Citation: Ghulam Mustafa, Syeda Tehmina Ejaz, Dumitru Baleanu, Yu-Ming Chu. The inequalities for the analysis of a class of ternary refinement schemes[J]. AIMS Mathematics, 2020, 5(6): 7582-7604. doi: 10.3934/math.2020485
[1] | Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155 |
[2] | Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112 |
[3] | Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015 |
[4] | Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593 |
[5] | Isra Al-Shbeil, Abdelkader Benali, Houari Bouzid, Najla Aloraini . Existence of solutions for multi-point nonlinear differential system equations of fractional orders with integral boundary conditions. AIMS Mathematics, 2022, 7(10): 18142-18157. doi: 10.3934/math.2022998 |
[6] | Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176 |
[7] | Yitao Yang, Dehong Ji . Properties of positive solutions for a fractional boundary value problem involving fractional derivative with respect to another function. AIMS Mathematics, 2020, 5(6): 7359-7371. doi: 10.3934/math.2020471 |
[8] | Xiulin Hu, Lei Wang . Positive solutions to integral boundary value problems for singular delay fractional differential equations. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304 |
[9] | Xiping Liu, Mei Jia, Zhanbing Bai . Nonlocal problems of fractional systems involving left and right fractional derivatives at resonance. AIMS Mathematics, 2020, 5(4): 3331-3345. doi: 10.3934/math.2020214 |
[10] | Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632 |
In this research, we mainly focused on wave equation to study and examine the coupled system. In this system, we assumed a bounded domain Ω∈RN where ∂Ω indicates sufficiently smooth boundary of Ω∈RN and take the positive constants ξ0,ξ1,σ,β1,β3 where m≥1 for N=1,2, and 1<m≤N+2N−2 for N≥3. The coupled system with these terms is given by
{vtt−(ξ0+ξ1‖∇v‖22+δ(∇v,∇vt)L2(Ω))Δv(t)+∫∞0g1(s)Δv(t−s)ds+β1|vt(t)|m−2vt(t)+∫τ2τ1|β2(r)||vt(t−r)|m−2vt(t−r)dr+f1(v,w)=0.wtt−(ξ0+ξ1‖∇w‖22+δ(∇w,∇wt)L2(Ω))Δw(t)+∫∞0g2(s)Δw(t−s)ds+β3|wt(t)|m−2wt(t)+∫τ2τ1|β4(r)||wt(t−r)|m−2wt(t−r)dr+f2(v,w)=0.v(z,−t)=v0(z),vt(z,0)=v1(z),w(z,−t)=w0(z),wt(z,0)=w1(z),inΩvt(z,−t)=j0(z,t),wt(z,−t)=ϱ0(z,t),inΩ×(0,τ2)v(z,t)=w(z,t)=0,in∂Ω×(0,∞) | (1.1) |
in which G=Ω×(τ1,τ2)×(0,∞) and τ1<τ2 are taken to be non-negative constants in a manner that β2, β4:[τ1,τ2]→R indicates distributive time delay while gi, i=1,2 are positive.
The viscoelastic damping term, whose kernel is the function g, is a physical term used to describe the link between the strain and stress histories in a beam that was inspired by the Boltzmann theory. There are several publications that discuss this subject and produce a lot of fresh and original findings [1,2,3,4,5], particularly the hypotheses regarding the initial condition [6,7,8,9,10,11,12] and the kernel. See [13,14,15,16,17]. As it concerns to the plate equation and the span problem, Balakrishnan and Taylor introduced a novel damping model in [18] that they dubbed the Balakrishnan-Taylor damping. Here are a few studies that specifically addressed the research of this dampening for further information [18,19,20,21,22,23].
Several applications and real-world issues are frequently affected by the delay, which transforms numerous systems into interesting research topics. Numerous writers have recently studied the stability of the evolution systems with time delays, particularly the effect of distributed delay. See [24,25,26].
In [1], the authors presented the stability result of the system over a considerably broader class of kernels in the absence of delay and Balakrishnan-Taylor damping ξ0=1,ξ1=δ=βi=0,i=1,…,4.
Based on everything said above, one specific problem may be solved by combining these damping terms (distributed delay terms, Balakrishnan-Taylor damping and infinite memory), especially when the past history and the distributed delay
∫τ2τ1|βi(r)||ut(t−r)|m−2ut(t−r)dr, i=2,4 |
are added. We shall attempt to throw light on it since we think it represents a fresh topic that merits investigation and analysis in contrast to the ones mentioned before. Our study is structured into multiple sections: in the second section, we establish the assumptions, notions, and lemmas we require; in the final section, we substantiate our major finding.
In this section of the paper, we will introduce some basic results related to the theory for the analysis of our problem. Let us take the below:
(G1) hi:R+→R+ are a non-increasing C1 functions fulfills the following
gi(0)>0,,ξ0−∫∞0hi(s)ds=li>0,i=1,2, | (2.1) |
and
g0=∫∞0h1(s)ds,ˆg0=∫∞0g2(s)ds, |
(G2) One can find a function C1 functions Gi:R+→R+ holds true Gi(0)=G′i(0)=0.
The functions Gi(t) are strictly increasing and convex of class C2(R+) on (0,ϱ],r≤gi(0) or linear in a manner that
g′i(t)≤−ζi(t)Gi(gi(t)),∀t≥0,fori=1,2, | (2.2) |
in which ζi(t) are a C1 functions fulfilling the below
ζi(t)>0,ζ′i(t)≤0,∀t≥0. | (2.3) |
(G3) β2, β4:[τ1,τ2]→R are a bounded function fulfilling the below
∫τ2τ1|β2(r)|dr<β1,∫τ2τ1|β4(r)|dr<β3. | (2.4) |
(G4) fi:R2→R are C1 functions with fi(0,0)=0, and one can find a function F in a way that
f1(c,e)=dFdc(c,e),f2(c,e)=dFde(c,e),F≥0,af1(c,e)+ef2(c,e)=F(c,e)≥0, | (2.5) |
and
dfidc(c,e)+dfide(c,e)≤d(1+cpi−1+epi−1).∀(c,e)∈R2. | (2.6) |
Take the below
(g∘ϕ)(t):=∫Ω∫∞0h(r)|ϕ(t)−ϕ(t−r)|2drdz, |
and
M1(t):=(ξ0+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω)),M2(t):=(ξ0+ξ1‖∇w‖22+δ(∇w(t),∇wt(t))L2(Ω)). |
Lemma 2.1. (Sobolev-Poincare inequality [27]). Assume that 2≤q<∞ for n=1,2 and 2≤q<2nn−2 for n≥3. Then, one can find c∗=c(Ω,q)>0 in a manner that
‖v‖q≤c∗‖∇v‖2,∀v∈G10(Ω). |
Moreover, choose the below as in [26]:
x(z,ρ,r,t)=vt(z,t−rρ),y(z,ρ,r,t)=wt(z,t−rρ) |
with
{rxt(z,ρ,r,t)+xρ(z,ρ,r,t)=0,syt(z,ρ,r,t)+yρ(z,ρ,r,t)=0x(z,0,r,t)=vt(z,t),y(z,0,r,t)=wt(z,t). | (2.7) |
Take the auxiliary variable (see [28])
ηt(z,s)=v(z,t)−v(z,t−s),s≥0,ϑt(z,s)=w(z,t)−w(z,t−s),s≥0. |
Then
ηtt(z,s)+ηts(z,s)=vt(z,t),ϑtt(z,s)+ϑts(z,s)=wt(z,t). | (2.8) |
Rewrite the problem (1.1) as follows
{vtt−(l1+ξ1‖∇v‖22+δ(∇v,∇vt)L2(Ω))Δv(t)+∫∞0g1(s)Δηt(s)ds+β1|vt(t)|m−2vt(t)+∫τ2τ1|β2(s)||x(z,1,r,t)|m−2x(z,1,r,t)dr+f1(v,w)=0,wtt−(l2+ξ1‖∇w‖22+δ(∇w,∇wt)L2(Ω))Δw(t)+∫∞0g2(s)Δϑt(s)ds+β3|wt(t)|m−2wt(t)+∫τ2τ1|β4(r)||y(z,1,r,t)|m−2y(z,1,r,t)dr+f2(v,w)=0,rxt(z,ρ,r,t)+xρ(z,ρ,r,t)=0,ryt(z,ρ,r,t)+yρ(z,ρ,r,t)=0,ηtt(z,s)+ηts(z,s)=vt(z,t)ϑtt(z,s)+ϑts(z,s)=wt(z,t), | (2.9) |
where
(z,ρ,r,t)∈Ω×(0,1)×(τ1,τ2)×(0,∞). |
with
{v(z,−t)=v0(z),vt(z,0)=v1(z),w(z,−t)=w0(z),wt(z,0)=w1(z),inΩx(z,ρ,r,0)=j0(z,ρr),y(z,ρ,r,0)=ϱ0(z,ρr),inΩ×(0,1)×(0,τ2)v(z,t)=ηt(z,s)=0,z∈∂Ω,t,s∈(0,∞),ηt(z,0)=0,∀t≥0,η0(z,s)=η0(s)=0,∀s≥0,w(z,t)=ϑt(z,s)=0,z∈∂Ω,t,s∈(0,∞),ϑt(z,0)=0,∀t≥0,ϑ0(z,s)=ϑ0(s)=0,∀s≥0. | (2.10) |
In the upcoming Lemma, the energy functional will be introduced.
Lemma 2.2. Let the energy functional is symbolized by E, then it is given by
E(t)=12(‖vt‖22+‖wt‖22)+ξ14(‖∇v(t)‖42+‖∇w(t)‖42)+∫ΩF(v,w)dz+12(l1‖∇v(t)‖22+l2‖∇w(t)‖22)+12((g1∘∇v)(t)+(g2∘∇w)(t))+m−1m∫10∫τ2τ1s(|β2(r)|‖x(z,ρ,r,t)‖mm+|β4(r)|‖y(z,ρ,r,t)‖mm)drdρ. | (2.11) |
The above fulfills the below
E′(t)≤−γ0(‖vt(t)‖mm+‖wt(t)‖mm)+12((g′1∘∇v)(t)+(g′2∘∇w)(t))−δ4{(ddt{‖∇v(t)‖22})2+(ddt{‖∇w(t)‖22})2}≤0, | (2.12) |
in which γ0=min{β1−∫τ2τ1|β2(r)|dr,β3−∫τ2τ1|β4(r)|dr}.
