In this paper, the boundedness and compactness of the inclusion mapping from Qp spaces into tent spaces Tqqp2,s are completely characterized when q>2. As an application, the boundedness of the Volterra integral operator Tg from Qp to the space LF(q,q−2,qp2) is obtained. Moreover, the essential norm and compactness of Tg are also investigated.
Citation: Ruishen Qian, Xiangling Zhu. Embedding of Qp spaces into tent spaces and Volterra integral operator[J]. AIMS Mathematics, 2021, 6(1): 698-711. doi: 10.3934/math.2021042
[1] | Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073 |
[2] | İbrahim Aktaş . On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203 |
[3] | Özgür Boyacıoğlu Kalkan . On normal curves and their characterizations in Lorentzian n-space. AIMS Mathematics, 2020, 5(4): 3510-3524. doi: 10.3934/math.2020228 |
[4] | Chenghua Gao, Maojun Ran . Spectral properties of a fourth-order eigenvalue problem with quadratic spectral parameters in a boundary condition. AIMS Mathematics, 2020, 5(2): 904-922. doi: 10.3934/math.2020062 |
[5] | Orhan Göçür . Amply soft set and its topologies: AS and PAS topologies. AIMS Mathematics, 2021, 6(4): 3121-3141. doi: 10.3934/math.2021189 |
[6] | Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas . Some (p, q)-Hardy type inequalities for (p, q)-integrable functions. AIMS Mathematics, 2021, 6(1): 77-89. doi: 10.3934/math.2021006 |
[7] | Xiaoli Zhang, Shahid Khan, Saqib Hussain, Huo Tang, Zahid Shareef . New subclass of q-starlike functions associated with generalized conic domain. AIMS Mathematics, 2020, 5(5): 4830-4848. doi: 10.3934/math.2020308 |
[8] | Mingzhou Xu . On the complete moment convergence of moving average processes generated by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2024, 9(2): 3369-3385. doi: 10.3934/math.2024165 |
[9] | Yasin Ünlütürk, Talat Körpınar, Muradiye Çimdiker . On k-type pseudo null slant helices due to the Bishop frame in Minkowski 3-space E13. AIMS Mathematics, 2020, 5(1): 286-299. doi: 10.3934/math.2020019 |
[10] | Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377 |
In this paper, the boundedness and compactness of the inclusion mapping from Qp spaces into tent spaces Tqqp2,s are completely characterized when q>2. As an application, the boundedness of the Volterra integral operator Tg from Qp to the space LF(q,q−2,qp2) is obtained. Moreover, the essential norm and compactness of Tg are also investigated.
Let D be the open unit disk in the complex plane C and H(D) be the class of all functions analytic in D. Let 0<p<∞ and −1<α<∞. The Dirichlet type space Dpα is the set of all f∈H(D) such that
‖f‖Dpα=|f(0)|p+∫D|f′(z)|p(1−|z|2)αdA(z)<∞, |
where dA is the normalized Lebesgue area measure in D such that A(D)=1. When p=2 and α=0, it gives the classic Dirichlet space D. When p=2 and α=1, it gives the Hardy space H2. When α=p, Dpα is just the classical Bergman space Ap.
Let 0<p<∞. The Qp space is the space of all f∈H(D) such that (see, e.g., [23])
‖f‖2Qp=|f(0)|2+supa∈D∫D|f′(z)|2(1−|σa(z)|2)pdA(z)<∞, |
where σa(z)=a−z1−¯az. When p>1, Qp is the Bloch space B (see [24,25]), which denote the space of all f∈H(D) such that
‖f‖B=|f(0)|+supz∈D(1−|z|2)|f′(z)|<∞. |
When p=1, Q1=BMOA, the space of analytic functions in the Hardy space H1(D) whose boundary functions have bounded mean oscillation (see, e.g., [25]).
Let 0<p,s<∞, −2<q<∞. A function f∈H(D) is said to belong to F(p,q,s) if
‖f‖pF(p,q,s)=|f(0)|p+supa∈D∫D|f′(z)|p(1−|z|2)q(1−|σa(z)|2)sdA(z)<∞. |
An f∈F0(p,q,s) if f∈H(D) and
lim|a|→1∫D|f′(z)|p(1−|z|2)q(1−|σa(z)|2)sdA(z)=0. |
F(p,q,s) is a Banach space under the norm ‖⋅‖F(p,q,s) when p≥1. This space was first introduced by Zhao in [24] and called general function space because it can get many function spaces if it takes special parameters of p,q,s. From [24] we see that F(p,p−2,s) is just the Bloch space when s>1.
For 0<q,s<∞, let LF(q,q−2,s) denote the space of all f∈H(D) such that
‖f‖qLF(q,q−2,s)=|f(0)|q+supa∈D1(log21−|a|2)q∫D|f′(z)|q(1−|z|2)q−2(1−|σa(z)|2)sdA(z)<∞. |
It is easy to check that LF(q,q−2,s) is a Banach space under the norm ‖⋅‖LF(q,q−2,s) when q≥1.
Let g∈H(D). The Volterra integral operator Tg, which introduced by Pommerenke in [13], was defined by
Tgf(z)=∫z0f(w)g′(w)dw, f∈H(D). |
The importance of the operator Tg comes from the fact that Tgf+Igf=Mgf−f(0)g(0), where the operators Mg and Ig are defined by
(Mgf)(z)=g(z)f(z), Igf(z)=∫z0f′(w)g(w)dw f∈H(D), z∈D, |
respectively. Note that the integral form of the classical Cesàro operator C is
C(f)(z)=1z∫z0f(ζ)11−ζdζ=1z∫z0f(ζ)(ln11−ζ)′dζ. |
Hence the operator Tg can also be seen as the generalization of the Cesàro operator C. In [13], Pommerenke showed that Tg is bounded on H2 if and only if g∈BMOA. In [2], Aleman and Siskakis showed that Tg is bounded (compact) on Ap if and only if g∈B(g∈B0). Recently, the operator Tg has been received many attention. See [1,2,4,5,6,7,8,12,14,15,18,19,22,24] and the references therein for more study of the operator Tg.
For an arc I⊆∂D, let |I|=12π∫I|dζ| be the normalized length of I. Let 0<α<∞ and μ be a positive Borel measure on D. As usual, we say that μ is a α-Carleson measure if
‖μ‖α:=supI⊆∂Dμ(S(I))|I|α<∞, |
where S(I)={z∈D:1−|I|≤|z|<1, z|z|∈I} is the Carleson box based on I. When α=1, it gives the classical Carleson measure. μ is said to be a vanishing α-Carleson measure if lim|I|→0μ(S(I))|I|α=0.
Let 0<λ,q<∞, s≥0 and μ be a positive Borel measure on D. The tent space Tqλ,s(μ) consists of all f∈H(D) satisfied
supI⊆∂D1|I|λ(log1|I|)s∫S(I)|f(z)|qdμ(z)<∞. |
The tent space Tqλ,s(μ) was introduced by Liu, Lou and Zhu in [10]. When q=2 and s=0, T2λ,0(μ)=T∞λ was first introduced by Xiao in [22].
