Research article

Explicit solutions to the Sharma-Tasso-Olver equation

  • Received: 01 May 2020 Accepted: 10 September 2020 Published: 17 September 2020
  • MSC : 35A09, 35E05

  • We present new exact traveling wave solutions of generalized Sharma-Tasso-Olver (STO) with variable coefficients using three different methods, namely the extended F-expansion, the new sub-equations, and generalized Kudryashov expansion. We obtain new solutions with the form of solitons, triangular and rational functions. Computational results indicate that these methods are very useful and easily applicable for solving diverse types of differential equations in nonlinear science.

    Citation: Mohammed Aly Abdou, Loubna Ouahid, Saud Owyed, A. M. Abdel-Baset, Mustafa Inc, Mehmet Ali Akinlar, Yu-Ming Chu. Explicit solutions to the Sharma-Tasso-Olver equation[J]. AIMS Mathematics, 2020, 5(6): 7272-7284. doi: 10.3934/math.2020465

    Related Papers:

  • We present new exact traveling wave solutions of generalized Sharma-Tasso-Olver (STO) with variable coefficients using three different methods, namely the extended F-expansion, the new sub-equations, and generalized Kudryashov expansion. We obtain new solutions with the form of solitons, triangular and rational functions. Computational results indicate that these methods are very useful and easily applicable for solving diverse types of differential equations in nonlinear science.