Proof. To prove the result, we take the inner product of (2.9) with vt,wt and after that integrating over Ω, the following is obtained
(vtt(t),vt(t))L2(Ω)−(M3(t)Δv(t),vt(t))L2(Ω)+(∫∞0h1(s)Δηt(s)ds,vt(t))L2(Ω)+β1(|vt|m−2vt,vt)L2(Ω)+∫τ2τ1|β2(s)|(|x(z,1,r,t)|m−2x(z,1,r,t),vt(t))L2(Ω)dr+(wtt(t),wt(t))L2(Ω)−(M4(t)Δw(t),wt(t))L2(Ω)+(∫∞0h2(s)Δϑt(s)ds,wt(t))L2(Ω)+β3(|wt|m−2wt,wt)L2(Ω)+∫τ2τ1|β4(s)|(|y(z,1,r,t)|m−2y(z,1,r,t),wt(t))L2(Ω)dr+(f1(v,w),vt(t))L2(Ω)+(f2(v,w),wt(t))L2(Ω)=0. | (2.13) |
in which
M3(t):=(l1+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω)),M4(t):=(l2+ξ1‖∇w‖22+δ(∇w(t),∇wt(t))L2(Ω)). |
Using mathematical skills, the following is obtained
(vtt(t),vt(t))L2(Ω)=12ddt(‖vt(t)‖22), | (2.14) |
further simplification leads us to the following
−(M3(t)Δv(t),vt(t))L2(Ω)=−((l1+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω))Δv(t),vt(t))L2(Ω)=(l1+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω))∫Ω∇v(t).∇vt(t)dz=(l1+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω))ddt{∫Ω|∇v(t)|2dz}=ddt{12(l1+ξ12‖∇v‖22)‖∇v(t)‖22}+δ4ddt{‖∇v(t)‖22}2. | (2.15) |
The following is obtained after calculation
(∫∞0g1(s)Δηt(s)ds,vt(t))L2(Ω)=∫Ω∇vt∫∞0g1(s)∇ηt(s)dsdz=∫∞0g1(s)∫Ω∇vt∇ηt(s)dzds=∫∞0g1(s)∫Ω(∇ηtt+∇ηts)∇ηt(s)dzds=∫∞0g1(s)∫Ω∇ηtt∇ηt(s)dzds+∫Ω∫∞0g1(s)∇ηts∇ηt(∇)d∇dz=12ddt(g1∘∇v)(t)−12(g′1∘∇v)(t). | (2.16) |
In the same way, we have
(wtt(t),wt(t))L2(Ω)=12ddt(‖wt(t)‖22),−(M4(t)Δw(t),wt(t))L2(Ω)=ddt{12(l2+ξ12‖∇w‖22)‖∇w(t)‖22}+δ4ddt{‖∇w(t)‖22}2,(∫∞0g2(s)Δϑt(s)ds,wt(t))L2(Ω)=12ddt(g2∘∇w)(t)−12(g′2∘∇w)(t). | (2.17) |
Now, multiplying the equation (2.9) by −x|β2(r)|,−y|β4(r)|, and integrating over Ω×(0,1)×(τ1,τ2) and utilizing (2.7), the below is obtained
ddtm−1m∫Ω∫10∫τ2τ1r|β2(r)|.|x(z,ρ,r,t)|mdrdρdz=−(m−1)∫Ω∫10∫τ2τ1|β2(r)|.|y|m−1xρdrdρdz=−m−1m∫Ω∫10∫τ2τ1|β2(r)|ddρ|x(z,ρ,r,t)|mdrdρdz=m−1m∫Ω∫τ2τ1|β2(r)|(|x(z,0,r,t)|m−|x(z,1,r,t)|m)drdz=m−1m(∫τ2τ1|β2(r)|dr)∫Ω|vt(t)|mdz−m−1m∫Ω∫τ2τ1|β2(r)|.|x(z,1,r,t)|mdrdz=m−1m(∫τ2τ1|β2(r)|dr)‖vt(t)‖mm−m−1m∫τ2τ1|β2(r)|‖x(z,1,r,t)‖mmdr. | (2.18) |
Similarly, we have
ddtm−1m∫Ω∫10∫τ2τ1r|β4(r)|.|y(z,ρ,r,t)|mdrdρdz=m−1m(∫τ2τ1|β4(r)|dr)‖wt(t)‖mm−m−1m∫τ2τ1|β4(r)|‖y(z,1,r,t)‖mmdr. | (2.19) |
Here, we utilize the inequalities of Young as
∫τ2τ1|β2(r)|(|x(z,1,r,t)|m−2x(z,1,r,t),vt(t))L2(Ω)ds≤1m(∫τ2τ1|β2(r)|dr)‖vt(t)‖mm+m−1m∫τ2τ1|β2(r)|‖x(z,1,r,t)‖mmdr, | (2.20) |
and
∫τ2τ1|β4(r)|(|y(z,1,r,t)|m−2y(z,1,r,t),wt(t))L2(Ω)dr≤1m(∫τ2τ1|β4(r)|dr)‖wt(t)‖mm+m−1m∫τ2τ1|β4(r)|‖y(z,1,r,t)‖mmdr. | (2.21) |
Finally, we have
(f1(v,w),vt(t))L2(Ω)+(f2(v,w),wt(t))L2(Ω)=ddt∫ΩF(v,w)dz. | (2.22) |
Thus, after replacement of (2.14)–(2.22) into (2.13), we determined (2.11) and (2.12). As a result, we obtained that E is a non-increasing function by (2.2)–(2.5), which is required.
Theorem 2.3. Take the function U=(v,vt,w,wt,x,y,ηt,ϑt)T and assume that (2.1)–(2.5) holds true. Then, for any U0∈H, then one can find a unique solution U of problems (2.9) and (2.10) in a manner that
U∈C(R+,G). |
If U0∈G1, then U fulfills the following
U∈C1(R+,G)∩C(R+,G1), |
in which
G=(G10(Ω)×L2(Ω))2×(L2(Ω,(0,1),(τ1,τ2)))2×(Lg1×Lg2).G1={U∈G/v,w∈G2∩G10,vt,wt∈G10(Ω),x,y,xρ,yρ∈L2(Ω,(0,1),(τ1,τ2)),(ηt,ϑt)∈Lg1×Lg2,ηt(z,0)=ϑt(z,0)=0,x(z,0,r,t)=vt,y(z,0,r,t)=wt}. |
Here, the stability of the systems (2.9) and (2.10) will be established and investigated. For which the following lemma is needed
Lemma 3.1. Let us suppose that (2.1) and (2.2) fulfills.
∫Ω(∫∞0gi(s)(v(t)−v(t−s))ds)2dz≤Cκ,i(hi∘v)(t),i=1,2. | (3.1) |
where
Cκi:=∫∞0g2i(s)κgi(s)−g′i(s)dshi(t):=κgi(t)−g′i(t),i=1,2. |
Proof.
∫Ω(∫∞0gi(s)(v(t)−v(t−s))ds)2dz=∫Ω(∫t−∞gi(t−s)(v(t)−v(t−s))ds)2dz=∫Ω(∫t−∞gi(t−s)√κgi(t−s)−g′i(t−s)√κgi(t−s)−g′i(t−s)(v(t)−v(s))ds)2dz | (3.2) |
which is obtained through Young's inequality (Eq 3.1).
Lemma 3.2. (Jensens inequality). Let f:Ω→[c,e] and h:Ω→R are integrable functions in a manner that for any z∈Ω, h(z)>0 and ∫Ωh(z)dz=k>0. Furthermore, assume a convex function G such that G:[c,e]→R. Then
G(1k∫Ωf(z)h(z)dz)<1k∫ΩG(f(z))h(z)dz. | (3.3) |
Lemma 3.3. It is mentioned in [12] that one can find a positive constant β, ˆβ in a manner that
I1(t)=∫Ω∫∞tg1(s)|∇ηt(δ)|2dsdz≤βμ(t),I2(t)=∫Ω∫∞tg2(s)|∇ϑt(δ)|2dsdz≤ˆβˆμ(t), | (3.4) |
in which
μ(t)=∫∞0g1(t+s)(1+∫Ω∇v20(z,s)dz)ds,ˆμ(t)=∫∞0g2(t+s)(1+∫Ω∇w20(z,s)dz)ds. |
Proof. As the function E(t) is decreasing and utilizing (2.11), we have the following
∫Ω|∇ηt(s)|2dz=∫Ω(∇v(z,t)−v(z,t−s)2dz≤2∫Ω∇v2(z,t)dz+2∫Ω∇v2(z,t−s)dz≤2sups>0∫Ω∇v2(z,s)dz+2∫Ω∇v2(z,t−x)dz≤4E(0)l1+2∫Ω∇v2(z,t−s)dz, | (3.5) |
for any t,s≥0. Further, we have
I1(t)≤4E(0)l1∫∞tg1(s)ds+2∫∞tg1(s)∫Ω∇v2(z,t−s)dzds≤4E(0)l1∫∞0g1(t+s)ds+2∫∞0g1(t+s)∫Ω∇v20(z,s)dzds≤βμ(t), | (3.6) |
in which β=max{4E(0)l1,2} and μ(t)=∫∞0g1(t+s)(1+∫Ω∇u20(z,s)dz)ds.
In the same way, we can deduce that
I2(t)≤4E(0)l2∫∞0g2(t+s)ds+2∫∞0g2(t+s)∫Ω∇w20(z,s)dzds≤ˆβˆμ(t), | (3.7) |
in which ˆβ=max{4E(0)l2,2} and ˆμ(t)=∫∞0g2(t+s)(1+∫Ω∇w20(z,s)dz)ds. In the upcoming part, we set the following
Ψ(t):=∫Ω(v(t)vt(t)+w(t)wt(t))dz+δ4(‖∇v(t)‖42+‖∇w(t)‖42), | (3.8) |
and
Φ(t):=−∫Ωvt∫∞0g1(s)(v(t)−v(t−s))dsdz−∫Ωwt∫∞0g2(s)(w(t)−w(t−s))dsdz, | (3.9) |
and
Θ(t):=∫10∫τ2τ1re−ρr(|β2(r)|.‖x(z,ρ,r,t)‖mm+|β4(r)|.‖y(z,ρ,r,t)‖mm)drdρ. | (3.10) |
Lemma 3.4. In (3.8), the functional Ψ(t) fulfills the following
Ψ′(t)≤‖vt‖22+‖wt‖22−(l−ε(c1+c2)−σ1)(‖∇v‖22+‖∇w‖22)−ξ1(‖∇v‖42+‖∇w‖42)+c(ε)(‖vt‖mm+‖wt‖mm)+c(σ1)(Cκ,1(g1∘∇v)(t)+Cκ,2(h2∘∇w)(t))−∫ΩF(v,w)dz+c(ε)∫τ2τ1(|β2(r)‖x(z,1,r,t)‖mm+|β4(r)‖y(z,1,r,t)‖mm)dr. | (3.11) |
for any ε,σ1>0 with l=min{l1,l2}.
Proof. To prove the result, differentiate (3.8) first and then apply (2.9), we have the following
Ψ′(t)=‖vt‖22+∫Ωvttvdz+δ‖∇v‖22∫Ω∇vt∇vdz+‖wt‖22+∫Ωwttwdz+δ‖∇w‖22∫Ω∇wt∇wdz=‖vt‖22+‖wt‖22−ξ0(‖∇v‖22+‖∇w‖22)−ξ1(‖∇v‖42+‖∇w‖42)−β1∫Ω|vt|m−2vtvdz⏟I11−β3∫Ω|wt|m−2wtwdz⏟I12+∫Ω∇v(t)∫∞0g1(s)∇v(t−s)dsdz⏟I21+∫Ω∇w(t)∫∞0g2(s)∇w(t−s)dsdz⏟I22−∫Ω∫τ2τ1|β2(r)||x(z,1,r,t)|m−2x(z,1,r,t)vdrdz⏟I31−∫Ω∫τ2τ1|β4(r)||y(z,1,r,t)|m−2y(z,1,r,t)wdrdz⏟I32−∫Ω(vf1(v,w)+wf2(v,w))dz⏟I4. | (3.12) |
We estimate the last 6 terms of the RHS of (3.12). The following is obtained by applying Young's, Sobolev-Poincare and Hölder's inequalities on (2.1) and (2.11), we have
I11≤εβm1‖v‖mm+c(ε)‖vt‖mm≤εβm1cmp‖∇v‖m2+c(ε)‖vt‖mm≤εβm1cmp(E(0)l1)(m−2)/2‖∇v‖22+c(ε)‖vt‖mm≤εc11‖∇v‖22+c(ε)‖vt‖mm. | (3.13) |
In addition to this, for any σ1>0, by Lemma 3.1, we have the below
I21≤(∫∞0g1(s)ds)‖∇v‖22−∫Ω∇v(t)∫∞0g1(s)(∇v(t)−∇v(t−s))dsdz≤(ξ0−l1+σ1)‖∇v‖22+cσ1Cκ,1(h1∘∇v)(t). | (3.14) |
Taking same steps to I12, the below is obtained
I31≤εc21‖∇v‖22+c(ε)∫τ2τ1|β2(r)|.‖x(z,1,r,t)‖mmdr. | (3.15) |
Same steps for I11,I21 and I31, we have
I12≤εc12‖∇w‖22+c(ε)‖wt‖mmI22≤(ξ0−l2+σ1)‖∇w‖22+cσ1Cκ,2(h2∘∇w)(t),I32≤εc22‖∇w‖22+c(ε)∫τ2τ1|β4(r)|.‖y(z,1,r,t)‖mmdr. | (3.16) |
Combining (3.13)–(3.21), (3.12) and (2.5), the required (3.11) is obtained.
Lemma 3.5. For any σ,σ2,σ3>0, the functional Φ(t) introduced in (3.9) holds true
Φ′(t)≤−(l0−σ3)(‖vt‖22+‖wt‖22)+ξ1σ(‖∇v‖42+‖∇w‖42)+σ(ξ0+^l02+cˆl)‖∇v‖22+σ(ξ0+ˆh20+cl2)‖∇w‖22+σ22δE(0)(1l1(12ddt‖∇v‖22)2+1l2(12ddt‖∇w‖22)2)+c(σ,σ2,σ3)(Cκ,1(h1∘∇v)(t)+Cκ,2(h2∘∇w)(t))+c(σ)(‖vt‖mm+∫τ2τ1|β2(r)‖x(z,1,r,t)‖mmdr)+c(σ)(‖wt‖mm+∫τ2τ1|β4(r)‖y(z,1,r,t)‖mmdr). | (3.17) |
where ˆl=max{l1,l2}, l0=min{g0,ˆg0} and ^l0=max{g0,ˆg0}.
Proof. To prove the result, simplification of (3.9) and (2.9) through mathematical skills leads us to the following
Φ′(t)=−∫Ωvtt∫∞0g1(s)(v(t)−v(t−s))dsdz−∫Ωvt∂∂t(∫∞0g1(s)(v(t)−v(t−s))ds)dz−∫Ωwtt∫∞0g2(s)(w(t)−w(t−s))dsdz−∫Ωwt∂∂t(∫∞0g2(s)(w(t)−w(t−s))ds)dz=(ξ0+ξ1‖∇v‖22)∫Ω∇v∫∞0g1(s)(∇v(t)−∇v(t−s))dsdz⏟J11+(ξ0+ξ1‖∇w‖22)∫Ω∇w∫∞0g2(s)(∇w(t)−∇w(t−s))dsdz⏟J12+δ∫Ω∇v∇vtdz.∫Ω∇v∫∞0g1(s)(∇v(t)−∇v(t−s))dsdz⏟J21+δ∫Ω∇w∇wtdz.∫Ω∇w∫∞0g2(s)(∇w(t)−∇w(t−s))dsdz⏟J22−∫Ω(∫∞0g1(s)∇v(t−s)ds).(∫∞0g1(s)(∇v(t)−∇v(t−s))ds)dz⏟J31−∫Ω(∫∞0g2(s)∇w(t−s)ds).(∫∞0g2(s)(∇w(t)−∇w(t−s))ds)dz⏟J32−β1∫Ω|vt|m−2vt(∫∞0g1(s)(∇v(t)−∇v(t−s))ds)dz⏟J41−β3∫Ω|wt|m−2wt(∫∞0g2(s)(∇w(t)−∇w(t−s))ds)dx⏟J42−∫Ω∫τ2τ1|β2(r)||x(z,1,r,t)|m−2x(z,1,r,t)×∫∞0g1(s)(∇v(t)−∇v(t−s))ds)dsdz⏟J51−∫Ω∫τ2τ1|β4(r)||y(z,1,r,t)|m−2y(z,1,r,t)×∫∞0g2(s)(∇w(t)−∇w(t−s))ds)dsdz⏟J51−∫Ωvt∂∂t(∫∞0g(s)(v(t)−v(t−s))ds)dz⏟J61−∫Ωwt∂∂t(∫∞0g2(s)(w(t)−w(t−s))ds)dz⏟J62−∫Ωf1(v,w).(∫∞0g1(s)(v(t)−v(t−s))ds)dz⏟J71−∫Ωf2(v,w).(∫∞0g2(s)(w(t)−w(t−s))ds)dz⏟J72. | (3.18) |
Here, we will find our the approximation of the terms of the RHS of (3.18). Using the well-known Young's, Sobolev-Poincare and Hölder's inequalities on (2.1), (2.11) and Lemma 3.1, we proceed as follows
|J11|≤(ξ0+ξ1‖∇v‖22)(σ‖∇v‖22+14σCκ,1(h1∘∇v)(t))≤σξ0‖∇v‖22+σξ1‖∇v‖42+(ξ04σ+ξ1E(0)4l1ξ)Cκ,1(h1∘∇v)(t), | (3.19) |
and
J21≤σ2δ(∫Ω∇v∇vtdz)2‖∇v‖22+δ4σ2Cκ,1(h1∘∇v)(t)≤σ22δE(0)l1(12ddt‖∇v‖22)2+δ4σ2Cκ,1(h1∘∇v)(t), | (3.20) |
|J31|≤∫Ω(∫∞0g1(s)∇v(t)ds)(∫∞0g1(s)(∇v(t−s)−∇v(t))ds)dz−∫Ω(∫∞0g1(s)(∇v(t)−∇v(t−s))ds)2dz≤δg20‖∇v‖22+(1+14δ)Cκ,1(h1∘∇v)(t), | (3.21) |
|J41|≤c(σ)‖∇vt‖mm+σβm1∫Ω(∫∞0g1(s)(v(t)−v(t−s))ds)mdz≤c(σ)‖∇vt‖mm+σ(βm1cmp[4g0E(0)l1](m−2))Cκ,1(h1∘∇v)(t)≤c(σ)‖∇vt‖mm+σc3Cκ,1(h1∘∇v)(t). | (3.22) |
In the same, we obtained the following
J51≤c(σ)‖x(z,1,r,t)‖mm+σc4Cκ,1(h1∘∇v)(t), | (3.23) |
and to find the approximation of J61, we have
∂∂t(∫∞0g1(s)(v(t)−v(t−s))ds)=∂∂t(∫t−∞g1(t−s)(v(t)−v(s))ds)=∫t−∞g′1(t−s)(v(t)−v(s))ds+(∫t−∞g1(t−s)ds)vt(t)=∫∞0g′1(s)(v(t)−v(t−s))ds+g0vt(t), |
the (2.2) implies that
J61≤−(g0−σ3)‖vt‖22+cσ3Cκ,1(h1∘∇v)(t). | (3.24) |
In the same steps, the estimation of Ji2, i=1,..,6 are obtained and
J71≤cσl1‖∇v‖22+c(σ)Cκ,1(h1∘∇v)(t)J72≤cσl2‖∇w‖22+c(σ)Cκ,2(h2∘∇v)(t). | (3.25) |
Here, put (3.19)–(3.25) into (3.18), the required result is obtained.