In [22], Xiao studied the inclusion mapping i:Qp→T∞p(μ). He showed that the inclusion mapping i:Qp→T∞p(μ) is bounded (resp. compact) if and only if
supI⊆∂D(log2|I|)2μ(S(I))|I|p<∞(resp.lim|I|→0(log2|I|)2μ(S(I))|I|p=0). |
As an application, he proved that the operator Tg:Qp→Qp is bounded if and only if
supI⊆∂D(log2|I|)2|I|p∫S(I)|f′(z)|2(1−|z|2)pdA(z)<∞. |
In [10], Liu, Lou and Zhu studied the embedding of some Möbius invariant spaces, such as the Bloch space and the Qp space, into T2λ,s. Among others, they proved the following Theorem A. See [6,9,12,14,15,16,17,21] and the references therein for more study of analytic function spaces embedding into various tent spaces.
Theorem A. Let 0<p<1 and μ be a positive Borel measure on D. If Qp is continuously contained in T2p,2, then μ is a p-Carleson measure. If D2p is continuously contained in L2(D,dμ), then Qp is continuously contained in T2p,2.
By [22,Lemma 2.1 (ⅱ)], we see that μ is a p-Carleson measure if D2p is continuously contained in L2(D,dμ). But the converse is not clear. The nature question then arise, what can one say if we change T2p,2 into Tqλ,s when q>2?
In this paper, we give an answer by using a new method, which was different to [10,22]. We study the boundedness and compactness of the inclusion mapping from Qp spaces into tent spaces Tqqp2,s. As an application, we study the boundedness of Volterra integral operator Tg acting from Qp to LF(q,q−2,qp2). Meanwhile, the compactness and essential norm of the operator Tg acting from Qp to LF(q,q−2,qp2) are also investigated.
Throughout this paper, we say that A≲ if there exists a constant C such that A\leq CB . The symbol A\approx B means that A\lesssim B\lesssim A .
In this section, we study the embedding from {Q_p} to tent spaces. We give a complete characterization for the boundedness and compactness of the inclusion mapping i:{Q_p}\rightarrow T_{\lambda, s}^q(\mu). We say that the inclusion mapping i: {Q_p}\rightarrow \mathcal{T}_{\lambda, s}^q(\mu) is compact if
\lim\limits_{n\rightarrow\infty }\frac{1}{|I|^{\lambda}(\log\frac{1}{|I|})^s} \int_{S(I)} |f_n(z)|^{q}d\mu(z) = 0 |
whenever I\subseteq \partial{\mathbb{D}} and \{f_n\} is a bounded sequence in {Q_p} that converges to 0 uniformly on compact subsets of {\mathbb{D}} .
The following result is one of the main results in this paper.
Theorem 1. Let 0 < p < 1 and \mu be a positive Borel measure. If 2 < q < \infty and 0 < s\leq q < \infty , then the following statements hold.
(i) The inclusion mapping i: \ {Q_p}\rightarrow \mathcal{T}_{\frac{qp}{2}, s}^q(\mu) is bounded if and only if
\begin{eqnarray} \|\mu\|_{LCM_{q-s,\frac{qp}{2}}} = \sup\limits_{I\subseteq{\partial {\mathbb{D}}}}\frac{\left(\log\frac{2}{|I|}\right)^{q-s}\mu(S(I))}{|I|^{\frac{qp}{2}}} < \infty . \end{eqnarray} | (2.1) |
(ii) The inclusion mapping i: \ {Q_p}\rightarrow \mathcal{T}_{\frac{qp}{2}, s}^q(\mu) is compact if and only if
\begin{eqnarray} \lim\limits_{|I|\rightarrow 0}\frac{\left(\log\frac{2}{|I|}\right)^{q-s}\mu(S(I))}{|I|^{\frac{qp}{2}}} = 0. \end{eqnarray} | (2.2) |
Proof. (i) Assume that the inclusion mapping i: \ {Q_p}\rightarrow \mathcal{T}_{\frac{qp}{2}, s}^q(\mu) is bounded. For any fixed arc I\subseteq {\partial {\mathbb{D}}} , let e^{i\theta} be the center of I and a = (1-|I|)e^{i\theta}. Set f_a(z) = \log\frac{2}{(1-\overline{a}z)} . Then f_a\in{Q_p} and
|1-\overline{a}z|\approx 1-|a| = |I|,\; \; \; |f_a(z)| \approx \log\frac{2}{|I|}, |
whenever z\in S(I). By the boundedness of i , we have
\frac{1}{|I|^{\frac{qp}{2}}(\log\frac{2}{|I|})^s}\int_{S(I)}|f_a(z)|^qd\mu(z)\lesssim\|f_a\|_{{Q_p}}^q < \infty, |
which implies (1), as desired.
