⋱1⋯0⏟rN+1−rN−1|+(−1)rN+2−rN+1ˆa|10⋱ˉa⋱⋱⋱0ˉa1|. $
|
The second term is equal to
$ (-1)^{r^{N+2}-r^N+1}(-1)^{r^{N+2}-r^N}\frac{L_N}{L_{N+2}} = -\frac{L_N}{L_{N+2}}\,. $ |
The first term is
$ (−1)rN+1−rN+1ˉa|01ˉa⋱⋱⏟rN+2−2rN+1+rNˉa10⏟rN+1−rN−1|=(−1)2(rN+1−rN+1)ˉa2|1⋱1ˉa⋱⋱⏟rN+1−rN−101⋱⋱ˉa⏟2⋱1⋯0⏟rN+1−rN−1|=(−1)r(rN+1−rN+1)ˉar|01⋮⋱01ˉa0⋯0|⏟rN+1−rN=(−1)(r+1)(rN+1−rN+1)ˉar+1=(−1)(r+1)(rN+1−rN+1)(−1)(rN+1−rN)(r+1)(−1)r+1Lr+1NLr+1N+1=Lr+1NLr+1N+1. $
|
Therefore,
$ \frac{CC_{r^{N+1}-r^N}}{\Pi(r^{N+1}-r^N)} = \frac{L_N^{r+1}}{L_{N+1}^{r+1}}-\frac{L_N}{L_{N+2}}\,. $ |
From this procedure, it is also clear that $ CC_{N, n} = 0 $ if $ r^{N+1}-r^N\nmid n $, since all the elements of one column (or row) become zero.
In [14], some expressions of truncated Bernoulli-Carlitz numbers have been shown. One of them is for integers $ N\ge 0 $ and $ n\ge 1 $,
$ BCN,n=Π(n)n∑k=1(−DN)k∑i1,…,ik≥1rN+i1+⋯+rN+ik=n+krN1DN+i1⋯DN+ik $
|
(4.1) |
[14,Theorem 1].
Now, we give a determinant expression of truncated Bernoulli-Carlitz numbers.
Theorem 4. For integers $ N\ge 0 $ and $ n\ge 1 $,
$ BC_{N,n} = \Pi(n)\left| −d110d2−d1⋱⋮⋱⋱0⋮−d11(−1)ndn⋯⋯d2−d1 \right|\,, $
|
where
$ d_l = \frac{D_N\delta_l^\ast}{D_{N+i}}\quad(l\ge 1) $ |
with $ \delta_l^\ast $ as in (3.2).
Proof. The proof is similar to that of Theorem 3, using (1.9) and (1.2).
Example. Let $ n = 2(r^{N+1}-r^N) $. For convenience, put
$ \bar d = \frac{D_N}{D_{N+1}}\,. $ |
Then, we have
$ BCN,2(rN+1−rN)Π(2(rN+1−rN))=|01⋮0ˉd⋱ˉd⏟rN+1−rN+110⋯0⏟rN+1−rN−1|=(−1)rN+1−rN+1|1⋱1ˉd⋱⋱⏟rN+1−rN−10ˉd1⋱10⏟rN+1−rN−1|=(−1)rN+1−rN+1ˉd|01⋱1ˉd0|⏟rN+1−rN=(−1)2(rN+1−rN+1)ˉd2|1⋱1|=D2ND2N+1. $
|
It is also clear that $ BC_{N, n} = 0 $ if $ r^{N+1}-r^N\nmid n $.
We shall use Trudi's formula to obtain different explicit expressions and inversion relations for the numbers $ CC_{N, n} $ and $ BC_{N, n} $.
Lemma 2. For a positive integer $ n $, we have
$ \left| a1a00⋯a2a1⋱⋮⋮⋮⋱⋱0an−1⋯a1a0anan−1⋯a2a1 \right| = \sum\limits_{t_1 + 2t_2 + \cdots +n t_n = n}\binom{t_1+\cdots + t_n}{t_1, \dots,t_n}(-a_0)^{n-t_1-\cdots - t_n}a_1^{t_1}a_2^{t_2}\cdots a_n^{t_n}, $
|
where $ \binom{t_1+\cdots + t_n}{t_1, \dots, t_n} = \frac{(t_1+\cdots + t_n)!}{t_1!\cdots t_n!} $ are the multinomial coefficients.