Lemma 3.6. The functional Θ(t) introduced in (3.10) fulfills the below
Θ′(t)≤−γ1∫10∫τ2τ1r(|β2(r)|.‖x(z,ρ,r,t)‖mm+|β4(r)|.‖y(z,ρ,r,t)‖mm)drdρ−γ1∫τ2τ1(|β2(s)|.‖x(z,1,r,t)‖mm+|β4(r)|.‖y(z,1,r,t)‖mm)dr+β5(‖vt(t)‖mm+‖wt(t)‖mm). | (3.26) |
in which β5=max{β1,β3}.
Proof. To prove the result, using Θ(t), and (2.9), we obtained the following
Θ′(t)=−m∫Ω∫10∫τ2τ1e−rρ|β2(r)|.|x|m−1xρ(z,ρ,r,t)drdρdz−m∫Ω∫10∫τ2τ1e−rρ|β4(r)|.|y|m−1yρ(z,ρ,r,t)drdρdz=−∫Ω∫10∫τ2τ1re−rρ|β2(r)|.|x(z,ρ,r,t)|mdrdρdz−∫Ω∫τ2τ1|β2(r)|[e−r|x(z,1,r,t)|m−|x(z,0,r,t)|m]drdz−∫Ω∫10∫τ2τ1re−rρ|β4(r)|.|y(z,ρ,r,t)|mdrdρdz−∫Ω∫τ2τ1|β4(r)|[e−r|y(z,1,r,t)|m−|y(z,0,r,t)|m]drdz |
Utilizing x(z, 0, r, t) = v_{t}(z, t), y(z, 0, r, t) = w_{t}(z, t) , and e^{-r}\leq e^{-r\rho}\leq 1 , for any 0 < \rho < 1 , moreover, select \gamma_{1} = e^{-\tau_{2}} , we have
\begin{eqnarray*} \Theta'( t) &\leq &-\gamma_{1}\int_{\Omega}\int_{0}^{1}\int_{\tau_{1}}^{\tau_{2}}r\bigg(\vert \beta_{2}(r)\vert.\vert z(z, \rho, r, t)\vert^{m}+\vert \beta_{4}(r)\vert.\vert y(z, \rho, r, t)\vert^{m}\bigg) dr d\rho dz \\ &&-\gamma_{1}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}} \bigg(\vert \beta_{2}(r)\vert \vert x(z, 1, r, t)\vert^{m}+\vert \beta_{4}(r)\vert \vert y(z, 1, r, t)\vert^{m}\bigg) dr dz\\ && +\int_{\tau_{1}}^{\tau_{2}} \vert \beta_{2}(r)\vert dr\int_{\Omega}\vert v_{t}\vert^{m}(t)dz+\int_{\tau_{1}}^{\tau_{2}} \vert \beta_{4}(r)\vert dr\int_{\Omega}\vert w_{t}\vert^{m}(t)dz, \end{eqnarray*} |
applying (2.4), the required proof is obtained. In the next step, we below functional are introduced
\begin{eqnarray} \mathcal{A}_{1}(t)&: = &\int_{\Omega}\int_{0}^{t}\varphi_{1}(t-s)\nabla v(s)^{2}ds dz, \\ \mathcal{A}_{2}(t)&: = &\int_{\Omega}\int_{0}^{t}\varphi_{2}(t-s)\nabla w(s)^{2}ds dz, \end{eqnarray} | (3.27) |
in which \varphi_{1}(t) = \int_{t}^{\infty}g_{1}(s)ds, \varphi_{2}(t) = \int_{t}^{\infty}g_{2}(s)ds .
Lemma 3.7. Let us suppose that (2.1) and (2.2) satisfied. Then, the functional F_{1} = \mathcal{A}_{1}+\mathcal{A}_{2} and fulfills the following
\begin{eqnarray} F_{1}'(t)&\leq&-\frac{1}{2}\bigg((g_{1}\circ\nabla v)(t)+(g_{2}\circ\nabla w)(t)\bigg)\\ &&+3g_{0}\int_{\Omega}\nabla v^{2}dz+3\widehat{g}_{0}\int_{\Omega}\nabla w^{2}dz\\ &&+\frac{1}{2}\int_{\Omega}\int_{t}^{\infty}g_{1}(s)(\nabla v(t)-\nabla v(t-s))^{2}ds dz\\ &&+\frac{1}{2}\int_{\Omega}\int_{t}^{\infty}g_{2}(s)(\nabla w(t)-\nabla w(t-s))^{2}ds dz. \end{eqnarray} | (3.28) |
Proof. We can easily prove this lemma with the help of Lemma 3.7 in [13] and Lemma 3.4 in [15].
Now, we have sufficient mathematical tools to prove the below mentioned Theorem.
Theorem 3.8. Take (2.1)–(2.5), then one can find positive constants \varsigma_{i}, i = 1, 2, 3 and positive function \varsigma_{4}(t) in a way that the energy functionalmentioned in (2.11) fulfills
\begin{equation} E\left( t\right) \leq \varsigma_{1}D_{2}^{-1} \bigg(\frac{\varsigma_{2}+\varsigma_{3}\int_{0}^{t}\widehat{\zeta}(\nu)D_{4}(\varsigma_{4}(\nu)\mu_{0}(\nu))d\nu}{\int_{0}^{t}\zeta_{0}(\nu)d\nu}\bigg), \end{equation} | (3.29) |
in which
\begin{equation} D_{2}(t) = tD'(\varepsilon_{0}t), \quad D_{3}(t) = tD'^{-1}(t), \quad D_{4}(t) = \overline{D}^{*}_{3}(t), \quad \end{equation} | (3.30) |
and
\mu_{0} = \max\{\mu, \widehat{\mu}\}, \quad \widehat{\zeta} = \max\{\zeta_{1}, \zeta_{2}\}, \quad \zeta_{0} = \min\{\zeta_{1}, \zeta_{2}\}, |
which are increasing and convex in (0 , \varrho] .
Proof. For the proof, we define the below functional
\begin{eqnarray} \mathcal{G}(t)&: = & NE(t)+N_{1}\Psi(t)+N_{2}\Phi(t)+N_{3}\Theta(t), \end{eqnarray} | (3.31) |
we determined the positive constants N, N_{i}, i = 1, 2, 3 . Simplifying (3.36) and utilizing 2.12, the Lemmas 3.4–3.6, we have
\begin{eqnarray} \mathcal{G}'(t)&: = &NE'(t)+N_{1}\Psi'(t)+N_{2}\Phi'(t) +N_{3}\Theta'(t)\\ &\leq&-\bigg\{N_{2}(l_{0}-\sigma_{3})-N_{1}\bigg\}\bigg(\Vert v_{t}\Vert_{2}^{2}+\Vert w_{t}\Vert_{2}^{2}\bigg)\\ &&-\bigg\{N_{3}\xi_{1}-N_{2}\xi_{1}\sigma\bigg\}\bigg(\Vert\nabla v\Vert_{2}^{4}+\Vert\nabla w\Vert_{2}^{4}\bigg)\\ &&-\bigg\{N_{1}(l-\varepsilon(c_{1}+c_{2})-\sigma_{1})-N_{2}\sigma(\xi{0}+\widehat{l_{0}}^{2}+c\widehat{l})\bigg\}\bigg(\Vert\nabla v\Vert_{2}^{2}+\Vert\nabla w\Vert_{2}^{2}\bigg)\\ &&-\bigg\{\frac{N\delta}{4}-N_{2}\sigma_{2}\frac{2\delta E(0)}{l}\bigg\}\bigg[\bigg(\frac{1}{2}\frac{d}{dt}\Vert\nabla v\Vert_{2}^{2}\bigg)^{2}+\bigg(\frac{1}{2}\frac{d}{dt}\Vert\nabla w\Vert_{2}^{2}\bigg)^{2}\bigg]\\ &&+\bigg\{N_{1}c(\sigma_{1})+N_{2}c(\sigma, \sigma_{2}, \sigma_{3})\bigg\}\bigg(C_{\kappa, 1}(h_{1}\circ\nabla v)(t)+C_{\kappa, 2}(h_{2}\circ\nabla w)(t)\bigg)\\ &&+\frac{N}{2}\bigg( (g_{1}'\circ\nabla v)(t)+(g_{2}'\circ\nabla w)(t)\bigg)\\ &&-\bigg\{\gamma_{0}N-N_{1}c(\varepsilon)-N_{2}c(\sigma)-N_{3}\beta_{5}\bigg\}\bigg(\Vert v_{t}\Vert_{m}^{m}+\Vert w_{t}\Vert_{m}^{m}\bigg)\\ &&-\bigg(\gamma_{1}N_{3}- N_{1}c(\varepsilon)-N_{2}c(\sigma)\bigg) \int_{\tau_{1}}^{\tau_{2}}\vert\beta_{2}(r)\Vert x(z, 1, r, t)\Vert_{m}^{m}ds\bigg)\\ &&-N_{3}\gamma_{1}\int_{0}^{1}\int_{\tau_{1}}^{\tau_{2}} r\vert \beta_{2}(r)\vert.\Vert x(z, \rho, r, t)\Vert_{m}^{m} dr d\rho\\ &&-\bigg(\gamma_{1}N_{3}- N_{1}c(\varepsilon)-N_{2}c(\sigma)\bigg) \int_{\tau_{1}}^{\tau_{2}}\vert\beta_{4}(r)\Vert y(z, 1, r, t)\Vert_{m}^{m}dr \bigg)\\ &&-N_{3}\gamma_{1}\int_{0}^{1}\int_{\tau_{1}}^{\tau_{2}} r \vert \beta_{4}(r)\vert.\Vert y(z, \rho, r, t)\Vert_{m}^{m} dr d\rho-N_{1}\int_{\Omega}F(v, w)dz . \end{eqnarray} | (3.32) |
We select the various constants at this point such that the values included in parenthesis are positive in this stage. Here, putting
\sigma_{3} = \frac{l_{0}}{2}, \quad \varepsilon = \frac{l}{4(c_{1}+c_{2})}, \quad \sigma_{1} = \frac{l}{4}, \quad \sigma_{2} = \frac{lN}{16 E(0)N_{2}}, \quad N_{1} = \frac{l_{0}}{4}N_{2}. |
Thus, we arrive at
\begin{eqnarray} \mathcal{H}'(t)&\leq&-\frac{l_{0}}{4} N_{2}\bigg(\Vert w_{t}\Vert_{2}^{2}+\Vert w_{t}\Vert_{2}^{2}\bigg)-\zeta_{1}N_{2}\bigg(\frac{l_{0}}{4}-\delta\bigg)\bigg(\Vert\nabla w\Vert_{2}^{4}+\Vert\nabla u\Vert_{2}^{4}\bigg)\\ &&-N_{2}\bigg(\frac{ll_{0}}{8}-\delta(\zeta_{0}+\widehat{h_{0}}^{2}+c\widehat{l})\bigg)\bigg(\Vert\nabla w\Vert_{2}^{2}+\Vert\nabla u\Vert_{2}^{2}\bigg)\\ &&-\frac{N\delta}{8}\bigg[\bigg(\frac{1}{2}\frac{d}{dt}\Vert\nabla v\Vert_{2}^{2}\bigg)^{2}+\bigg(\frac{1}{2}\frac{d}{dt}\Vert\nabla w\Vert_{2}^{2}\bigg)^{2}\bigg]\\ &&+N_{2}c(\sigma, \sigma_{1}, \sigma_{2}, \sigma_{3})\bigg(C_{\kappa, 1}(h_{1}\circ\nabla v)(t)+C_{\kappa, 2}(h_{2}\circ\nabla w)(t)\bigg)\\ &&+\frac{N}{2}\bigg( (g_{1}'\circ\nabla v)(t)+(g_{2}'\circ\nabla v)(t)\bigg)-N_{1}\int_{\Omega}F(v, w)dz\\ &&-\bigg(\gamma_{0}N-N_{2}c(\sigma, \varepsilon)-N_{3}\beta_{5}\bigg)\bigg(\Vert v_{t}\Vert_{m}^{m}+\Vert w_{t}\Vert_{m}^{m}\bigg)\\ &&-\bigg(\gamma_{1}N_{3}-N_{2}c(\sigma, \varepsilon)\bigg) \int_{\tau_{1}}^{\tau_{2}}\vert\beta_{2}(r)\Vert x(z, 1, r, t)\Vert_{m}^{m}ds\bigg)\\ &&-N_{3}\gamma_{1}\int_{0}^{1}\int_{\tau_{1}}^{\tau_{2}} r\vert \beta_{2}(r)\vert.\Vert x(z, \rho, r, t)\Vert_{m}^{m} dr d\rho\\ &&-\bigg(\gamma_{1}N_{3}-N_{2}c(\sigma, \varepsilon)\bigg) \int_{\tau_{1}}^{\tau_{2}}\vert\beta_{4}(r)\Vert y(z, 1, r, t)\Vert_{m}^{m}dr\bigg)\\ &&-N_{3}\gamma_{1}\int_{0}^{1}\int_{\tau_{1}}^{\tau_{2}} r\vert \beta_{4}(r)\vert.\Vert y(z, \rho, r, t)\Vert_{m}^{m} dr d\rho . \end{eqnarray} | (3.33) |
In the upcoming, we select \sigma in a manner that
\sigma < \min\bigg\{\frac{l_{0}}{4}, \frac{ll_{0}}{8(\xi_{0}+\widehat{g_{0}}^{2}+c\widehat{l})}\bigg\}. |
After that, we take N_{2} in a way that
N_{2}\bigg(\frac{ll_{0}}{8}-\sigma(\xi_{0}+\widehat{g_{0}}^{2}+c\widehat{l})\bigg) > 4l_{0}, |
and take N_{3} large enough in a way that
\gamma_{1}N_{3}-N_{2}c(\sigma, \varepsilon) > 0. |
As a result, for positive constants d_{i}, i = 1, 2, 3, 4, 5 , (3.33) can be written as
\begin{eqnarray} \mathcal{H}'(t)&\leq&-d_{1}(\Vert v_{t}\Vert_{2}^{2}+\Vert w_{t}\Vert_{2}^{2})-d_{2}(\Vert\nabla v\Vert_{2}^{4}+\Vert\nabla w\Vert_{2}^{4})-4l_{0}(\Vert\nabla v\Vert_{2}^{2}+\Vert\nabla w\Vert_{2}^{2})\\ &&-\frac{N\delta}{8}\bigg[\bigg(\frac{1}{2}\frac{d}{dt}\Vert\nabla v\Vert_{2}^{2}\bigg)^{2}+\bigg(\frac{1}{2}\frac{d}{dt}\Vert\nabla w\Vert_{2}^{2}\bigg)^{2}\bigg]\\ &&-\bigg(\frac{N}{2}-d_{3}C_{\kappa}\bigg)\bigg((h_{1}\circ\nabla v)(t)+(h_{2}\circ\nabla w)(t)\bigg)\\ &&+\frac{N\kappa}{2} \bigg((g_{1}\circ\nabla v)(t)+(g_{2}\circ\nabla w)(t)\bigg) \\ &&-(\gamma_{0}N-c)\bigg(\Vert v_{t}\Vert_{m}^{m}+\Vert w_{t}\Vert_{m}^{m}\bigg)-d_{5}\int_{\Omega}F(v, w)dz\\ &&-d_{4}\int_{0}^{1}\int_{\tau_{1}}^{\tau_{2}} s \bigg(\vert\beta_{2}(r)\vert.\Vert x(z, \rho, r, t)\Vert_{m}^{m}+\vert\beta_{4}(r)\vert.\Vert y(z, \rho, r, t)\Vert_{m}^{m}\bigg) dr d\rho, \end{eqnarray} | (3.34) |
in which C_{\kappa} = \max\{C_{\kappa, 1}, C_{\kappa, 2}\} .
We know that \frac{\kappa g_{i}^{2}(s)}{\kappa g_{i}(s)-g_{i}(s)}\leq g_{i}(s) , then from from Lebesgue Dominated Convergence, we have the below
\begin{equation} \lim\limits_{\kappa\rightarrow 0^{+}}\kappa C_{\kappa, i} = \lim\limits_{\kappa\rightarrow 0^{+}}\int_{0}^{\infty}\frac{\kappa g_{i}^{2}(s)}{\kappa g_{i}(s)-g_{i}(s)}ds = 0, \quad i = 1, 2 \end{equation} | (3.35) |
which leads to
\lim\limits_{\kappa\rightarrow 0^{+}}\kappa C_{\kappa} = 0. |
As a result of this, one can find 0 < \kappa_{0} < 1 in a manner that if \kappa < \kappa_{0} , then
\begin{equation} \kappa C_{\kappa}\leq \frac{1}{d_{3}}. \end{equation} | (3.36) |
From (3.8)–(3.10) through mathematical skills, we have the following
\begin{eqnarray} \vert\mathcal{H}(t)-NE(t)\vert&\leq&\frac{N_{1}}{2}\bigg(\Vert v_{t}(t)\Vert_{2}^{2}+\Vert w_{t}(t)\Vert_{2}^{2}+c_{p}\Vert\nabla w(t)\Vert_{2}^{2}+c_{p}\Vert\nabla w(t)\Vert_{2}^{2}\bigg)\\ &&+\delta\frac{N_{1}}{4}\bigg(\Vert\nabla v(t)\Vert_{2}^{4}+\Vert\nabla w(t)\Vert_{2}^{4}\bigg)+\frac{N_{2}}{2}\bigg(\Vert v_{t}(t)\Vert_{2}^{2}+\Vert w_{t}(t)\Vert_{2}^{2}\bigg)\\ &&+\frac{N_{2}}{2}c_{p}\bigg(C_{\kappa, 1}(g_{1}\circ\nabla v)(t)+C_{\kappa, 2}(g_{2}\circ\nabla w)(t)\bigg) \\ &&+N_{3}\int_{0}^{1}\int_{\tau_{1}}^{\tau_{2}}r e^{-\rho r}\bigg(\vert \beta_{2}(r)\vert. \Vert x(z, \rho, r, t)\Vert_{m}^{m}+\vert \beta_{4}(r)\vert. \Vert y(z, \rho, r, t)\Vert_{m}^{m}\bigg) dr d\rho. \end{eqnarray} | (3.37) |
By the fact e^{-\rho r} < 1 and (2.2), we have the below
\begin{eqnarray} \vert\mathcal{H}(t)-NE(t)\vert&\leq&C(N_{1}, N_{2}, N_{3})E(t) = C_{1}E(t). \end{eqnarray} | (3.38) |
that is
\begin{equation} \left( N-C_{1}\right) E\left( t\right) \leq \mathcal{H}\left( t\right) \leq \left( N+C_{1}\right) E\left( t\right). \end{equation} | (3.39) |
Here, set \kappa = \frac{1}{2N} and take N large enough in a manner that
\begin{eqnarray*} &&N-C_{1} > 0, \quad , \quad \gamma_{0}N-c > 0, \quad \frac{1}{2}N-\frac{1}{2\kappa_{0}} > 0, \quad \kappa = \frac{1}{2N} < \kappa_{0}, \end{eqnarray*} |
we find
\begin{equation} \mathcal{H}^{\prime }\left( t\right) \leq -k_{2}E(t)+\frac{1}{4}(( g_{1}\circ\nabla v)(t)+(g_{2}\circ\nabla w)(t) ) \end{equation} | (3.40) |
for some k_{2} > 0 , and
\begin{equation} c_{5}E\left( t\right) \leq \mathcal{H}\left( t\right) \leq c_{6}E\left( t\right) , \forall t\geq 0 \end{equation} | (3.41) |
for some c_{5}, c_{6} > 0 , we have
\mathcal{H}(t)\sim E(t). |
After that, the below cases are considered:
Case 3.9. G_{i}, i = 1, 2 are linear. Multiplying (3.40) by \zeta_{0}(t) = \min\{\zeta_{1}(t), \zeta_{2}(t)\} , we find
\begin{eqnarray} \zeta_{0}(t)\mathcal{H}^{\prime }\left( t\right) &\leq& -k_{2}\zeta_{0}(t)E(t)+\frac{1}{4}\zeta_{0}(t)(( g_{1}\circ\nabla v)(t)+(g_{2}\circ\nabla w)(t) )\\ &\leq&-k_{2}\zeta_{0}(t)E(t)+\frac{1}{4}\zeta_{1}(t)( g_{1}\circ\nabla v)(t)+\frac{1}{4}\zeta_{2}(t)(g_{2}\circ\nabla w)(t) . \end{eqnarray} | (3.42) |
The last two terms in (3.42), we have
\begin{eqnarray} \frac{\zeta_{1}(t)}{4}(g_{1}\circ\nabla v)(t) & = & \frac{\zeta_{1}(t)}{4}\int_{\Omega}\int_{0}^{\infty}g_{1}(\delta)\vert\nabla\eta^{t}(s)\vert^{2}ds dz \\ & = &\underbrace{ \frac{\zeta_{1}(t)}{4}\int_{\Omega}\int_{0}^{t}g_{1}(s)\vert\nabla\eta^{t}(s)\vert^{2}ds dz}_{I_{1}}\\ &&+\underbrace{ \frac{\zeta_{1}(t)}{4}\int_{\Omega}\int_{t}^{\infty}g_{1}(s)\vert\nabla\eta^{t}(s)\vert^{2}ds dz}_{I_{2}} \end{eqnarray} | (3.43) |
To estimate I_{1} , using (2.11),
\begin{eqnarray} I_{1} &\leq& \frac{1}{4}\int_{\Omega}\int_{0}^{t}\zeta_{1}(s)g_{1}(s)\vert\nabla\eta^{t}(s)\vert^{2}ds dz\\ & = &-\frac{1}{4}\int_{\Omega}\int_{0}^{t}g_{1}'(s)\vert\nabla\eta^{t}(s)\vert^{2}ds dz\\ &\leq&-\frac{1}{2l_{1}}E'(t), \end{eqnarray} | (3.44) |
and by (3.4), we get
\begin{eqnarray} I_{2} &\leq& \frac{\beta}{4}\zeta_{1}(t)\mu(t). \end{eqnarray} | (3.45) |
In the same way, we obtained
\begin{eqnarray} \frac{\zeta_{2}(t)}{4}(g_{2}\circ\nabla w)(t) &\leq&-\frac{1}{2l_{2}}E'(t)+\frac{\widehat{\beta}}{4}\zeta_{2}(t)\widehat{\mu}(t). \end{eqnarray} | (3.46) |
As a result of this, we get
\begin{equation} \zeta_{0}(t)\mathcal{H}^{\prime }\left( t\right) \leq -k_{2}\zeta_{0}(t)E(t)-\frac{1}{\widehat{l}}E'(t)+2\beta_{0} w(t), \end{equation} | (3.47) |
where \beta_{0} = \max\{\frac{\beta}{4}, \frac{\widehat{\beta}}{4}\} and w(t) = \widehat{\zeta}(t)\mu_{0}(t) .
Applying \zeta_{i}'(t)\leq0 , we get
\begin{eqnarray} \mathcal{H}_{1}^{\prime }\left( t\right)\leq-k_{2}\zeta_{0}(t)E(t)+2\beta_{0} w(t), \end{eqnarray} | (3.48) |
with
\mathcal{H}_{1}(t) = \zeta_{0}(t)\mathcal{H}\left( t\right)+\frac{1}{\widehat{l}} E(t)\sim E(t), |
we have
\begin{equation} k_{4}E(t)\leq \mathcal{H}_{1}(t)\leq k_{5}E(t), \end{equation} | (3.49) |
then, the following is obtained from (3.48)
\begin{eqnarray*} k_{2}E(T)\int_{0}^{T}\zeta_{0}(t)dt&\leq&k_{2}\int_{0}^{T}\zeta_{0}(t)E(t)dt\notag\\ &\leq&\mathcal{H}_{1}(0)-\mathcal{H}_{1}(T)+2\beta_{0}\int_{0}^{T}w(t)dt\notag\\ &\leq&\mathcal{H}_{1}(0)+2\beta_{0}\int_{0}^{T}\widehat{\zeta}(t)\mu_{0}(t)dt. \end{eqnarray*} |
Further analysis implies that
\begin{equation*} E(T)\leq\frac{1}{k_{2}}\bigg(\frac{\mathcal{G}_{1}(0)+2\beta_{0} \int_{0}^{T}\widehat{\xi}(t)\mu_{0}(t)dt}{\int_{0}^{T}\xi_{0}(t)dt}\bigg), \end{equation*} |
From the linearity of D , the linearity of the functions D_{2}, D'_{2} and D_{4} can easily be determined. This implies that
\begin{equation} E(T)\leq\lambda_{1}D_{2}^{-1}\bigg(\frac{\frac{\mathcal{H}_{1}(0)}{k_{2}}+\frac{2\beta_{0}}{k_{2}} \int_{0}^{T}\widehat{\zeta}(t)\mu_{0}(t)dt}{\int_{0}^{T}\zeta_{0}(t)dt}\bigg), \end{equation} | (3.50) |
which gives (3.29) with \varsigma_{1} = \lambda_{1} , \varsigma_{2} = \frac{\mathcal{H}_{1}(0)}{k_{2}} , \varsigma_{3} = \frac{2\beta_{0}}{\lambda_{2}k_{2}} , and \varsigma_{4}(t) = Id(t) = t . Hence, the required proof is completed.
Case 3.10. Let H_{i}, i = 1, 2 are nonlinear. Then, with the help of (3.28) and (3.40). Assume the positive functional
\begin{equation*} \mathcal{H}_{2}(t) = \mathcal{H}(t)+F_{1}(t) \end{equation*} |
then for all t\geq 0 and for some k_{3} > 0 , the following holds true
\begin{eqnarray} \mathcal{H}'_{2}(t)&\leq& -k_{3}E(t)+\frac{1}{2}\int_{\Omega}\int_{t}^{\infty}g_{1}(s)(\nabla v(t)-\nabla v(t-s))^{2}ds dz\\ &&+\frac{1}{2}\int_{\Omega}\int_{t}^{\infty}g_{2}(s)(\nabla w(t)-\nabla w(t-s))^{2}ds dz, \end{eqnarray} | (3.51) |
with the help of (3.4), we have
\begin{eqnarray} k_{3}\int_{0}^{t}E(x)dx&\leq& \mathcal{H}_{2}(0)-\mathcal{H}_{2}(t)+\beta_{0}\int_{0}^{t}\mu_{0}(\varsigma)d\varsigma\\ &\leq&\mathcal{H}_{2}(0)+\beta_{0}\int_{0}^{t}\mu_{0}(\varsigma)d\varsigma. \end{eqnarray} | (3.52) |
Therefore
\begin{eqnarray} \int_{0}^{t}E(x)dx&\leq&k_{6}\mu_{1}(t), \end{eqnarray} | (3.53) |
where k_{6} = \max\{\frac{\mathcal{H}_{2}(0)}{k_{3}}, \frac{\beta_{0}}{k_{3}}\} and \mu_{1}(t) = 1+\int_{0}^{t}\mu_{0}(\varsigma)d\varsigma .
Corollary 3.11. The following is obtained from (2.11) and (3.53):
\begin{eqnarray} &&\int_{0}^{t}\int_{\Omega}\vert\nabla v(t)-\nabla v(t-s)\vert^{2}dz ds \\ &&+\int_{0}^{t}\int_{\Omega}\vert\nabla w(t)-\nabla w(t-s)\vert^{2}dz ds \\ &\leq&2\int_{0}^{t}\int_{\Omega}\nabla v^{2}(t)-\nabla v^{2}(t-s)dzds\\ &&+2\int_{0}^{t}\int_{\Omega}\nabla w^{2}(t)-\nabla w^{2}(t-s)dz ds \\ &\leq&\frac{4}{l_{0}}\int_{0}^{t}E(t)-E(t-s)ds \\ &\leq&\frac{8}{l_{0}}\int_{0}^{t}E(x)dx\leq\frac{8k_{6}}{l_{0}}\mu_{1}(t). \end{eqnarray} | (3.54) |
Now, we define \phi_{i}(t), i = 1, 2 by
\begin{eqnarray} \phi_{1}(t)&: = &\mathcal{B}(t)\int_{0}^{t}\int_{\Omega}\vert\nabla v(t)-\nabla v(t-s)\vert^{2}dzds, \\ \phi_{2}(t)&: = &\mathcal{B}(t)\int_{0}^{t}\int_{\Omega}\vert\nabla w(t)-\nabla w(t-s)\vert^{2}dz ds \end{eqnarray} | (3.55) |
where \mathcal{B}(t) = \frac{\mathcal{B}_{0}}{\mu_{1}(t)} and 0 < \mathcal{B}_{0} < \min\{1, \frac{l}{8k_{6}}\} .
