Research article

Relation-theoretic fixed point theorems under a new implicit function with applications to ordinary differential equations

  • Received: 19 June 2020 Accepted: 21 August 2020 Published: 01 September 2020
  • MSC : 47H10, 54H25

  • In this paper, we introduce a new implicit function without any continuity requirement and utilize the same to prove unified relation-theoretic fixed point results. We adopt some examples to exhibit the utility of our implicit function. Furthermore, we use our results to derive some multidimensional fixed point results. Finally, as applications of our results, we study the existence and uniqueness of solution for a first-order ordinary differential equations.

    Citation: Waleed M. Alfaqih, Abdullah Aldurayhim, Mohammad Imdad, Atiya Perveen. Relation-theoretic fixed point theorems under a new implicit function with applications to ordinary differential equations[J]. AIMS Mathematics, 2020, 5(6): 6766-6781. doi: 10.3934/math.2020435

    Related Papers:

  • In this paper, we introduce a new implicit function without any continuity requirement and utilize the same to prove unified relation-theoretic fixed point results. We adopt some examples to exhibit the utility of our implicit function. Furthermore, we use our results to derive some multidimensional fixed point results. Finally, as applications of our results, we study the existence and uniqueness of solution for a first-order ordinary differential equations.


    加载中


    [1] A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fix. Point Theory A., 17 (2015), 693-702. doi: 10.1007/s11784-015-0247-y
    [2] A. Alam, M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 31 (2017), 4421-4439. doi: 10.2298/FIL1714421A
    [3] A. Alam, M. Imdad, J. Ali, Unified multi-tupled fixed point theorems involving mixed monotone property in ordered metric spaces, Cogent Mathematics, 3 (2016), 1-50.
    [4] J. Ali, M. Imdad, Unifying a multitude of common fixed point theorems employing an implicit relation, Commun. Korean Math. Soc., 24 (2009), 41-55. doi: 10.4134/CKMS.2009.24.1.041
    [5] A. Aliouche, A. Djoudi, Common fixed point theorems for mappings satisfying an implicit relation without decreasing assumption, Hacet. J. Math. Stat., 36 (2007), 11-18.
    [6] I. Altun, D. Turkoglu, Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, Taiwan. J. Math., 13 (2009), 1291-1304. doi: 10.11650/twjm/1500405509
    [7] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181
    [8] H. Ben-El-Mechaiekh, The Ran-Reurings fixed point theorem without partial order: A simple proof, J. Fix. Point Theory A., 16 (2014), 373-383. doi: 10.1007/s11784-015-0218-3
    [9] V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal-Theor., 74 (2011), 7347-7355. doi: 10.1016/j.na.2011.07.053
    [10] M. Berzig, B. Samet, An extension of coupled fixed points concept in higher dimension and applications, Comput. Math. Appl., 63 (2012), 1319-1334. doi: 10.1016/j.camwa.2012.01.018
    [11] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal-Theor., 65 (2006), 1379-1393. doi: 10.1016/j.na.2005.10.017
    [12] A. F. Roldán-López-de-Hierro, N. Shahzad, Common fixed point theorems under ($\mathcal{R}$,$\mathcal{S}$)-contractivity conditions, Fixed Point Theory A., 55 (2016), 1-25.
    [13] V. Flaška, J. Ježek, T. Kepka, et al. Transitive closures of binary relations. I, Acta Universitatis Carolinae. Mathematica et Physica, 48 (2007), 55-69.
    [14] R. Gubran, M. Imdad, I. A. Khan, et al. Order-theoretic common fixed point results for Fcontractions, Bull. Math. Anal. Appl., 10 (2018), 80-88.
    [15] S. Gülyaz, E. Karapınar, A coupled fixed point result in partially ordered partial metric spaces through implicit function, Hacet. J. Math. Stat., 42 (2013), 347-357.
    [16] M. Imdad, W. M. Alfaqih, A relation-theoretic expansion principle, Acta Univ. Apulensis, 54 (2018), 55-69.
    [17] M. Imdad, Q. H. Khan, W. M. Alfaqih, et al. A relation theoretic (F, $\mathcal{R}$)-contraction principle with applications to matrix equations, Bull. Math. Anal. Appl., 10 (2018), 1-12.
    [18] M. Imdad, S. Kumar, M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Rad. Mat., 11 (2002), 135-143.
    [19] M. A. Kutbi, A. Alam, M. Imdad, Sharpening some core theorems of Nieto and Rodríguez-López with application to boundary value problem, Fixed Point Theory A., 198 (2015), 1-15.
    [20] S. Lipschutz, Theory and Problems of Set Theory and Related Topics, New York, 1964.
    [21] R. Maddux, Relation Algebras, Elsevier Science Limited, 2006.
    [22] F. Moradlou, P. Salimi, S. Radenovic, Implicit relation and Eldestein-Suzuki type fixed point results in cone metric spaces, Applied Mathematics E-Notes, 14 (2014), 1-12.
    [23] M. Mursaleen, S. A. Mohiuddine, R. P. Agarwal, Coupled fixed point theorems for α-ψ-contractive type mappings in partially ordered metric spaces, Fixed Point Theory A., 2012 (2012), 1-11. doi: 10.1186/1687-1812-2012-1
    [24] J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223-239. doi: 10.1007/s11083-005-9018-5
    [25] J. J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin., 23 (2007), 2205-2212 26. V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cerc. St. Ser. Mat. Univ. Bacau, 7 (1997), 127-133. doi: 10.1007/s10114-005-0769-0
    [26] 27. V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Mathematica, 32 (1999), 157-163.
    [27] 28. V. Popa, A general fixed point theorem for weakly compatible mappings in compact metric spaces, Turk. J. Math., 25 (2001), 465-474.
    [28] 29. A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, P. Am. Math. Soc., 132 (2004), 1435-1443.
    [29] 30. K. P. R. Rao, G. V. R. Babu, B. Fisher, Common fixed point theorems in fuzzy metric spaces under implicit relations, Hacet. J. Math. Stat., 37 (2008), 97-106.
    [30] 31. A. Roldán, J. Martínez-Moreno, C. Roldán, Multidimensional fixed point theorems in partially ordered complete metric spaces, J. Math. Anal. Appl., 396 (2012), 536-545. doi: 10.1016/j.jmaa.2012.06.049
    [31] 32. B. Samet, C. Vetro, Coupled fixed point, F-invariant set and fixed point of N-order, Ann. Funct. Anal, 1 (2010), 46-56. doi: 10.15352/afa/1399900586
    [32] 33. B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal-Theor., 75 (2012), 2154-2165. doi: 10.1016/j.na.2011.10.014
    [33] 34. N. Shahzad, A. F. R. L. De Hierro, F. Khojasteh, Some new fixed point theorems under ($\mathcal{A}$,$\mathcal{S}$)-contractivity conditions, RACSAM Rev. R. Acad. A., 111 (2017), 307-324.
    [34] 35. M. Turinici, Abstract comparison principles and multivariable Gronwall-Bellman inequalities, J. Math. Anal. Appl., 117 (1986), 100-127. doi: 10.1016/0022-247X(86)90251-9
    [35] 36. M. Turinici, Ran-Reurings fixed point results in ordered metric spaces, Libertas Mathematica, 31 (2011), 49-56.
    [36] 37. M. Turinici, Linear contractions in product ordered metric spaces, Ann. Univ. Ferrara, 59 (2013), 187-198. doi: 10.1007/s11565-012-0164-6
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3077) PDF downloads(109) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog