Citation: Kevin Z. Tong, Allen Liu. Modeling temperature and pricing weather derivatives based on subordinate Ornstein-Uhlenbeck processes[J]. Green Finance, 2020, 2(1): 1-19. doi: 10.3934/GF.2020001
[1] | Benth FE (2003) On arbitrage-free pricing of weather derivatives based on fractional Brownian motion. Quant Financ 10: 303-324. |
[2] | Benth FE, Šaltytė-Benth J (2005) Stochastic modeling of temperature variations with a view towards weather derivatives. Appl Math Financ 12: 53-85. doi: 10.1080/1350486042000271638 |
[3] | Benth FE, Šaltytė-Benth J, Koekebakker S (2007) Putting a price on temperature. Scand J Stat 34: 746-767. |
[4] | Brody DC, Syroka J, Zervos M (2002) Dynamical pricing of weather derivatives. Quant Financ 2: 189-198. doi: 10.1088/1469-7688/2/3/302 |
[5] | Carr P, Wu L (2004) Time-changed Lévy processes and option pricing. J Finan Econ 1: 113-141. doi: 10.1016/S0304-405X(03)00171-5 |
[6] | Cui Z, Kirkby JL, Nguyen D (2019a) Continuous-time Markov chain and regime switching approximations with applications to options pricing, in Yin, G, Zhang, Q, Modeling, Stochastic Control, Optimization, and Applications, Springer, 115-146. |
[7] | Cui Z, Kirkby JL, Nguyen D (2019b) A general framework for time-changed Markov processes and applications. Eur J Oper Res 273: 785-800. |
[8] | Dornier F, Queruel M (2000) Caution to the wind. Risk 8: 30-32. |
[9] | Elias RS, Wahab MIM, Fang L (2014) A comparison of regime-switching temperature modeling approaches for applications in weather derivatives. Eur J Oper Res 232: 549-560. doi: 10.1016/j.ejor.2013.07.015 |
[10] | Evarest E, Berntsson F, Singull M, et al. (2018) Weather derivatives pricing using regime switching model. Monte Carlo Methods Appl 24: 13-28. doi: 10.1515/mcma-2018-0002 |
[11] | Li J, Li L, Mendoza-Arriaga R (2016a) Additive subordination and its applications in finance. Financ Stoch 20: 589-634. |
[12] | Li J, Li L, Zhang G (2017) Pure jump models for pricing and hedging VIX derivatives. J Econ Dyn Contro 74: 28-55. doi: 10.1016/j.jedc.2016.11.001 |
[13] | Li L, Linetsky V (2014) Time-changed Ornstein-Uhlenbeck processes and their applications in commodity derivative models. Math Financ 24: 289-330. doi: 10.1111/mafi.12003 |
[14] | Li L, Mendoza-Arriaga R, Mo Z, et al. (2016b) Modelling electricity prices: a time change approach. Quant Financ 16: 1089-1109. doi: 10.1080/14697688.2015.1125521 |
[15] | Li L, Zhang G (2018) Error analysis of finite difference and Markov chain approximations for option pricing. Math Financ 28: 877-919. doi: 10.1111/mafi.12161 |
[16] | Lim D, Li L, Linetsky V (2012) Evaluating callable and putable bonds: an eigenfunction expansion approach. J Econ Dyn Contro 36: 1888-1908. doi: 10.1016/j.jedc.2012.06.002 |
[17] | Linetsky V (2004) The spectral decomposition of the option value. Int J Theor Appl Financ 7: 337-384. doi: 10.1142/S0219024904002451 |
[18] | Linetsky V, Mitchell D (2008) Spectral methods in derivatives pricing, in Birge, JR, Handbook of Financial Engineering, Amsterdam: Elsevier, 223-299. |
[19] | Mendoza-Arriaga R, Carr P, Linetsky V (2010) Time changed Markov processes in unified credit-equity modeling. Math Financ 20: 527-569. doi: 10.1111/j.1467-9965.2010.00411.x |
[20] | Mendoza-Arriaga R, Linetsky V (2013) Time-changed CIR default intensities with two-sided meanreverting jumps. Ann Appl Probab 24: 811-856. doi: 10.1214/13-AAP936 |
[21] | Prudnikov AP, Brychkov YA, Marichev OI (1986) Integrals and Series, Vol. 2, Gordon and Breach Science Publishers. |
[22] | Sato K (1999) Lévy Processes and Infinitely Divisible Distribution, Cambridge: Cambridge University Press. |
[23] | Swishchuk A, Cui S (2013) Weather derivatives with applications to Canadian data. J Math Financ 3: 81-95. doi: 10.4236/jmf.2013.31007 |
[24] | Tong KZ, Hou D, Guan J (2019) The pricing of dual-expiry exotics with mean reversion and jumps. J Math Financ 9: 25-41. doi: 10.4236/jmf.2019.91003 |
[25] | Tong Z (2017) A nonlinear diffusion model for electricity prices and derivatives. Int J Bonds Deriv 3: 290-319. doi: 10.1504/IJBD.2017.091606 |
[26] | Tong Z (2019) A recursive pricing method for autocallables under multivariate subordination. Quant Financ Econ 3: 440-455. doi: 10.3934/QFE.2019.3.440 |
[27] | Tong Z, Liu A (2017) Analytical pricing formulas for discretely sampled generalized variance swaps under stochastic time change. Int J Financ Eng 4: 1-24. |
[28] | Tong Z, Liu A (2018) Analytical pricing of discrete arithmetic Asian options under generalized CIR process with time change. Int J Financ Eng 5: 1-21. |