Then, by (3.53), we have
\begin{equation} \phi_{i}(t) < 1, \quad \forall t > 0, \quad i = 1, 2 \end{equation} | (3.56) |
Further, we suppose that \phi_{i}(t) > 0, \quad \forall t > 0, \quad i = 1, 2 . In addition to this, we define another functional \Gamma_{1}, \Gamma_{2} by
\begin{eqnarray} \Gamma_{1}(t)&: = &-\int_{0}^{t}g_{1}'(s)\int_{\Omega}\vert\nabla v(t)-\nabla v(t-s)\vert^{2}dz ds, \\ \Gamma_{2}(t)&: = &-\int_{0}^{t}g_{2}'(s)\int_{\Omega}\vert\nabla w(t)-\nabla w(t-s)\vert^{2}dz ds \end{eqnarray} | (3.57) |
Here, obviously \Gamma_{i}(t)\leq -cE'(t), \quad i = 1, 2 . As G_{i}(0) = 0, \quad i = 1, 2 and G_{i}(t) are convex strictly on (0 , \varrho] , then
\begin{equation} G_{i}(\lambda z)\leq\lambda G_{i}(z), \quad 0 < \lambda < 1, \quad z\in(0, \varrho], \quad i = 1, 2. \end{equation} | (3.58) |
Applying (2.3) and (3.56), we get
\begin{eqnarray} \Gamma_{1}(t)& = &\frac{-1}{\mathcal{B}(t) \phi_{1}(t)}\int_{0}^{t} \phi_{1}(t)(g_{1}'(s))\int_{\Omega}\mathcal{B}(t)\vert \nabla v(t)-\nabla v(t-s)\vert^{2}dzds\\ &\geq&\frac{1}{\mathcal{B}(t) \phi_{1}(t)}\int_{0}^{t} \phi_{1}(t)\zeta_{1}(s)G_{1}(g_{1}(s))\int_{\Omega}\mathcal{B}(t)\vert \nabla v(t)-\nabla v(t-s)\vert^{2}dzds\\ &\geq &\frac{\zeta_{1}(t)}{\mathcal{B}(t) \phi_{1}(t)}\int_{0}^{t} G_{1}(\phi_{1}(t)g_{1}(s))\int_{\Omega}\mathcal{B}(t)\vert \nabla v(t)-\nabla v(t-s)\vert^{2}dzds\\ &\geq &\frac{\zeta_{1}(t)}{\mathcal{B}(t) }G_{1}\bigg(\frac{1}{\phi_{1}(t)}\int_{0}^{t} \phi_{1}(t)g_{1}(s)\int_{\Omega}\mathcal{B}(t)\vert \nabla v(t)-\nabla v(t-s)\vert^{2}dzds\bigg)\\ & = &\frac{\zeta_{1}(t)}{\mathcal{B}(t) }G_{1}\bigg(\mathcal{B}(t)\int_{0}^{t} g_{1}(s)\int_{\Omega}\vert\nabla v(t)-\nabla v(t-s)\vert^{2}dzds\bigg)\\ & = &\frac{\zeta_{1}(t)}{\mathcal{B}(t) }\overline{G_{1}}\bigg(\mathcal{B}(t)\int_{0}^{t} g_{1}(s)\int_{\Omega}\vert \nabla v(t)-\nabla v(t-s)\vert^{2}dzds\bigg). \end{eqnarray} | (3.59) |
\begin{eqnarray} \Gamma_{2}(t)&\geq &\frac{\zeta_{2}(t)}{\mathcal{B}(t) }\overline{G_{2}}\bigg(\mathcal{B}(t)\int_{0}^{t} g_{2}(s)\int_{\Omega}\vert \nabla w(t)-\nabla w(t-s)\vert^{2}dzds\bigg). \end{eqnarray} | (3.60) |
Taking the same steps, \overline{G_{i}}, i = 1, 2 are C^{2} -extension of G_{i} that are convex strictly and increasing strictlyon {\bf R}_{+} . From (3.59), we have the following
\begin{eqnarray} \int_{0}^{t} g_{1}(s)\int_{\Omega}\vert\nabla v(t)-\nabla v(t-s)\vert^{2}dzds&\leq&\frac{1}{\mathcal{B}(t)}\overline{G_{1}}^{-1}\bigg(\frac{\mathcal{B}(t) \Gamma_{1}(t)}{\zeta_{1}(t)}\bigg)\\ \int_{0}^{t} g_{2}(s)\int_{\Omega}\vert\nabla w(t)-\nabla w(t-s)\vert^{2}dzds&\leq&\frac{1}{\mathcal{B}(t)}\overline{G_{2}}^{-1}\bigg(\frac{\mathcal{B}(t) \Gamma_{2}(t)}{\zeta_{2}(t)}\bigg). \end{eqnarray} | (3.61) |
Putting (3.61) and (3.4) into (3.40), we have
\begin{eqnarray} \mathcal{H}^{\prime }\left( t\right) &\leq& -k_{2}E(t)+\frac{c}{\mathcal{B}(t)}\overline{G_{1}}^{-1}\bigg(\frac{\mathcal{B}(t) \Gamma_{1}(t)}{\zeta_{1}(t)}\bigg)\\ &&+\frac{c}{\mathcal{B}(t)}\overline{G_{2}}^{-1}\bigg(\frac{\mathcal{B}(t) \Gamma_{2}(t)}{\zeta_{2}(t)}\bigg)+k_{6}\mu_{0}(t) \end{eqnarray} | (3.62) |
Here, introduce \mathcal{K}_{1}(t) for \varepsilon_{0} < r by
\begin{eqnarray} \mathcal{K}_{1}(t) = D^{\prime}\left(\varepsilon_{0} \frac{\mathcal{B}(t)E(t)}{E(0)}\right) \mathcal{H}(t)+E(t), \end{eqnarray} | (3.63) |
in which D' = \min\{G_{1}, G_{2}\} and is equivalent to E(t) . Because of this E^{\prime}(t) \leq 0, \overline{G_{i}}^{\prime} > 0, and \overline{G_{i}}^{\prime \prime} > 0, i = 1, 2 . Also applying (3.62), we obtained that
\begin{eqnarray} \mathcal{K}_{1}^{\prime}(t)& = & \varepsilon_{0}\bigg( \frac{E^{\prime}(t) \mathcal{B}(t)}{E(0)}+\frac{E(t) \mathcal{B}'(t)}{E(0)}\bigg) D^{\prime \prime}\left(\varepsilon_{0} \frac{E(t) \mathcal{B}(t)}{E(0)}\right) \mathcal{H}(t) \\ &&+D^{\prime}\left(\varepsilon_{0} \frac{E(t) \mathcal{B}(t)}{E(0)}\right) \mathcal{H}^{\prime}(t)+E^{\prime}(t) \\ &\leq &-k_{2} E(t) D^{\prime}\left(\varepsilon_{0} \frac{\mathcal{B}(t) E(t)}{E(0)}\right)+k_{6}\mu_{0}(t)D^{\prime}\left(\varepsilon_{0} \frac{\mathcal{B}(t) E(t)}{E(0)}\right) \\ &&\left.+\frac{c}{\mathcal{B}(t)} \overline{G_{1}}^{-1}\left(\frac{\mathcal{B}(t) \Gamma_{1}(t)}{\zeta_{1}(t)}\right)\right) D^{\prime}\left(\varepsilon_{0} \frac{\mathcal{B}(t) E(t)}{E(0)}\right)\\ &&\left.+\frac{c}{\mathcal{B}(t)} \overline{G_{2}}^{-1}\left(\frac{\mathcal{B}(t) \Gamma_{2}(t)}{\zeta_{2}(t)}\right)\right) D^{\prime}\left(\varepsilon_{0} \frac{\mathcal{B}(t) E(t)}{E(0)}\right)+E^{\prime}(t) \end{eqnarray} | (3.64) |
According to [29], we introduce the conjugate function of \overline{G_{i}} by \overline{G_{i}}^{*}, which fulfills
\begin{eqnarray} A B \leq \overline{G_{i}}^{*}\left(A\right)+\overline{G_{i}}\left(B\right), \quad i = 1, 2 \end{eqnarray} | (3.65) |
For A = D^{\prime}\left(\varepsilon_{0}(E(t)\mathcal{B}(t)) /(E(0)))\right) \text { and } B_{i} = \overline{G_{i}}^{-1}((\mathcal{B}(t) \Gamma_{i}(t))/(\zeta_{i}(t))), \quad i = 1, 2 and applying (3.64), we have
\begin{eqnarray} \mathcal{K}_{1}^{\prime}(t) &\leq &-k_{2} E(t) D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)+k_{6}\mu_{0}(t)D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right) \\ &&+\frac{c}{\mathcal{B}(t)} \overline{G_{1}}^{*}\left(D^{\prime}\left(\varepsilon_{0} \frac{ E(t)\mathcal{B}(t)}{E(0)}\right)\right)+\frac{c}{\mathcal{B}(t)} \frac{\mathcal{B}(t) \Gamma_{1}(t)}{\zeta_{1}(t)}\\ &&+\frac{c}{\mathcal{B}(t)} \overline{G_{2}}^{*}\left(D^{\prime}\left(\varepsilon_{0} \frac{ E(t)\mathcal{B}(t)}{E(0)}\right)\right)+\frac{c}{\mathcal{B}(t)} \frac{\mathcal{B}(t) \Gamma_{2}(t)}{\zeta_{2}(t)}+E^{\prime}(t) \\ &\leq &-k_{2} E(t) D^{\prime}\left(\varepsilon_{0} \frac{ E(t)\mathcal{B}(t)}{E(0)}\right)+k_{6}\mu_{0}(t)D^{\prime}\left(\varepsilon_{0} \frac{E(t) \mathcal{B}(t) }{E(0)}\right)\\ &&+\frac{c}{\mathcal{B}(t)}D'\bigg( \varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\bigg) (\overline{G_{1}}^{\prime})^{-1}\bigg[D'\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)\bigg] \\ &&+\frac{c}{\mathcal{B}(t)}D'\bigg( \varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\bigg) (\overline{G_{2}}^{\prime})^{-1}\bigg[D'\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)\bigg]\\ &&+\frac{c \Gamma_{1}(t)}{\zeta{1}(t)} +\frac{c \Gamma_{2}(t)}{\zeta_{2}(t)}. \end{eqnarray} | (3.66) |
Here, we multiply (3.66) by \zeta_{0}(t) and get
\begin{eqnarray} \zeta_{0}(t) \mathcal{K}_{1}^{\prime}(t) &\leq &-k_{2}\zeta_{0}(t) E(t) D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)+k_{6}\zeta_{0}(t)\mu_{0}(t)D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)\\ &&+\frac{2c\zeta_{0}(t)}{\mathcal{B}(t)} \varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)+c \Gamma_{1}(t) +c \Gamma_{2}(t) \\ &\leq &-k_{2}\zeta_{0}(t) E(t) D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)+k_{6}\zeta_{0}(t)\mu_{0}(t)D^{\prime}\left(\varepsilon_{0} \frac{E(t) \mathcal{B}(t) }{E(0)}\right)\\ &&+\frac{2c\zeta_{0}(t)}{\mathcal{B}(t)} \varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)} D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)-c E^{\prime}(t) \end{eqnarray} | (3.67) |
where we utilized the following \varepsilon_{0}(\mathcal{B}(t) E(t) / E(0)) < r , D^{\prime} = \min \{G_{1}, G_{2}\} and \Gamma_{i} < -cE'(t), i = 1, 2 , and define the functional \mathcal{K}_{2}(t) as
\begin{eqnarray} \mathcal{K}_{2}(t) = \zeta_{0}(t) \mathcal{K}_{1}(t)+c E(t) \end{eqnarray} | (3.68) |
Effortlessly, one can prove that \mathcal{K}_{2}(t) \sim E(t) , i.e., one can find two positive constants m_{1} and m_{2} in a manner that
\begin{eqnarray} m_{1} \mathcal{K}_{2}(t) \leq E(t) \leq m_{2} \mathcal{K}_{2}(t), \end{eqnarray} | (3.69) |
then, we have
\begin{eqnarray} \mathcal{K}_{2}^{\prime}(t) &\leq&-\beta_{6} \zeta_{0}(t) \frac{ E(t)}{E(0)} D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)+k_{6}\zeta_{0}(t)\mu_{0}(t)D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)\\ & = &-\beta_{6} \frac{\zeta_{0}(t)}{\mathcal{B}(t)} D_{2}\left(\frac{ E(t) \mathcal{B}(t)}{E(0)}\right)+k_{6}\zeta_{0}(t)\mu_{0}(t)D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right), \end{eqnarray} | (3.70) |
where \beta_{6} = (k_{2}E(0)-2c\varepsilon_{0}) and D_{2}(t) = t D^{\prime}\left(\varepsilon_{0} t\right) .