    加载中


    [1] R. Hirota, Exact solutions of the KdV equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192-1-1192-3. doi: 10.1103/PhysRevLett.27.1192
    [2] M. Wadati, K. Konno, Simple derivation of Bucklund transformation from Riccati form of inverse method, Prog. Theor. Phys., 53 (1975), 1652-1656. doi: 10.1143/PTP.53.1652
    [3] F. Cariello, M. Tabor, Similarity reductions from extended Painlev expansions for nonintegrable evolution equations, Physica D: Nonlinear Phenomena, 53 (2003), 59-70.
    [4] M. J. Abolowitz, P. A. Clarkson, Solitons nonlinear evolution equations and inverse scattering, London: Combridge University Press, 1991.
    [5] M. A. Abdou, A. Elhanbaly, Construction of periodic and solitary wave solutions by the extended Jacobi elliptic function expansion method, Commun. Nonliner. Sci., 12 (2007), 1229-1241. doi: 10.1016/j.cnsns.2006.01.013
    [6] S. A. El-Wakil, M. A. Abdou, A. Elhanbaly, New solitons and periodic wave solutions for nonlinear evolution equations, Phys. Lett. A, 353 (2006), 40-47. doi: 10.1016/j.physleta.2005.12.055
    [7] S. A. El-Wakil, M. A. Abdou, The extended mapping method and its applications for nonlinear evolutions equations, Phys. Lett. A, 358 (2006), 275-282. doi: 10.1016/j.physleta.2006.05.040
    [8] M. A. Abdou, S. Zhang, New periodic wave solution via extended mapping method, Commun. Nonliner. Sci., 14 (2009), 2-11. doi: 10.1016/j.cnsns.2007.06.010
    [9] M. A. Abdou, On the variational iteration method, Phys. Lett. A, 366 (2007), 61-68. doi: 10.1016/j.physleta.2007.01.073
    [10] E. M. Abulwafa, M. A. Abdou, A. A. Mahmoud, The solution of nonlinear coagulation problem with mass loss, Chaos, Solitons Fractals, 29 (2006), 313-330. doi: 10.1016/j.chaos.2005.08.044
    [11] H. Ji-Huan, Some asymptotic methods for strongly nonlinear equations, Int. J. Modern Phys. B, 20 (2006), 1141-1199. doi: 10.1142/S0217979206033796
    [12] H. Ji-Huan, Non perturbative method for strongly nonlinear problems, dissertation, de Verlag im Internet GmbH, Berlin, 2006.
    [13] M. Abdou, A. Elhanbaly, Decomposition method for solving a system of coupled fractional time nonlinear equations, Phys. Scripta, 73 (2006), 338-348. doi: 10.1088/0031-8949/73/4/005
    [14] S. A. El-Wakil, M. A. Abdou, New applications of the homotopy analysis method, Zeitschrift fur Naturforschung, 63 (2008), 1-8.
    [15] S. A. El-Wakil, E. M.Abulwafa, A. Elhanbaly, et al. The extended homogeneous balance method and its applications for a class of nonlinear evolution equations, Chaos, Solitons Fractals, 33 (2007), 1512-1522. doi: 10.1016/j.chaos.2006.03.010
    [16] S. A. El-Wakil, M. A. Abdou, New exact travelling wave solutions using Modified extended tanh function method, Chaos, Solitons Fractals, 31 (2007), 840-852. doi: 10.1016/j.chaos.2005.10.032
    [17] I. Liu, K. Yang, The extended F-expansion method and exact solutions of nonlinear PDEs, Chaos, Solitons Fractals, 22 (2004), 111-121. doi: 10.1016/j.chaos.2003.12.069
    [18] M. A. Abdou, An improved generalized F-expansion method and its applicatuions, J. Comput. Appl. Math., 214 (2008), 202-208. doi: 10.1016/j.cam.2007.02.030
    [19] M. A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos, Solitons Fractals, 31 (2007), 95-104. doi: 10.1016/j.chaos.2005.09.030
    [20] M. A. Abdou, Further improved F-expansion and new exact solutions for nonlinear evolution equations, J. Nonlinear Dynamics, 52 (2007), 277-288.
    [21] H. Ji-Huan, M. A. Abdou, New periodic solutions for nonlinear evolution equations using Exp function method, Chaos, Solitons Fractals, 34 (2007), 1421-1429. doi: 10.1016/j.chaos.2006.05.072
    [22] S. A. El-Wakil, M. A. Abdou, A. Hendi, New periodic wave solutions via Exp-function method, Phys. Lett. A, 372 (2008), 830-840. doi: 10.1016/j.physleta.2007.08.033
    [23] M. A. Abdou, Generalized solitary and periodic solutions for nonlinear partial differential equations by the Exp-function method, J. Nonlinear Dynamics, 52 (2008), 1-9. doi: 10.1007/s11071-007-9250-1
    [24] M. S. Osman, D. Lu, M. M. A. Khater, et al. Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model, Optik, 192 (2019), 162927-1-162927-5. doi: 10.1016/j.ijleo.2019.06.027
    [25] S. Owyed, M. A. Abdou, A. H. Abdel-Aty, et al. New optical soliton solutions of nolinear evolution equation describing nonlinear dispersion, Commun. Theor. Phys., 71 (2019), 1063-1068. doi: 10.1088/0253-6102/71/9/1063
    [26] M. A. Abdou, On the quantum Zakharov Kuznetsov equation, Int. J. Nonlinear Sci., 26 (2018), 89-96.
    [27] S. Owyed, M. A. Abdou, A. H. Abdel-Aty, et al. Optical solitons solutions for perturbed time fractional nonlinear Schrodinger equation via two strategic algorithms, Aims Math., Available from: http://www.aimspress.com/journal/Math,2020, accepted and in press.
    [28] J. J. Yang, S. F. Tian, W. Q. Peng, et al. The N-coupled higher-order nonlinear Schrödinger equation: Riemann-Hilbert problem and multi-soliton solutions, Math. Meth. Appl. Sci., (2019), 1-15.