Conversely, assume that (1) holds. Let f\in {Q_p} . For any fixed arc I\subseteq {\partial {\mathbb{D}}} , let e^{i\theta} be the center of I and a = (1-|I|)e^{i\theta}. We have
\frac{1}{|I|^{\frac{qp}{2}}(\log\frac{2}{|I|})^s}\int_{S(I)}|f(z)|^qd\mu(z)\lesssim A+B, |
where
A = \frac{1}{|I|^{\frac{qp}{2}}(\log\frac{2}{|I|})^s}\int_{S(I)}|f(z)-f(a)|^qd\mu(z), \; \; \; \; B = \frac{|f(a)|^q\mu(S(I))}{|I|^{\frac{qp}{2}}(\log\frac{2}{|I|})^s}. |
Since f\in {Q_p} \subseteq {\mathcal{B}} , we obtain
|f(a)|^q\lesssim\|f\|_{{\mathcal{B}}}^q(\log\frac{2}{1-|a|^2})^q\lesssim\|f\|_{{Q_p}}^q\Big(\log\frac{2}{1-|a|^2}\Big)^q, |
which implies that for any I\subseteq {\partial {\mathbb{D}}} ,
B\lesssim \sup\limits_{I\subseteq{\partial {\mathbb{D}}}} \frac{(\log\frac{2}{|I|})^{q-s}\mu(S(I))}{|I|^{\frac{qp}{2}}} \|f\|_{{Q_p}}^q\lesssim\|f\|_{{Q_p}}^q . |
Since 0 < s\leq q < \infty , we get
\sup\limits_{I\subseteq{\partial {\mathbb{D}}}}\frac{\mu(S(I))}{|I|^{\frac{qp}{2}}}\lesssim\sup\limits_{I\subseteq{\partial {\mathbb{D}}}} \frac{\left(\log\frac{2}{|I|}\right)^{q-s}\mu(S(I))}{|I|^{{\frac{qp}{2}}}} < \infty, |
which implies that {\mathcal{D}}^2_p\subseteq L^q(d\mu) by [4,Theorem 1]. Therefore,
\begin{equation} \nonumber \begin{split} A\lesssim&\frac{1}{|I|^{\frac{qp}{2}}}\int_{S(I)}|f(z)-f(a)|^qd\mu(z) \\\lesssim&(1-|a|^2)^{qp}\int_{S(I)}\left|\frac{f(z)-f(a)}{(1-\overline{a}z)^{\frac{3p}{2} }}\right|^qd\mu(z) \\\lesssim&(1-|a|^2)^{qp}\int_{{\mathbb{D}}}\left|\frac{f(z)-f(a)}{(1-\overline{a}z)^{\frac{3p}{2}}}\right|^qd\mu(z) \\\lesssim&(1-|a|^2)^{qp}\left(|f(0)-f(a)|^2+\int_{{\mathbb{D}}}\left|\frac{d}{dz}\frac{f(z)-f(a)}{(1-\overline{a}z)^{\frac{3p}{2}}}\right|^2(1-|z|^2)^{p}dA(z)\right)^{\frac{q}{2}}. \end{split} \end{equation} |
By the growth of functions in {Q_p} and
x^\alpha\left(\log\frac{2}{x}\right)^\beta\lesssim 1, \ \ 0 < x < 1, \ \ 0 < \alpha,\beta < \infty, |
we deduce that
(1-|a|^2)^{pq}|f(0)-f(a)|^q\lesssim\|f\|_{{Q_p}}^{q}. |
Thus, we only need to prove that
E = (1-|a|^2)^{2p}\int_{{\mathbb{D}}}\left|\frac{d}{dz}\frac{f(z)-f(a)}{(1-\overline{a}z)^{\frac{3p}{2}}}\right|^2(1-|z|^2)^{p}dA(z)\lesssim\|f\|_{{Q_p}}^2. |
Since
\frac{d}{dz}\frac{f(z)-f(a)}{(1-\overline{a}z)^{ \frac{3p}{2}}} = \frac{f'(z)(1-\overline{a}z)^{\frac{3p}{2}}+\overline{a}(\frac{3p}{2})(f(z)-f(a)) (1-\overline{a}z)^{\frac{3p}{2}-1}}{(1-\overline{a}z)^{3p}}, |
we obtain E\lesssim E_1+E_2 , where
E_1 = (1-|a|^2)^{2p}\int_{{\mathbb{D}}}\frac{|f'(z)|^2}{|1-\overline{a}z|^{3p}}(1-|z|^2)^{p}dA(z) |
and
E_2 = (1-|a|^2)^{2p}\int_{{\mathbb{D}}}\frac{|f(z)-f(a)|^2}{|1-\overline{a}z|^{3p +2}}(1-|z|^2)^{p}dA(z). |
Noting that
1-|\varphi_a(z)|^2 = \frac{(1-|a|^2)(1-|z|^2)}{|1-\overline{a}z|^2}, \ \ a,z\in{\mathbb{D}}, |
we have
E_1 = \int_{{\mathbb{D}}}|f'(z)|^2\frac{(1-|a|^2)^{p+p}(1-|z|^2)^p}{|1-\overline{a}z|^{3p }}dA(z)\lesssim\|f\|_{{Q_p}}^2. |
By [11], we deduce that
\begin{equation} \nonumber \begin{split} E_2 = &(1-|a|^2)^{2p}\int_{{\mathbb{D}}}\frac{|f(z)-f(a)|^2}{|1-\overline{a}z|^{3p +2}}(1-|z|^2)^{p}dA(z) \\ = &\int_{{\mathbb{D}}}\frac{|f(z)-f(a)|^2}{|1-\overline{a}z|^{2}}\frac{(1-|a|^2)^{p+p}(1-|z|^2)^p}{|1-\overline{a}z|^{3p }}dA(z) \\\lesssim&\int_{{\mathbb{D}}}\left|\frac{f(z)-f(a)}{1-\overline{a}z}\right|^2(1-|\varphi_a(z)|^2)^p dA(z) \lesssim\|f\|_{{Q_p}}^2. \end{split} \end{equation} |
Therefore, E \lesssim\|f\|_{{Q_p}}^2 , as desired.
(ii) Suppose that the inclusion mapping i: \ Q_p\rightarrow \mathcal{T}_{\frac{qp}{2}, s}^q(\mu) is compact. Let \{I_n\}\subseteq {\partial {\mathbb{D}}} and |I_n|\rightarrow 0 as n\rightarrow\infty . Suppose e^{i\theta_n} is the center of I_n and a_n = (1-|I_n|)e^{i\theta_n}. Set f_{a_n}(z) = \log\frac{2}{(1-\overline{a_n}z)}. Then f_{a_n} \in{Q_p} and \log\frac{2}{(1-\overline{a_n}z)} \approx\log\frac{2}{|I_n|} . Therefore
\frac{\left(\log\frac{2}{|I_n|}\right)^{q-s}\mu(S(I_n))}{|I_n|^{\frac{qp}{2}}}\lesssim\frac{1}{|I_n|^{\frac{qp}{2}}\left(\log\frac{2}{|I_n|}\right)^{s}}\int_{S(I_n)}|f_{a_n}(z)|^qd\mu(z) \rightarrow 0, \ \ n\rightarrow\infty, |
which implies that (2) holds.
Conversely, assume that (2) holds. Then it is clear that
\begin{eqnarray} \|\mu\|_{LCM_{q-s,\frac{qp}{2}}} = \sup\limits_{I\subseteq{\partial {\mathbb{D}}}}\frac{\left(\log\frac{2}{|I|}\right)^{q-s}\mu(S(I))}{|I|^{\frac{qp}{2}}} < \infty \; \; \; \ \mbox{and}\; \; \; \; \sup\limits_{I\subseteq{\partial {\mathbb{D}}}}\frac{ \mu(S(I))}{|I|^{\frac{qp}{2}}} < \infty . \end{eqnarray} |
Let \{f_n\} be a bounded sequence in {Q_p} such that \{f_n\} converges to zero uniformly on each compact subset of {\mathbb{D}}. From [12] we have
\begin{equation} \nonumber \begin{split} &\frac{1}{|I|^{\frac{qp}{2}}(\log\frac{2}{|I|})^s}\int_{S(I)}|f_n(z)|^{q}d\mu(z)\\ \lesssim& \frac{1}{|I|^{\frac{qp}{2}}(\log\frac{2}{|I|})^s}\int_{S(I)}|f_n(z)|^{q}d\mu_r(z)+\frac{1}{|I|^{\frac{qp}{2}}(\log\frac{2}{|I|})^s}\int_{S(I)}|f_n(z)|^{q}d(\mu-\mu_r)(z)\\ \lesssim & \frac{1}{|I|^{\frac{qp}{2}}(\log\frac{2}{|I|})^s}\int_{S(I)}|f_n(z)|^{q}d\mu_r(z)+\|\mu-\mu_r\|_{LCM_{q-s,\frac{qp}{2}}}\|f_n\|_{{Q_p}}^{q}\\ \lesssim &\frac{1}{|I|^{\frac{qp}{2}}(\log\frac{2}{|I|})^s}\int_{S(I)}|f_n(z)|^{q}d\mu_r(z)+\|\mu-\mu_r\|_{LCM_{q-s,\frac{qp}{2}}}\\ \lesssim &\frac{1}{|I|^{\frac{qp}{2}}}\int_{S(I)}|f_n(z)|^{q}d\mu_r(z)+\|\mu-\mu_r\|_{LCM_{q-s,\frac{qp}{2}}}\rightarrow 0\\ \end{split} \end{equation} |
as r\to 1^{-} and n\to\infty. Therefore, \lim_{n\to\infty}\|f_n\|_{\mathcal{T}_{\frac{qp}{2}, s}^q(\mu)} = 0. This shows that the inclusion mapping i:{Q_p}\to \mathcal{T}_{\frac{qp}{2}, s}^q(\mu) is compact.
In particular, let s = q , we get the following result.
Corollary 1. Let 0 < p < 1 , 2 < q < \infty and \mu be a positive Borel measure. Then the inclusion mapping i: \ {Q_p}\rightarrow \mathcal{T}_{\frac{qp}{2}, q}^q(\mu) is bounded (resp., compact) if and only if
\sup\limits_{I\subseteq{\partial {\mathbb{D}}}}\frac{ \mu(S(I))}{|I|^{\frac{qp}{2}}} < \infty \ \ \left(resp., \ \ \lim\limits_{|I|\rightarrow 0}\frac{ \mu(S(I))}{|I|^{\frac{qp}{2}}} = 0\right). |
In this section, we study the boundednss, compactness and the essential norm of Volterra integral operator T_g: \ {Q_p}\rightarrow{\mathcal{LF}(q, q-2, \frac{qp}{2})} . We need the following equivalent characterization of functions in \mathcal{LF}(q, q-2, s) .
Proposition 1. Let 1 < q < \infty and 0 < s < \infty . Then f\in \mathcal{LF}(q, q-2, s) if and only if
\begin{eqnarray} \sup\limits_{I\subseteq{\partial {\mathbb{D}}}}\frac{1}{|I|^s(\log\frac{2}{|I|})^q}\int_{S(I)}|f'(z)|^{q}(1-|z|^2)^{q-2+s}dA(z) < \infty. \end{eqnarray} | (3.1) |
Proof. Let f\in \mathcal{LF}(q, q-2, s) . For any I\in{\partial {\mathbb{D}}} , let a = (1-|I|)\zeta\in{\mathbb{D}} , where \zeta is the center of I . Then
1-|a|\approx |1-\overline{a}z|\approx |I|, \ \ z\in S(I). |
Combining with 1-|\sigma_a(z)|^2 = \frac{(1-|a|^2)(1-|z|^2)}{|1-\overline{a}z|^2}, we have
\begin{equation} \nonumber \begin{split} &\frac{1}{|I|^s(\log\frac{2}{|I|})^q}\int_{S(I)}|f'(z)|^{q}(1-|z|^2)^{q-2+s}dA(z) \\\approx&\frac{1}{\left(\log\frac{2}{1-|a|^2}\right)^{q}}\int_{S(I)}|f'(z)|^{q}(1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^{s}dA(z) \\\lesssim&\sup\limits_{b\in{\mathbb{D}}}\frac{1}{\left(\log\frac{2}{1-|b|^2}\right)^{q}}\int_{{\mathbb{D}}}|f'(z)|^{q}(1-|z|^2)^{q-2}(1-|\sigma_b(z)|^2)^{s}dA(z) < \infty, \end{split} \end{equation} |
as desired.
Conversely, assume that (3) holds. For any given nonzero a\in{\mathbb{D}} , let I_a be the subarc of {\partial {\mathbb{D}}} with midpoint a/|a| and length 1-|a| ; and for a = 0 , let I_a = {\partial {\mathbb{D}}} . Moreover, let J_n = 2^nI_a for n = 0, 1, \cdots, N-1 , where N is the smallest positive integer such that 2^N|I_a|\geq 1 . Then we have the following estimate:
\begin{eqnarray} \frac{1-|a|}{|1-\overline{a}z|^2}\approx\frac{1}{|I_a|},\quad z\in I_a \end{eqnarray} | (3.2) |
and
\begin{eqnarray} \frac{1-|a|}{|1-\overline{a}z|^2}\approx\frac{1}{2^{2n}|I_a|},\quad z\in J_{n+1}\backslash J_n. \end{eqnarray} | (3.3) |
Without loss of generality, we may assume |a| > 3/4 . By (4) and (5) we have
\begin{equation} \nonumber \begin{split} &\frac{1}{\left(\log\frac{2}{1-|a|^2}\right)^{q}}\int_{{\mathbb{D}}}|f'(z)|^{q}(1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^{s}dA(z) \\\lesssim&\sum\limits_{n = 0}^{N-1}\frac{1}{|2^{2n}I_a|^{s}\left(\log\frac{2}{|I_a|}\right)^{q}}\int_{S(J_{n+1})\setminus S(J_n)}|f'(z)|^q(1-|z|^2)^{q-2+s}dA(z) \\& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\frac{1}{|I_a|^{s}\left(\log\frac{2}{|I_a|}\right)^{q}}\int_{S(J_0)}|f'(z)|^q(1-|z|^2)^{q-2+s}dA(z) \\\lesssim&\sum\limits_{n = 0}^{N-1}\frac{1}{|2^{2n}I_a|^{s}\left(\log\frac{2}{|I_a|}\right)^{q}}\int_{S(J_{n+1})}|f'(z)|^q(1-|z|^2)^{q-2+s}dA(z)+C \\\lesssim&\sum\limits_{n = 0}^{N-1}\frac{1}{|2^{2n}I_a|^{s}\left(\log\frac{2}{|I_a|}\right)^{q}}\times|2^{n+1}I_a|^{s}\left(\log\frac{2}{|2^{n+1}I_a|}\right)^{q}+C \\\lesssim&\sum\limits_{n = 0}^{\infty}\frac{1}{2^{ns}}\frac{\left(\log\frac{2}{|2^{n+1}I_a|}\right)^{q}}{\left(\log\frac{2}{|I_a|}\right)^{q}}+C \\\lesssim&\sum\limits_{n = 0}^{\infty}\frac{1}{2^{ns}}+C < \infty. \end{split} \end{equation} |
The proof is complete.
Theorem 2. Let 0 < p < 1 , 2 < q < \infty and g\in H({\mathbb{D}}) . Then T_g: \ {Q_p}\rightarrow{\mathcal{LF}(q, q-2, \frac{qp}{2})} is bounded if and only if g\in \mathcal{F}(q, q-2, \frac{qp}{2}) .
Proof. Suppose that g\in \mathcal{F}(q, q-2, \frac{qp}{2}) . By [24] we have
\begin{equation} \nonumber \begin{split} &\|g\|_{\mathcal{F}(q,q-2,\frac{qp}{2})}\approx \sup\limits_{I\subseteq{\partial {\mathbb{D}}}}\frac{1}{|I|^{\frac{qp}{2}}}\int_{S(I)}|g'(z)|^{q}(1-|z|^2)^{q-2+\frac{qp}{2}}dA(z), \end{split} \end{equation} |
which means that d\mu_g(z) = |g'(z)|^{q}(1-|z|^2)^{q-2+\frac{qp}{2}}dA(z) is a \frac{qp}{2} -Carleson measure. Let f\in{Q_p} . By Corollary 1, we see that i: \ {Q_p}\rightarrow \mathcal{T}_{\frac{qp}{2}, q}^q(\mu_g) is bounded, i.e.,
\begin{equation} \nonumber \begin{split} &\sup\limits_{I\subseteq{\partial {\mathbb{D}}}}\frac{1}{|I|^{\frac{qp}{2}}(\log\frac{2}{|I|})^q}\int_{S(I)}|(T_gf)'(z)|^q(1-|z|^2)^{q-2+\frac{qp}{2}}dA(z)\\ = & \sup\limits_{I\subseteq{\partial {\mathbb{D}}}} \frac{1}{|I|^{\frac{qp}{2}}(\log\frac{2}{|I|})^q}\int_{S(I)}|f(z)|^qd\mu_g(z) < \infty, \end{split} \end{equation} |
which together with Proposition 1 imply that
\sup\limits_{a\in{\mathbb{D}}}\frac{1}{\left(\log\frac{2}{1-|a|^2}\right)^{q}}\int_{{\mathbb{D}}}|(T_gf)'(z)|^q(1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^{\frac{qp}{2}}dA(z) < \infty. |
Therefore T_g: \ {Q_p}\rightarrow{\mathcal{LF}(q, q-2, \frac{qp}{2})} is bounded.
Conversely, assume that T_g: \ {Q_p}\rightarrow{\mathcal{LF}(q, q-2, \frac{qp}{2})} is bounded. For any fixed arc I\subseteq {\partial {\mathbb{D}}} and let e^{i\theta} be the center of I and a = (1-|I|)e^{i\theta}. Set f_a(z) = \log\frac{2}{(1-\overline{a}z)} . Then f_a \in{Q_p} for 0 < p < \infty . Since
|1-\overline{a}z|\approx 1-|a| = |I|,\; \; \; |f_a(z)|\approx \log\frac{2}{|I|}, |
when z\in S(I) , we get
\begin{equation} \nonumber \begin{split} \infty > &\|T_gf_a\|_{{\mathcal{LF}(q,q-2,\frac{qp}{2})}}^q \\\geq&\frac{1}{|I|^{\frac{qp}{2}} (\log\frac{2}{|I|})^q}\int_{S(I)}|f_a(z)|^q|g'(z)|^q(1-|z|^2)^{q-2+\frac{qp}{2}}dA(z) \\\approx&\frac{1}{|I|^{\frac{qp}{2}}}\int_{S(I)}|g'(z)|^q(1-|z|^2)^{q-2+\frac{qp}{2}}dA(z), \end{split} \end{equation} |
which implies that g\in \mathcal{F}(q, q-2, \frac{qp}{2}) by [24]. The proof is complete.
Next, we give an estimation for the essential norm of T_g . First, we recall some definitions. Let (X, \|\cdot\|_X) and (Y, \|\cdot\|_Y) be Banach spaces and T:X\to Y be a bounded linear operator. The essential norm of T:X\to Y, denoted by \|T\|_{e, X\to Y}, is defined by
\|T\|_{e,X\to Y} = \inf\limits_K\{\|T-K\|_{X\to Y}:K\; {\rm is\; compact\; from}\; X\; {\rm to}\; Y\}. |
It is easy to see that T:X\to Y is compact if and only if \|T\|_{e, X\to Y} = 0 . Let A be a closed subspace of X. Given f\in X, the distance from f to A , denoted by {\rm dist}_X(f, A), is defined by {\rm dist}_X(f, A) = \inf_{g\in A}\|f-g\|_{X}.
Lemma 1. Let 2 < q < \infty and 0 < \lambda < \infty . If g\in {\mathcal{F}(q, q-2, \lambda)} , then
\begin{equation} \nonumber \begin{split} {\rm dist}_{{\mathcal{F}(q,q-2,\lambda)}}(g,{\mathcal{F}_0(q,q-2,\lambda)})&\approx\limsup\limits_{r\to 1^-}\|g-g_r\|_{{\mathcal{F}(q,q-2,\lambda)}}\\ &\approx\limsup\limits_{|a|\rightarrow 1}\left(\int_{\mathbb{D}}|g'(z)|^q(1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^\lambda dA(z)\right)^{1/q}.\end{split} \end{equation} |
Here g_r(z) = g(rz), 0 < r < 1, z\in{\mathbb{D}}.
Proof. For any given g\in {\mathcal{F}(q, q-2, \lambda)} , then g_r\in {\mathcal{F}_0(q, q-2, \lambda)} and \|g_r\|_{{\mathcal{F}(q, q-2, \lambda)} }\lesssim\|g\|_{{\mathcal{F}(q, q-2, \lambda)} }. Let \delta\in (0, 1) . We choose a\in (0, \delta). Then \sigma_a(z) lies in a compact subset of {\mathbb{D}} . So
\lim\limits_{r\rightarrow 1}\sup\limits_{z\in{\mathbb{D}}}|g'(\sigma_a(z))-rg'(r\sigma_a(z))| = 0.\nonumber |
Making a change of variables, we have
\begin{equation} \nonumber \begin{split} &\lim\limits_{r\rightarrow 1}\sup\limits_{|a|\leq\delta}\int_{\mathbb{D}}|g'(z)-g'_r(z)|^q(1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^\lambda dA(z)\\ = &\lim\limits_{r\rightarrow 1}\sup\limits_{|a|\leq\delta}\int_{\mathbb{D}}|g'(\sigma_a(z))-g'_r(\sigma_a(z))|^q(1-|z|^2)^{q+\lambda-2}|\sigma_a'(z)|^{q}dA(z)\\ = &\lim\limits_{r\rightarrow 1}\sup\limits_{|a|\leq\delta}\sup\limits_{z\in{\mathbb{D}}}|g'(\sigma_a(z))-g'_r(\sigma_a(z))|^q\int_{\mathbb{D}}(1-|z|^2)^{q+\lambda-2}|\sigma_a'(z)|^{q}dA(z)\\ = &0. \end{split} \end{equation} |
By the definition of distance, we obtain
\begin{eqnarray*} &&{\rm dist}_{{\mathcal{F}(q,q-2,\lambda)} }(g,{\mathcal{F}_0(q,q-2,\lambda)}) = \inf\limits_{f\in {\mathcal{F}_0(q,q-2,\lambda)}}\|g-f\|_{{\mathcal{F}(q,q-2,\lambda)} }\\ &\leq&\lim\limits_{r\rightarrow 1}\|g-g_r\|_{{\mathcal{F}(q,q-2,\lambda)} }\\ &\leq&\lim\limits_{r\rightarrow 1}\left(\sup\limits_{|a| > \delta}\int_{\mathbb{D}}|g'(z)-g'_r(z)|^q(1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^\lambda dA(z)\right)^{1/q} \\ & & +\lim\limits_{r\rightarrow 1}\left(\sup\limits_{|a|\leq\delta}\int_{\mathbb{D}}|g'(z)-g'_r(z)|^q(1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^\lambda dA(z)\right)^{1/q} \\ &\lesssim&\left(\sup\limits_{|a| > \delta}\int_{\mathbb{D}}|g'(z)|^q(1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^\lambda dA(z)\right)^{1/q}\\ &&+\lim\limits_{r\rightarrow 1}\left(\sup\limits_{|a| > \delta}\int_{\mathbb{D}}|g'_r(z)|^q(1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^\lambda dA(z)\right)^{1/q}.\\ \end{eqnarray*} |
Denote by \psi_{r, a}(z) = \sigma_{ra}\circ r \sigma_a(z) . Then \psi_{r, a} is an analytic self-map of {\mathbb{D}} and \psi_{r, a}(0) = 0 . Making a change variable of z = \sigma_a(z) and applying the Littlewood's subordination theorem (see Theorem 1.7 of [3]), we have
\begin{eqnarray*} &&\int_{\mathbb{D}}|g'_r(z)|^q(1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^\lambda dA(z)\\ & = &\int_{\mathbb{D}}|g'_r(\sigma_a(z))|^q(1-|\sigma_a(z)|^2)^{q}(1-|z|^2)^{\lambda-2}dA(z)\\ &\leq&\int_{\mathbb{D}}|g'\circ \sigma_{ra}\circ\psi_{r,a}(z)|^q(1-|\sigma_{ra}\circ\psi_{r,a}(z)|^2)^{q}(1-|z|^2)^{\lambda-2}dA(z)\\ &\leq&\int_{\mathbb{D}}|g'\circ \sigma_{ra}\circ\psi_{r,a}(z)|^q(1-|\sigma_{ra}\circ\psi_{r,a}(z)|^2)^{q}(1-|z|^2)^{\lambda-2}dA(z)\\ &\leq&\int_{\mathbb{D}}|g'\circ \sigma_{ra}(z)|^q(1-|\sigma_{ra}(z)|^2)^{q}(1-|z|^2)^{\lambda-2}dA(z) \\ &\leq&\int_{\mathbb{D}}|g'(z)|^q(1-|z|^2)^{q-2}(1-|\sigma_{ra}(z)|^2)^\lambda dA(z).\\ \end{eqnarray*} |
Since \delta is arbitrary, we get
\begin{eqnarray} && {\rm dist}_{{\mathcal{F}(q,q-2,\lambda)} }(g,{\mathcal{F}_0(q,q-2,\lambda)})\\ &\lesssim & \limsup\limits_{|a|\rightarrow 1}\left(\int_{\mathbb{D}}|g'(z)|^q(1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^\lambda dA(z)\right)^{1/q}. \end{eqnarray} | (3.4) |
On the other hand, for any g\in {\mathcal{F}(q, q-2, \lambda)} ,
\begin{eqnarray*} && {\rm dist}_{{\mathcal{F}(q,q-2,\lambda)} }(g,{\mathcal{F}_0(q,q-2,\lambda)}) = \inf\limits_{f\in {\mathcal{F}_0(q,q-2,\lambda)}}\|g-f\|_{{\mathcal{F}(q,q-2,\lambda)} }\\ &\gtrsim &\limsup\limits_{|a|\rightarrow 1}\left(\int_{\mathbb{D}}|g'(z)|^q(1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^\lambda dA(z)\right)^{1/q}, \end{eqnarray*} |
which, together with (3.4), implies the desired result. The proof is complete.
Lemma 2. Let 0 < p < 1 and 2 < q < \infty . If 0 < r < 1 and g\in \mathcal{F}(q, q-2, \frac{qp}{2}), then T_{g_r}:{Q_p}\to{\mathcal{LF}(q, q-2, \frac{qp}{2})} is compact.
Proof. Given \{f_n\}\subset{Q_p} such that \{f_n\} converges to zero uniformly on any compact subset of {\mathbb{D}} and \sup_{n}\|f_n\|_{{Q_p}}\leq 1. Then by the following well-known inequality
|h(z)| \lesssim \|h\|_{\mathcal{B}} \log\frac{2}{1-|z|^2},\; \; \; \,\; \; h\in {\mathcal{B}}, |
we get
\begin{align*} &\|T_{g_r}f_n\|^q_{{\mathcal{LF}(q,q-2,\frac{qp}{2})}}\\ = &\sup\limits_{a\in{\mathbb{D}}}\frac{1}{\left(\log\frac{2}{1-|a|^2}\right)^{q}}\int_{{\mathbb{D}}}|f_n(z)|^q|g_r'(z)|^q (1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^{\frac{qp}{2}} dA(z)\\ \lesssim& \frac{\|g\|^q_{{\mathcal{B}}}}{(1-r^2)^q}\sup\limits_{a\in{\mathbb{D}}} \int_{{\mathbb{D}}}|f_n(z)|^q(1-|z|^2)^{q-2}(1-|\sigma_a(z)|^2)^{\frac{qp}{2}}dA(z)\\ \lesssim &\frac{\|g\|^q_{\mathcal{F}(q,q-2,\frac{qp}{2})}\|f_n\|_{{\mathcal{B}}}^{q-2}}{(1-r^2)^q}\sup\limits_{a\in{\mathbb{D}}}\int_{{\mathbb{D}}} |f_n(z)|^2 \left(\log\frac{2}{1-|z|^2}\right)^{q-2}(1-|z|^2)^{q-2} (1-|\sigma_a(z)|^2)^{\frac{qp}{2}} dA(z)\\ \lesssim &\frac{\|g\|^q_{\mathcal{F}(q,q-2,\frac{qp}{2})}\|f_n\|_{{Q_p}}^{q-2}}{(1-r^2)^q} \sup\limits_{a\in{\mathbb{D}}}\int_{{\mathbb{D}}} |f_n(z)|^2 (1-|\sigma_a(z)|^2)^p dA(z)\\ \lesssim &\frac{\|g\|^q_{\mathcal{F}(q,q-2,\frac{qp}{2})}\|f_n\|_{{Q_p}}^{q-2}}{(1-r^2)^q} \sup\limits_{a\in{\mathbb{D}}}\int_{{\mathbb{D}}} |f'_n(z)|^2 (1-|\sigma_a(z)|^2)^p dA(z)\\ \lesssim & \frac{\|g\|^q_{\mathcal{F}(q,q-2,\frac{qp}{2})}\|f_n\|_{{Q_p}}^q}{(1-r^2)^q} . \end{align*} |
By the dominated convergence theorem, we get the desire result. The proof is complete.
The following result is an important tool to study the essential norm and compactness of operators on some analytic function spaces, see [20].
Lemma 3. Let X, Y be two Banach spaces of analytic functions on {\mathbb{D}} . Suppose that
(1) The point evaluation functionals on Y are continuous.
(2) The closed unit ball of X is a compact subset of X in the topology of uniform convergence on compact sets.
(3) T : X\rightarrow Y is continuous when X and Y are given the topology of uniform convergence on compact sets.
Then, T is a compact operator if and only if for any bounded sequence \{f_n\} in X such that \{f_n\} converges to zero uniformly on every compact set of {\mathbb{D}} , then the sequence \{Tf_n\} converges to zero in the norm of Y .
Theorem 3. Let 0 < p < 1 , 2 < q < \infty and g\in H({\mathbb{D}}) . If T_g: \ {Q_p}\rightarrow{\mathcal{LF}(q, q-2, \frac{qp}{2})} is bounded, then
\begin{align*} \|T_g\|_{e,{Q_p}\to{\mathcal{LF}(q,q-2,\frac{qp}{2})}} \approx {\rm dist}_{\mathcal{F}(q,q-2,\frac{qp}{2})}(g,\mathcal{F}_0(q,q-2,\frac{qp}{2})). \end{align*} |
Proof. Let \{I_n\}\subseteq {\partial {\mathbb{D}}} and |I_n|\rightarrow 0 as n\rightarrow\infty . Suppose e^{i\theta_n} is the center of I_n and w_n = (1-|I_n|)e^{i\theta_n}. For each n, let
f_{w_n}(z) = \frac{1}{\log\frac{2}{1-|w_n|^2}}\left(\log\frac{2}{1-\overline{w_n}z}\right)^2. |
Then |f_{w_n}(z)|\approx\log\frac{2}{|I_n|} when z\in S(I_n) and \{f_{w_n}\} is bounded in {Q_p}. Furthermore, \{f_{w_n}\} converges to zero uniformly on every compact subset of {\mathbb{D}}. Given a compact operator K:{Q_p}\to{\mathcal{LF}(q, q-2, \frac{qp}{2})}, by Lemma 3 we have \lim_{n\to\infty}\|Kf_{w_n}\|_{{\mathcal{LF}(q, q-2, \frac{qp}{2})}} = 0. So
\begin{align*} \|T_g-K\|\gtrsim& \limsup\limits_{n\to\infty}\|(T_g-K)f_{w_n}\|_{{\mathcal{LF}(q,q-2,\frac{qp}{2})}}\\ \gtrsim&\limsup\limits_{n\to\infty}\Big(\|T_gf_{w_n}\|_{{\mathcal{LF}(q,q-2, \frac{qp}{2})}}-\|Kf_{w_n}\|_{{\mathcal{LF}(q,q-2,\frac{qp}{2})}}\Big)\\ = &\limsup\limits_{n\to\infty}\|T_gf_{w_n}\|_{{\mathcal{LF}(q,q-2,\frac{qp}{2})}}\\ \gtrsim&\limsup\limits_{n\to\infty}\left(\frac{1}{\left(\log\frac{2}{1-|w_n|^2}\right)^q} \int_{{\mathbb{D}}}|f_{w_n}(z)|^{q}|g'(z)|^{q}(1-|z|^2)^{q-2}(1-|\sigma_{w_n}(z)|^2)^{\frac{qp}{2}} dA(z)\right)^{\frac{1}{q}}\\ \gtrsim&\limsup\limits_{n\to\infty}\left(\frac{1}{\left(\log\frac{2}{1-|w_n|^2}\right)^q } \int_{S(I_n)}|f_{w_n}(z)|^{q}|g'(z)|^{q}(1-|z|^2)^{q-2}(1-|\sigma_{w_n}(z)|^2)^{\frac{qp}{2}} dA(z)\right)^{\frac{1}{q}}\\ \gtrsim&\limsup\limits_{n\to\infty} \left(\frac{1}{|I_n|^{\frac{qp}{2}}}\int_{S(I_n)}|g'(z)|^q(1-|z|^2)^{q-2+\frac{qp}{2}} dA(z)\right)^{\frac{1}{q}} , \end{align*} |
which implies that
\begin{align*} \|T_g\|_{e,{Q_p}\to{\mathcal{LF}(q,q-2,\frac{qp}{2})}}\gtrsim\limsup\limits_{n\to\infty} \left( \int_{\mathbb{D}}|g'(z)|^q(1-|z|^2)^{q-2}(1-|\sigma_{w_n}(z)|^2)^{\frac{qp}{2}} dA(z) \right)^{\frac{1}{q}} . \end{align*} |
It follows from Lemma 1 that
\begin{align*} \|T_g\|_{e,{Q_p}\to{\mathcal{LF}(q,q-2,\frac{qp}{2})}} \gtrsim {\rm dist}_{\mathcal{F}(q,q-2,\frac{qp}{2})}(g,\mathcal{F}_0(q,q-2,\frac{qp}{2})). \end{align*} |
On the other hand, by Lemma 2, T_{g_r}:{Q_p}\to {\mathcal{LF}(q, q-2, \frac{qp}{2})} is compact. Then
\begin{align*} \|T_g\|_{e,{Q_p}\to{\mathcal{LF}(q,q-2,\frac{qp}{2})}}\leq \|T_g-T_{g_r}\| = \|T_{g-g_r}\|\approx\|g-g_r\|_{\mathcal{F}(q,q-2,\frac{qp}{2})}. \end{align*} |
Using Lemma 1 again, we have
\begin{align*} \|T_g\|_{e,{Q_p}\to{\mathcal{LF}(q,q-2,\frac{qp}{2})}} \lesssim \limsup\limits_{r\to 1^-}\|g-g_r\|_{\mathcal{F}(q,q-2,\frac{qp}{2})}\approx {\rm dist}_{\mathcal{F}(q,q-2,\frac{qp}{2})}(g,\mathcal{F}_0(q,q-2,\frac{qp}{2})). \end{align*} |
The proof is complete.
The following result can be deduced by Theorem 3 directly.