Choosing \varepsilon_{0} so small such that \beta_{6} > 0 , since D_{2}^{\prime}(t) = D^{\prime}\left(\varepsilon_{0} t\right)+\varepsilon_{0} t D^{\prime \prime}\left(\varepsilon_{0} t\right) . As D_{2}^{\prime}(t), D_{2}(t) > 0 on (0 , 1] and G_{i} on (0 , \varrho] are strictly increasing. Applying Young's inequality (3.65) on the last term in (3.70)
with A = D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right) and B = \frac{k_{6}}{\delta}\mu(t) , we find
\begin{eqnarray} k_{6}\mu_{0}(t)D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)& = &\frac{\sigma}{\mathcal{B}(t)}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg)\bigg(D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)\bigg)\\ & < &\frac{\sigma}{\mathcal{B}(t)}D_{3}^{*}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg)+\frac{\sigma}{\mathcal{B}(t)}D_{3}\bigg(D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)\bigg)\\ & < &\frac{\sigma}{\mathcal{B}(t)}D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg)\\ &&+\frac{\sigma}{\mathcal{B}(t)}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)D^{\prime}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right)\\ & < &\frac{\sigma}{\mathcal{B}(t)}D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg)+\frac{\sigma\varepsilon_{0} }{\mathcal{B}(t)}D_{2}\left(\varepsilon_{0} \frac{ E(t) \mathcal{B}(t)}{E(0)}\right). \end{eqnarray} | (3.71) |
Here, choose \sigma small enough in a manner that \beta_{6}-\sigma\varepsilon_{0} > 0 andcombining (3.70) and (3.71), we have
\begin{eqnarray} \mathcal{K}_{2}^{\prime}(t) &\leq&-\beta_{7} \frac{\zeta_{0}(t)}{\mathcal{B}(t)} D_{2}\left(\frac{ E(t) \mathcal{B}(t)}{E(0)}\right)+\frac{\sigma\zeta_{0}(t)}{\mathcal{B}(t)}D_{4}\bigg(\frac{k_{6}}{\delta}\mathcal{B}(t)\mu_{0}(t)\bigg). \end{eqnarray} | (3.72) |
where \beta_{7} = \beta_{6}-\sigma \varepsilon_{0} > 0 , D_{3}(t) = t D'^{-1}\left(t\right) and D_{4}(t) = \overline{D}_{3}^{*}\left(t\right) .
In light of fact E' < 0 and \mathcal{B}' < 0 , then D_{2}(\frac{E(t) \mathcal{B}(t)}{E(0)}) is decreasing. As a consequences of this, for 0\leq t\leq T , we have
\begin{equation} D_{2}\bigg(\frac{E(T) \mathcal{B}(T)}{E(0)}\bigg) < D_{2}\bigg(\frac{E(t) \mathcal{B}(t)}{E(0)}\bigg). \end{equation} | (3.73) |
In the next step, combine (3.72) with (3.73) and multiply by \mathcal{B}(t) , the following is obtained
\begin{equation} \mathcal{B}(t)\mathcal{K}_{2}^{\prime}(t)+\beta_{7}\zeta_{0}(t) D_{2}\left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right) < \sigma\zeta_{0}(t)D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg). \end{equation} | (3.74) |
Since \mathcal{B}' < 0 , then for any 0 < t < T
\begin{eqnarray} (\mathcal{B}\mathcal{K}_{2})^{\prime}(t)+\beta_{7}\zeta_{0}(t) D_{2}\left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right)& < &\sigma \zeta_{0}(t)D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg)\\ & < &\sigma\widehat{\zeta}(t)D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg). \end{eqnarray} | (3.75) |
Simplify (3.75) over [0, T] and apply \mathcal{B}(0) = 1 , the following is obtained
\begin{equation} D_{2}\left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right)\int_{0}^{T}\zeta_{0}(t)dt < \frac{\mathcal{K}_{2}(0)}{\beta_{7}}+\frac{\sigma}{\beta_{7}}\int_{0}^{T}\widehat{\zeta}(t)D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg)dt. \end{equation} | (3.76) |
Consequently, we have
\begin{equation} D_{2}\left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right) < \frac{\frac{\mathcal{K}_{2}(0)}{\beta_{7}}+\frac{\sigma}{\beta_{7}}\int_{0}^{T}\widehat{\zeta}(t)D_{4}(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t))dt}{\int_{0}^{T}\zeta_{0}(t)dt}. \end{equation} | (3.77) |
As a results of this, we obtain
\begin{equation} \left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right) < D_{2}^{-1}\bigg(\frac{\frac{\mathcal{K}_{2}(0)}{\beta_{7}}+\frac{\sigma}{\beta_{7}}\int_{0}^{T}\widehat{\zeta}(t)D_{4}(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t))dt}{\int_{0}^{T}\zeta_{0}(t)dt}\bigg). \end{equation} | (3.78) |
As a result of this, we get
\begin{equation} E(T) < \frac{ E(0)}{\mathcal{B}(T)}D_{2}^{-1}\bigg(\frac{\frac{\mathcal{K}_{2}(0)}{\beta_{7}}+\frac{\sigma}{\beta_{7}}\int_{0}^{T}\widehat{\zeta}(t)D_{4}(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t))dt}{\int_{0}^{T}\zeta_{0}(t)dt}\bigg). \end{equation} | (3.79) |
where, we have (3.29) with \varsigma_{1} = \frac{ E(0)}{\mathcal{B}(T)} , \varsigma_{2} = \frac{\mathcal{K}_{2}(0)}{\beta_{7}} , \varsigma_{3} = \frac{\sigma}{\beta_{7}} , and \varsigma_{4}(t) = \frac{k_{6}}{\sigma}\mathcal{B}(t) .
Hence, the required result is obtained 3.8.
The purpose of this work was to study when the coupled system of nonlinear viscoelastic wave equations with distributed delay components, infinite memory and Balakrishnan-Taylor damping. Assume the kernels g_{i} :{\bf R}_{+}\rightarrow {\bf R}_{+} holds true the below
g_{i}'(t)\leq-\zeta_{i}(t)G_{i}(g_{i}(t)), \quad \forall t\in {\bf R}_{+}, \quad \text{for} \quad i = 1, 2, |
in which \zeta_{i} and G_{i} are functions. We prove the stability of the system under this highly generic assumptions on the behaviour of g_i at infinity and by dropping the boundedness assumptions in the historical data. This type of problem is frequently found in some mathematical models in applied sciences. Especially in the theory of viscoelasticity. What interests us in this current work is the combination of these terms of damping, which dictates the emergence of these terms in the problem. In the next work, we will try to using the same method with same problem. But in added of other dampings.
The researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project.
The authors declare there is no conflicts of interest.
[1] | G. M. Chaikin, An algorithm for high speed curve generation, Comput. Graphics Image Process., 3 (1974), 346-349. |
[2] | G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx., Springer, Boston, MA, 5 (1989), 49-68. |
[3] | G. de Rham, Sur une courbe plane, J. Math. Pures Appl., 35 (1956), 25-42. |
[4] | N. Dyn, J. A. Gregory, D. Levin, 4-point interpolatory subdivision scheme for curve design, Comput. Aided Geom. Des., 4 (1987), 257-268. |
[5] | N. Dyn, J. A. Gregory, D. Levin, Analysis of uniform binary subdivision scheme for curve design, Constr. Approx., 7 (1991), 127-147. |
[6] | N. Dyn, Analysis of convergence and smoothness by formalism of Laurent polynomials, A. Iske, E. Quak, M. S. Floater, Tutorials on Multiresolution in Geometric Modelling, Eds., Springer, (2002), 51-68 (chapter 3). |
[7] | G. Farin, Curves and surfaces for CAGD: A practical guide, Academic Press, 2002. |
[8] | M. F. Hassan, N. A. Dodgson, Ternary and three-point univariate subdivision schemes, Tec. Rep. No. 520, University of Cambridge Computer Laboratory, 2001. Available from: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-520.pdf. |
[9] | M. F. Hassan, I. P. Ivrissimitzis, N. A. Dodgson, et al. An interpolating 4-point C2 ternary stationary subdivision scheme, Comput. Aided Geom. Des., 19 (2002), 1-18. |
[10] | F. Khan, G. Mustafa, Ternary six-point interpolating subdivision scheme, Lobachevskii J. Math., 29 (2008), 153-163. |
[11] | C. A. Micchelli, H. Prautzch, Uniform refinement of curves, Linear Algebra Appl., 114 (1989), 841-870. |
[12] | G. Mustafa, M. Zahid, Numerical algorithm for analysis of n-ary subdivision schemes, Appl. Appl. Math., 8 (2013), 614-630. |
[13] | G. Mustafa, R. Hameed, D. Baleanu, et al. A class of refinement schemes with two shape control parameters, IEEE ACCESS, 8 (2020), 98316-98329. |
[14] | R. Qu, Recursive subdivision algorithms for curve and surface design, Ph.D Thesis, Department of Mathematics and Statistics, Brunei University, Uxbridge, Middlesex, Britain, 1990. |
[15] | M. Sabin, Analysis and design of univariate subdivision schemes, Geometry and Computing, Springer, ISBN 978-3-642-13647-4, 6 (2010). |
[16] | S. S. Siddiqi, K. Rehan, Modified form of binary and ternary 3-point subdivission schemes, Appl. Math. Comput., 216 (2010), 970-982. |
[17] | H. Zheng, M. Hu, G. Peng, Ternary even symmetric 2n-point subdivision, Int. Conf. Comput. Intell. Software Eng., IEEE, 978 (2009), 4244-4507. |