    [29] W. Q. Peng, S. F. Tian, T. T. Zhang, Initial value problem for the pair transition coupled nonlinear Schrödinger equations via the Riemann-Hilbert method, Complex Analy. Operator Theory, 14 (2020), 1-15. doi: 10.1007/s11785-019-00958-3
    [30] T. Y. Xu, S. F. Tian, W. Q. Peng, Riemann-Hilbert approach for multisoliton solutions of generalized coupled fourth-order nonlinear Schrödinger equations, Math. Meth. Appl. Sci., 43 (2019), 865-880.
    [31] W. Q. Peng, S. F. Tian, X. B. Wang, et al. Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations, J. Geom. Phys., 146 (2019), 103508-1-103508-9. doi: 10.1016/j.geomphys.2019.103508
    [32] S. F. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 100 (2020), 106056-1-106056-7. doi: 10.1016/j.aml.2019.106056
    [33] L. D. Zhang, S. F. Tian, W. Q. Peng, et al. The dynamics of lump, lumpoff and Rogue wave solutions of (2+1)-dimensional Hirota-Satsuma-Ito equations, East Asian J. Appl. Math., 10 (2020), 243-255.
    [34] C. Q. Dai, J. F. Zhang, Controlling effect of vector and scalar crossed double-Ma breathers in a partially nonlocal nonlinear medium with a linear potential, Nonlinear Dyn., 100 (2020), 1621-1628. doi: 10.1007/s11071-020-05603-9
    [35] G. Z. Wu, C. Q. Dai, Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrödinger equation, Appl. Math. Lett., 106 (2020), 106365-1-106365-6. doi: 10.1016/j.aml.2020.106365
    [36] C. Q. Dai, Y. Fan, N. Zhang, Re-observation on localized waves constructed by variable separation solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective Riccati equation method, Appl. Math. Lett., 96 (2019), 20-26. doi: 10.1016/j.aml.2019.04.009
    [37] C. Q. Dai, Y. Fan, Y. Y. Wang, Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric potentials, Nonlinear Dyn., 98 (2019), 489-499. doi: 10.1007/s11071-019-05206-z
    [38] B. H. Wang, P. H. Lu, C. Q. Dai, et al. Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation, Results Phys., 17 (2020), 103036-1-103036-7. doi: 10.1016/j.rinp.2020.103036
    [39] B. Muatjetjeja, S. O. Mbusi, A. R. Adem, Noether symmetries of a generalized coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry, Symmetry, 12 (2020), 1-6.
    [40] B. Muatjetjeja, A. R. Adem, S. Oscar. Mbusi, Traveling wave solutions and conservation laws of a generalized Kudryashov-Sinelshchikov equation, J. Appl. Anal., 25 (2019), 211-217. doi: 10.1515/jaa-2019-0022
    [41] A. R. Adem, B. Muatjetjeja, Conservation laws and exact solutions for a 2D Zakharov-Kuznetsov equation, Appl. Math. Lett., 48 (2015), 109-117. doi: 10.1016/j.aml.2015.03.019
    [42] A. R. Adem, C. M. Khalique, Conserved quantities and solutions of a (2 + 1)-dimensional Haragus-Courcelle-Il'ichev model, Comput. Math. Appl., 71 (2016), 1129-1136. doi: 10.1016/j.camwa.2016.01.021
    [43] C. A Garzon, On exact solutions for a generalized Burgers-Sharma-Tasso-Olver equation with forcing term, Commun. Appl. Analy., 21 (2017), 127-134.
    [44] A. H. Salas, Exact solutions to a generalized sharma-Tasso-Olver equation, Appl. Math. Sci., 5 (2011), 2289-2295.
    [45] S. Owyed, M. A. Abdou, A. H. Abdel-Aty, et al. Numerical and approximate solutions for coupled time fractional nonlinear evolutions equations via reduced differential transform method, Chaos, Solitons Fractals, 131 (2020), 109474.
    [46] M. A. Abdou, A. Soliman, New exact travelling wave solutions for fractal order space time FPDEs descring Transmisssion line, Results Phys., 9 (2018), 1497.
    [47] M. A. Abdou, Fractional reduced differentional transform method and its applications, Int. J. Nonlinear Sci., 26 (2018), 55-64.
    [48] M. A. Abdou, New exact solutions for space-time fractal order nonlinear dynamics of microtubules via the generalized Kudryashov method, Acta (2018), submitted.
    [49] M. A. Abdou, An anylatical approach for space-time fractal order nonlinear dynamics of microtubules, Waves in random media and complex media, Available from: https://doi.org/10.1080/17455030.2018.1517951.
    [50] M. A. Abdou, On the fractional order space-time nonlinear equations arising in plasma physics, Indian J. Phys., 93 (2019), 537-541. doi: 10.1007/s12648-018-1342-x
    [51] M. A. Abdou, A new analytical method for space-time fractional nonlinear differential equations arising in plasma physics, J. Ocean Eng. Sci., 2 (2017), 1-5. doi: 10.1016/j.joes.2016.11.001
    [52] S. Owyed, M. A. Abdou, Abdel-Haleem Abdel-Aty, et al. New optical soliton solutions of nolinear evolution equation describing nonlinear dispersion, Commun. Theor. Phys., 71 (2019), 1063-1068. doi: 10.1088/0253-6102/71/9/1063
    [53] Luu Vu Cam Hoan, S. Owyed, M. Inc, et al. New explicit optical solitons of fractional nonlinear evolution equation via three different methods, Results Phy., (2020), doi: https://doi.org/10.1016/j.rinp.2020.103209.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3409) PDF downloads(155) Cited by(12)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog