Citation: Waleed M. Alfaqih, Abdullah Aldurayhim, Mohammad Imdad, Atiya Perveen. Relation-theoretic fixed point theorems under a new implicit function with applications to ordinary differential equations[J]. AIMS Mathematics, 2020, 5(6): 6766-6781. doi: 10.3934/math.2020435
[1] | A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fix. Point Theory A., 17 (2015), 693-702. doi: 10.1007/s11784-015-0247-y |
[2] | A. Alam, M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 31 (2017), 4421-4439. doi: 10.2298/FIL1714421A |
[3] | A. Alam, M. Imdad, J. Ali, Unified multi-tupled fixed point theorems involving mixed monotone property in ordered metric spaces, Cogent Mathematics, 3 (2016), 1-50. |
[4] | J. Ali, M. Imdad, Unifying a multitude of common fixed point theorems employing an implicit relation, Commun. Korean Math. Soc., 24 (2009), 41-55. doi: 10.4134/CKMS.2009.24.1.041 |
[5] | A. Aliouche, A. Djoudi, Common fixed point theorems for mappings satisfying an implicit relation without decreasing assumption, Hacet. J. Math. Stat., 36 (2007), 11-18. |
[6] | I. Altun, D. Turkoglu, Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, Taiwan. J. Math., 13 (2009), 1291-1304. doi: 10.11650/twjm/1500405509 |
[7] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181 |
[8] | H. Ben-El-Mechaiekh, The Ran-Reurings fixed point theorem without partial order: A simple proof, J. Fix. Point Theory A., 16 (2014), 373-383. doi: 10.1007/s11784-015-0218-3 |
[9] | V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal-Theor., 74 (2011), 7347-7355. doi: 10.1016/j.na.2011.07.053 |
[10] | M. Berzig, B. Samet, An extension of coupled fixed points concept in higher dimension and applications, Comput. Math. Appl., 63 (2012), 1319-1334. doi: 10.1016/j.camwa.2012.01.018 |
[11] | T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal-Theor., 65 (2006), 1379-1393. doi: 10.1016/j.na.2005.10.017 |
[12] | A. F. Roldán-López-de-Hierro, N. Shahzad, Common fixed point theorems under ($\mathcal{R}$,$\mathcal{S}$)-contractivity conditions, Fixed Point Theory A., 55 (2016), 1-25. |
[13] | V. Flaška, J. Ježek, T. Kepka, et al. Transitive closures of binary relations. I, Acta Universitatis Carolinae. Mathematica et Physica, 48 (2007), 55-69. |
[14] | R. Gubran, M. Imdad, I. A. Khan, et al. Order-theoretic common fixed point results for Fcontractions, Bull. Math. Anal. Appl., 10 (2018), 80-88. |
[15] | S. Gülyaz, E. Karapınar, A coupled fixed point result in partially ordered partial metric spaces through implicit function, Hacet. J. Math. Stat., 42 (2013), 347-357. |
[16] | M. Imdad, W. M. Alfaqih, A relation-theoretic expansion principle, Acta Univ. Apulensis, 54 (2018), 55-69. |
[17] | M. Imdad, Q. H. Khan, W. M. Alfaqih, et al. A relation theoretic (F, $\mathcal{R}$)-contraction principle with applications to matrix equations, Bull. Math. Anal. Appl., 10 (2018), 1-12. |
[18] | M. Imdad, S. Kumar, M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Rad. Mat., 11 (2002), 135-143. |
[19] | M. A. Kutbi, A. Alam, M. Imdad, Sharpening some core theorems of Nieto and Rodríguez-López with application to boundary value problem, Fixed Point Theory A., 198 (2015), 1-15. |
[20] | S. Lipschutz, Theory and Problems of Set Theory and Related Topics, New York, 1964. |
[21] | R. Maddux, Relation Algebras, Elsevier Science Limited, 2006. |
[22] | F. Moradlou, P. Salimi, S. Radenovic, Implicit relation and Eldestein-Suzuki type fixed point results in cone metric spaces, Applied Mathematics E-Notes, 14 (2014), 1-12. |
[23] | M. Mursaleen, S. A. Mohiuddine, R. P. Agarwal, Coupled fixed point theorems for α-ψ-contractive type mappings in partially ordered metric spaces, Fixed Point Theory A., 2012 (2012), 1-11. doi: 10.1186/1687-1812-2012-1 |
[24] | J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223-239. doi: 10.1007/s11083-005-9018-5 |
[25] | J. J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin., 23 (2007), 2205-2212 26. V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cerc. St. Ser. Mat. Univ. Bacau, 7 (1997), 127-133. doi: 10.1007/s10114-005-0769-0 |
[26] | 27. V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Mathematica, 32 (1999), 157-163. |
[27] | 28. V. Popa, A general fixed point theorem for weakly compatible mappings in compact metric spaces, Turk. J. Math., 25 (2001), 465-474. |
[28] | 29. A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, P. Am. Math. Soc., 132 (2004), 1435-1443. |
[29] | 30. K. P. R. Rao, G. V. R. Babu, B. Fisher, Common fixed point theorems in fuzzy metric spaces under implicit relations, Hacet. J. Math. Stat., 37 (2008), 97-106. |
[30] | 31. A. Roldán, J. Martínez-Moreno, C. Roldán, Multidimensional fixed point theorems in partially ordered complete metric spaces, J. Math. Anal. Appl., 396 (2012), 536-545. doi: 10.1016/j.jmaa.2012.06.049 |
[31] | 32. B. Samet, C. Vetro, Coupled fixed point, F-invariant set and fixed point of N-order, Ann. Funct. Anal, 1 (2010), 46-56. doi: 10.15352/afa/1399900586 |
[32] | 33. B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal-Theor., 75 (2012), 2154-2165. doi: 10.1016/j.na.2011.10.014 |
[33] | 34. N. Shahzad, A. F. R. L. De Hierro, F. Khojasteh, Some new fixed point theorems under ($\mathcal{A}$,$\mathcal{S}$)-contractivity conditions, RACSAM Rev. R. Acad. A., 111 (2017), 307-324. |
[34] | 35. M. Turinici, Abstract comparison principles and multivariable Gronwall-Bellman inequalities, J. Math. Anal. Appl., 117 (1986), 100-127. doi: 10.1016/0022-247X(86)90251-9 |
[35] | 36. M. Turinici, Ran-Reurings fixed point results in ordered metric spaces, Libertas Mathematica, 31 (2011), 49-56. |
[36] | 37. M. Turinici, Linear contractions in product ordered metric spaces, Ann. Univ. Ferrara, 59 (2013), 187-198. doi: 10.1007/s11565-012-0164-6 |