This relation is known as Trudi's formula [28,Vol.3,p.214], [29] and the case $ a_0 = 1 $ of this formula is known as Brioschi's formula [30], [28,Vol.3,pp.208–209].
In addition, there exists the following inversion formula (see, e.g. [27]), which is based upon the relation
$ \sum\limits_{k = 0}^n(-1)^{n-k}\alpha_k D(n-k) = 0\quad(n\ge 1)\,. $ |
Lemma 3. If $ \{\alpha_n\}_{n\geq 0} $ is a sequence defined by $ \alpha_0 = 1 $ and
$ \alpha_n = |D(1)10D(2)⋱⋱0⋮⋱⋱1D(n)⋯D(2)D(1)| , \ \mathit{\text{then}} \ D(n) = |α110α2⋱⋱0⋮⋱⋱1αn⋯α2α1| \,. $
|
From Trudi's formula, it is possible to give the combinatorial expression
$ \alpha_n = \sum\limits_{t_1+2t_2+\cdots +n t_n = n}\binom{t_1+\cdots+t_n}{t_1, \dots, t_n}(-1)^{n-t_1-\cdots - t_n}D(1)^{t_1}D(2)^{t_2}\cdots D(n)^{t_n}\,. $ |
By applying these lemmata to Theorem 3 and Theorem 4, we obtain an explicit expression for the truncated Cauchy-Carlitz numbers and the truncated Bernoulli-Carlitz numbers.
Theorem 5. For integers $ N\ge 0 $ and $ n\ge 1 $, we have
$ CC_{N,n} = \Pi(n)\sum\limits_{t_1+2 t_2+\cdots+n t_n = n}\binom{t_1+\cdots+t_n}{t_1,\dots,t_n} (-1)^{n-t_2-t_4-\cdots-t_{2\left\lfloor{n/2}\right\rfloor}}a_1^{t_1}\cdots a_n^{t_n}\,, $ |
where $ a_n $ are given in Theorem 3.
Theorem 6. For integers $ N\ge 0 $ and $ n\ge 1 $, we have
$ BC_{N,n} = \Pi(n)\sum\limits_{t_1+2 t_2+\cdots+n t_n = n}\binom{t_1+\cdots+t_n}{t_1,\dots,t_n} (-1)^{n-t_2-t_4-\cdots-t_{2\left\lfloor{n/2}\right\rfloor}}d_1^{t_1}\cdots d_n^{t_n}\,, $ |
where $ d_n $ are given in Theorem 4.
By applying the inversion relation in Lemma 3 to Theorem 3 and Theorem 4, we have the following.
Theorem 7. For integers $ N\ge 0 $ and $ n\ge 1 $, we have
$ a_n = (-1)^n\left|CCN,1Π(1)10CCN,2Π(2)CCN,1Π(1)⋮⋮⋱10CCN,n−1Π(n−1)CCN,n−2Π(n−2)⋯CCN,1Π(1)1CCN,nΠ(n)CCN,n−1Π(n−1)⋯CCN,2Π(2)CCN,1Π(1) \right|\,, $
|
where $ a_n $ is given in Theorem 3.
Theorem 8. For integers $ N\ge 0 $ and $ n\ge 1 $, we have
$ d_n = (-1)^n\left|BCN,1Π(1)10BCN,2Π(2)BCN,1Π(1)⋮⋮⋱10BCN,n−1Π(n−1)BCN,n−2Π(n−2)⋯BCN,1Π(1)1BCN,nΠ(n)BCN,n−1Π(n−1)⋯BCN,2Π(2)BCN,1Π(1) \right|\,, $
|
where $ d_n $ is given in Theorem 4.
We would like to thank the referees for their valuable comments.
The authors declare no conflict of interest.