Corollary 2. Let 0 < p < 1 , 2 < q < \infty and g\in H({\mathbb{D}}) . Then T_g: \ {Q_p}\rightarrow{\mathcal{LF}(q, q-2, \frac{qp}{2})} is compact if and only if
g\in \mathcal{F}_0(q,q-2,\frac{qp}{2}). |
In this paper, we mainly prove that inclusion mapping i: \ {Q_p}\rightarrow \mathcal{T}_{\frac{qp}{2}, s}^q(\mu) is bounded if and only if \sup_{I\subseteq{\partial {\mathbb{D}}}}\frac{\left(\log\frac{2}{|I|}\right)^{q-s}\mu(S(I))}{|I|^{\frac{qp}{2}}} < \infty , when 0 < p < 1 , 2 < q < \infty and 0 < s\leq q < \infty . As an application, we prove that Volterra integral operator T_g from Q_p to the space \mathcal{LF}(q, q-2, \frac{qp}{2}) is bounded if and only if g\in \mathcal{F}(q, q-2, \frac{qp}{2}) .
The authors thank the referee for useful remarks and comments that led to the improvement of this paper. This work was supported by NNSF of China (No.11801250, No.11871257), Overseas Scholarship Program for Elite Young and Middle-aged Teachers of Lingnan Normal University, Yanling Youqing Program of Lingnan Normal University, the Key Subject Program of Lingnan Normal University (No.1171518004) and (No.LZ1905), and Department of Education of Guangdong Province (No. 2018KTSCX133).
We declare that we have no conflict of interest.
[1] |
A. Aleman, J. Cima, An integral operator on Hp and Hardy's inequality, J. Anal. Math. 85 (2001), 157-176. doi: 10.1007/BF02788078
![]() |
[2] | A. Aleman, A. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J., 46 (1997), 337-356. |
[3] | P. Duren, Theory of Hp Spaces, Academic Press, New York, 1970. |
[4] |
D. Girela, J. Peláez, Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal., 241 (2006), 334-358. doi: 10.1016/j.jfa.2006.04.025
![]() |
[5] |
P. Li, J. Liu, Z. Lou, Integral operators on analytic Morrey spaces, Sci. China Math., 57 (2014), 1961-1974. doi: 10.1007/s11425-014-4811-5
![]() |
[6] | S. Li, J. Liu, C. Yuan, Embedding theorems for Dirichlet type spaces, Canad. Math. Bull., Available from: http://dx.doi.org/10.4153/S0008439519000201. |
[7] |
S. Li, S. Stević, Riemann-Stieltjes operators between α-Bloch spaces and Besov spaces, Math. Nachr., 282 (2009), 899-911. doi: 10.1002/mana.200610778
![]() |
[8] | S. Li, H. Wulan, Volterra type operators on QK spaces, Taiwanese J. Math., 14 (2010), 195-211. |
[9] |
J. Liu, Z. Lou, Carleson measure for analytic Morrey spaces, Nonlinear Anal. Ser. A: Theory Methods Appl., 125 (2015), 423-443. doi: 10.1016/j.na.2015.05.016
![]() |
[10] |
J. Liu, Z. Lou, K. Zhu, Embedding of Möbius invariant function spaces into tent spaces, J. Geom. Anal., 27 (2017), 1013-1028. doi: 10.1007/s12220-016-9708-9
![]() |
[11] | J. Pau, J. Peláez, Multipliers of Möbius invariant Qs spaces, Math. Z., 545 (2009), 545-555. |
[12] |
J. Pau, R. Zhao, Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces, Integral Equations Operator Theory, 78 (2014), 483-514. doi: 10.1007/s00020-014-2124-2
![]() |
[13] |
C. Pommerenke, Schlichte funktionen und analytische funktionen von beschränkten mittlerer Oszillation, Comm. Math. Helv., 52 (1977), 591-602. doi: 10.1007/BF02567392
![]() |
[14] | R. Qian, S. Li, Volterra type operators on Morrey type spaces, Math. Inequal. Appl., 18 (2015), 1589-1599. |
[15] | R. Qian, X. Zhu, Embedding of Dirichlet type spaces \mathcal{D}^p_{p-1 } into tent spaces and Volterra operators, Canad. Math. Bull., Available from: https://doi.org/10.4153/S0008439520000764. |
[16] |
C. Shen, Z. Lou, S. Li, Embedding of BMOAlog into tent spaces and Volterra integral operators, Comput. Methods Funct. Theory, 20 (2020), 217-234. doi: 10.1007/s40315-020-00312-1
![]() |
[17] | C. Shen, Z. Lou, S. Li, Volterra integral operators from \mathcal{D}^p_{p-2+s} into F(pλ, pλ + sλ - 2, q), Math. Inequal. Appl., 23 (2020), 1087-1103. |
[18] | Y. Shi, S. Li, Essential norm of integral operators on Morrey type spaces, Math. Inequal. Appl., 19 (2016), 385-393. |
[19] |
A. Siskakis, R. Zhao, A Volterra type operator on spaces of analytic functions, Contemp. Math., 232 (1999), 299-311. doi: 10.1090/conm/232/03406
![]() |
[20] | M. Tjani, Compact Composition Operators on Some Möbius Invariant Banach Spaces, PhD dissertation, Michigan State University, 1996. |
[21] |
J. Wang, The Carleson measure problem between analytic Morrey spaces, Canad. Math. Bull., 59 (2016), 878-890. doi: 10.4153/CMB-2016-013-9
![]() |
[22] |
J. Xiao, The Qp Carleson measure problem, Adv. Math., 217 (2008), 2075-2088. doi: 10.1016/j.aim.2007.08.015
![]() |
[23] | J. Xiao, Holomorphic Q Classes, Springer, LNM 1767, Berlin, 2001. |
[24] | R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. No. 105 (1996), 56. |
[25] | K. Zhu, Operator Theory in Function Spaces, Second Edition, Math. Surveys and Monographs, 138 (2007). |
1. | Dan Qu, Xiangling Zhu, Ruishen Qian, Efthymios G. Tsionas, Embedding of Besov Spaces and the Volterra Integral Operator, 2021, 2021, 2314-4785, 1, 10.1155/2021/5554748 | |
2. | Xiangling Zhu, Lian Hu, Dan Qu, Dirichlet-Morrey type spaces and Volterra integral operators, 2022, 1747-6933, 1, 10.1080/17476933.2022.2130278 | |
3. | Lian Hu, Rong Yang, Songxiao Li, Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces, 2021, 6, 2473-6988, 7782, 10.3934/math.2021453 | |
4. | Lian Hu, Rong Yang, Embedding of \mathcal {F}(p,p-2,s) spaces into tent spaces and Volterra integral operator, 2021, 0035-5038, 10.1007/s11587-021-00633-w | |
5. | Liu Yang, Ruishen Qian, Volterra integral operator and essential norm on Dirichlet type spaces, 2021, 6, 2473-6988, 10092, 10.3934/math.2021856 | |
6. | Liu Yang, Ruishen Qian, Volterra integral operator and essential norm on Dirichlet type spaces, 2021, 6, 2473-6988, 10092, 10.3934/math.2021586 |