[1] | Niedermeyer E, Lopes da Silva FH (1999) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Philadelphia: Lippincott Williams and Wilkins. |
[2] |
Pfurtscheller G, Stancak Jr A, Neuper C (1996) Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 24: 39–46. doi: 10.1016/S0167-8760(96)00066-9
![]() |
[3] | Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4: 186. |
[4] |
Klimesch W (2012) Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 16: 606–617. doi: 10.1016/j.tics.2012.10.007
![]() |
[5] | Foxe JJ, Snyder AC (2011) The role of Alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front Psychol 2: 154. |
[6] |
Frey JN, Ruhnau P, Weisz N (2015) Not so different after all: The same oscillatory processes support different types of attention. Brain Res 1626: 183–197. doi: 10.1016/j.brainres.2015.02.017
![]() |
[7] |
De Smedt B, Grabner RH, Studer B (2009) Oscillatory EEG correlates of arithmetic strategy use in addition and subtraction. Exp Brain Res 195: 635–642. doi: 10.1007/s00221-009-1839-9
![]() |
[8] | Liang Y, Liu X, Qiu L, et al. (2018) An EEG study of a confusing state induced by information insufficiency during mathematical problem-solving and reasoning. Comput Intell Neurosci 2018: 1943565. |
[9] |
Yu X, Zhang J, Xie D, et al. (2009) Relationship between scalp potential and autonomic nervous activity during a mental arithmetic task. Auton Neurosci 146: 81–86. doi: 10.1016/j.autneu.2008.12.005
![]() |
[10] |
Benedek M, Schickel RJ, Jauk E, et al. (2014) Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia 56: 393–400. doi: 10.1016/j.neuropsychologia.2014.02.010
![]() |
[11] |
Jensen O, Gelfand J, Kounios J, et al. (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12: 877–882. doi: 10.1093/cercor/12.8.877
![]() |
[12] |
Tuladhar AM, ter Huurne N, Schoffelen JM, et al. (2007) Parieto-occipital sources account for the increase in alpha activity with working memory load. Hum Brain Mapp 28: 785–792. doi: 10.1002/hbm.20306
![]() |
[13] |
Chang YC, Huang SL (2012) The influence of attention levels on psychophysiological responses. Int J Psychophysiol 86: 39–47. doi: 10.1016/j.ijpsycho.2012.09.001
![]() |
[14] |
Grabner RH, Brunner C, Leeb R, et al. (2007) Event-related EEG theta and alpha band oscillatory responses during language translation. Brain Res Bull 72: 57–65. doi: 10.1016/j.brainresbull.2007.01.001
![]() |
[15] |
Grabner RH, De Smedt B (2011) Neurophysiological evidence for the validity of verbal strategy reports in mental arithmetic. Biol Psychol 87: 128–136. doi: 10.1016/j.biopsycho.2011.02.019
![]() |
[16] |
Fernandez T, Harmony T, Rodriguez M, et al. (1995) EEG activation patterns during the performance of tasks involving different components of mental calculation. Electroencephalogr Clin Neurophysiol 94: 175–182. doi: 10.1016/0013-4694(94)00262-J
![]() |
[17] |
Hairston WD, Whitaker KW, Ries AJ, et al. (2014) Usability of four commercially-oriented EEG systems. J Neural Eng 11: 046018. doi: 10.1088/1741-2560/11/4/046018
![]() |
[18] |
Grummett TS, Leibbrandt RE, Lewis TW, et al. (2015) Measurement of neural signals from inexpensive, wireless and dry EEG systems. Physiol Meas 36: 1469–1484. doi: 10.1088/0967-3334/36/7/1469
![]() |
[19] |
Mihajlovic V, Grundlehner B, Vullers R, et al. (2015) Wearable, wireless EEG solutions in daily life applications: what are we missing? IEEE J Biomed Health Inform 19: 6–21. doi: 10.1109/JBHI.2014.2328317
![]() |
[20] |
Luque-Casado A, Perales JC, Cardenas D, et al. (2016) Heart rate variability and cognitive processing: The autonomic response to task demands. Biol Psychol 113: 83–90. doi: 10.1016/j.biopsycho.2015.11.013
![]() |
[21] | Krakauer J, Ghez C (2000) Voluntary movement, In: Kandel ER, Schwartz JH, Jessell TM, editors, Principles of Neural Science, 4th Edition ed., New York: McGraw-Hill, 756–781. |
[22] |
Babiloni C, Vecchio F, Miriello M, et al. (2006) Visuo-spatial consciousness and parieto-occipital areas: a high-resolution EEG study. Cereb Cortex 16: 37–46. doi: 10.1093/cercor/bhi082
![]() |
[23] |
Gobel SM, Calabria M, Farne A, et al. (2006) Parietal rTMS distorts the mental number line: simulating 'spatial' neglect in healthy subjects. Neuropsychologia 44: 860–868. doi: 10.1016/j.neuropsychologia.2005.09.007
![]() |
[24] |
Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7: 1129–1159. doi: 10.1162/neco.1995.7.6.1129
![]() |
[25] |
Lee TW, Girolami M, Sejnowski TJ (1999) Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11: 417–441. doi: 10.1162/089976699300016719
![]() |
[26] | Makeig S, Onton J (2009) ERP features and EEG dynamics: An ICA perspective, In: Kappenman ES, Luck SJ, editors, The Oxford Handbook of Event-Related Potential Components, New York: Oxford University Press, 51–86. |
[27] |
Kaufmann T, Sutterlin S, Schulz SM, et al. (2011) ARTiiFACT: a tool for heart rate artifact processing and heart rate variability analysis. Behav Res Methods 43: 1161–1170. doi: 10.3758/s13428-011-0107-7
![]() |
[28] |
Berntson GG, Quigley KS, Jang JF, et al. (1990) An approach to artifact identification: application to heart period data. Psychophysiology 27: 586–598. doi: 10.1111/j.1469-8986.1990.tb01982.x
![]() |
[29] |
Babiloni C, Carducci F, Cincotti F, et al. (1999) Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage 10: 658–665. doi: 10.1006/nimg.1999.0504
![]() |
[30] |
Manganotti P, Gerloff C, Toro C, et al. (1998) Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalogr Clin Neurophysiol 109: 50–62. doi: 10.1016/S0924-980X(97)00074-X
![]() |
[31] |
Menon V, Rivera SM, White CD, et al. (2000) Dissociating prefrontal and parietal cortex activation during arithmetic processing. Neuroimage 12: 357–365. doi: 10.1006/nimg.2000.0613
![]() |
[32] |
Fournier LR, Wilson GF, Swain CR (1999) Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks: manipulations of task difficulty and training. Int J Psychophysiol 31: 129–145. doi: 10.1016/S0167-8760(98)00049-X
![]() |
[33] |
Hansen AL, Johnsen BH, Thayer JF (2003) Vagal influence on working memory and attention. Int J Psychophysiol 48: 263–274. doi: 10.1016/S0167-8760(03)00073-4
![]() |
[34] |
Kubota Y, Sato W, Toichi M, et al. (2001) Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure. Brain Res Cogn Brain Res 11: 281–287. doi: 10.1016/S0926-6410(00)00086-0
![]() |
[35] |
Duschek S, Worsching J, Reyes Del Paso GA (2015) Autonomic cardiovascular regulation and cortical tone. Clin Physiol Funct Imaging 35: 383–392. doi: 10.1111/cpf.12174
![]() |
[36] |
Triggiani AI, Valenzano A, Del Percio C, et al. (2016) Resting state Rolandic mu rhythms are related to activity of sympathetic component of autonomic nervous system in healthy humans. Int J Psychophysiol 103: 79–87. doi: 10.1016/j.ijpsycho.2015.02.009
![]() |
[37] |
Faes L, Nollo G, Jurysta F, et al. (2014) Information dynamics of brain–heart physiological networks during sleep. New J Phys 16: 105005. doi: 10.1088/1367-2630/16/10/105005
![]() |