Citation: Hsien-Chung Wu. Numerical method for solving the continuous-time linear programming problems with time-dependent matrices and piecewise continuous functions[J]. AIMS Mathematics, 2020, 5(6): 5572-5627. doi: 10.3934/math.2020358
[1] | E. J. Anderson, P. Nash and A. F. Perold, Some properties of a class of continuous linear programs, SIAM J. Control Optim., 21 (1983), 758-765. doi: 10.1137/0321046 |
[2] | E. J. Anderson and A. B. Philpott, On the solutions of a class of continuous linear programs, SIAM J. Control Optimi., 32 (1994), 1289-1296. doi: 10.1137/S0363012992227216 |
[3] | E. J. Anderson and M. C. Pullan, Purification for separated continuous linear programs, Math. Methods Oper. Res., 43 (1996), 9-33. doi: 10.1007/BF01303432 |
[4] | R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, 1957. |
[5] | R. N. Buie and J. Abrham, Numerical solutions to continuous linear programming problems, Math. Methods Oper. Res., 17 (1973), 107-117. doi: 10.1007/BF01956855 |
[6] | W. H. Farr, M. A. Hanson, Continuous Time Programming with Nonlinear Constraints, J. Math. Anal. Appl., 45 (1974), 96-115. doi: 10.1016/0022-247X(74)90124-3 |
[7] | W. H. Farr, M. A. Hanson, Continuous Time Programming with Nonlinear Time-Delayed Constraints, J. Math. Anal. Appl., 46 (1974), 41-61. doi: 10.1016/0022-247X(74)90280-7 |
[8] | L. Fleischer and J. Sethuraman, Efficient algorithms for separated continuous linear programs: the multicommodity flow problem with holding costs and extensions, Math. Oper. Res., 30 (2005), 916-938. doi: 10.1287/moor.1050.0166 |
[9] | R. C. Grinold, Continuous Programming Part One: Linear Objectives, J. Math. Anal. Appl., 28 (1969), 32-51. doi: 10.1016/0022-247X(69)90106-1 |
[10] | R. C. Grinold, Continuous Programming Part Two: Nonlinear Objectives, J. Math. Anal. Appl., 27 (1969), 639-655. doi: 10.1016/0022-247X(69)90143-7 |
[11] | M. A. Hanson and B. Mond, A Class of Continuous Convex Programming Problems, J. Math. Anal. Appl., 22 (1968), 427-437. doi: 10.1016/0022-247X(68)90184-4 |
[12] | N. Levinson, A class of continuous linear programming problems, J. Math. Anal. Appl., 16 (1966), 73-83. doi: 10.1016/0022-247X(66)90187-9 |
[13] | R. Meidan and A. F. Perold, Optimality conditions and strong duality in abstract and continuoustime linear programming, J. Optimiz. Theory App., 40 (1983), 61-77. doi: 10.1007/BF00934631 |
[14] | S. Nobakhtian, M. R. Pouryayevali, Optimality Criteria for Nonsmooth Continuous-Time Problems of Multiobjective Optimization, J. Optimiz. Theory App., 136 (2008), 69-76. doi: 10.1007/s10957-007-9302-1 |
[15] | S. Nobakhtian, M. R. Pouryayevali, Duality for Nonsmooth Continuous-Time Problems of Vector Optimization, J. Optimiz. Theory App., 136 (2008), 77-85. doi: 10.1007/s10957-007-9301-2 |
[16] | N. S. Papageorgiou, A class of infinite dimensional linear programming problems, J. Math. Anal. Appl., 87 (1982), 228-245. doi: 10.1016/0022-247X(82)90163-9 |
[17] | M. C. Pullan, An algorithm for a class of continuous linear programs, SIAM J. Control Optim., 31 (1993), 1558-1577. doi: 10.1137/0331073 |
[18] | M. C. Pullan, Forms of optimal solutions for separated continuous linear programs, SIAM J. Control Optim., 33 (1995), 1952-1977. doi: 10.1137/S0363012993247858 |
[19] | M.C. Pullan, A duality theory for separated continuous linear programs, SIAM J. Control Optim., 34 (1996), 931-965. doi: 10.1137/S0363012993257507 |
[20] | M. C. Pullan, Convergence of a general class of algorithms for separated continuous linear programs, SIAM J. Optimiz., 10 (2000), 722-731. doi: 10.1137/S1052623494278827 |
[21] | M. C. Pullan, An extended algorithm for separated continuous linear programs, Math. Program., 93 (2002), 415-451. doi: 10.1007/s10107-002-0307-0 |
[22] | T. W. Reiland, Optimality Conditions and Duality in Continuous Programming I: Convex Programs and a Theorem of the Alternative, J. Math. Anal. Appl., 77 (1980), 297-325. doi: 10.1016/0022-247X(80)90278-4 |
[23] | T. W. Reiland, Optimality Conditions and Duality in Continuous Programming II: The Linear Problem Revisited, J. Math. Anal. Appl., 77 (1980), 329-343. doi: 10.1016/0022-247X(80)90230-9 |
[24] | T. W. Reiland, M. A. Hanson, Generalized Kuhn-Tucker Conditions and Duality for Continuous Nonlinear Programming Problems, J. Math. Anal. Appl., 74 (1980), 578-598. doi: 10.1016/0022-247X(80)90149-3 |
[25] | F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar Publishing Co., New York, 1955. |
[26] | M. A. Rojas-Medar, J. V. Brandao, G. N. Silva, Nonsmooth Continuous-Time Optimization Problems: Sufficient Conditions, J. Math. Anal. Appl., 227 (1998), 305-318. doi: 10.1006/jmaa.1998.6024 |
[27] | M. Schechter, Duality in continuous linear programming, J. Math. Anal. Appl., 37 (1972), 130-141. doi: 10.1016/0022-247X(72)90262-4 |
[28] | E. Shindin, G. Weiss, Structure of Solutions for Continuous Linear Programs with Constant Coefficients, SIAM J. Optimiz., 25 (2015), 1276-1297. doi: 10.1137/140971725 |
[29] | C. Singh, A Sufficient Optimality Criterion in Continuous Time Programming for Generalized Convex Functions, J. Math. Anal. Appl., 62 (1978), 506-511. doi: 10.1016/0022-247X(78)90143-9 |
[30] | C. Singh, W. H. Farr, Saddle-Point Optimality Criteria of Continuous Time Programming without Differentiability, J. Math. Anal. Appl., 59 (1977), 442-453. doi: 10.1016/0022-247X(77)90072-5 |
[31] | W. F. Tyndall, A duality theorem for a class of continuous linear programming problems, SIAM J. Appl. Math., 15 (1965), 644-666. |
[32] | W. F. Tyndall, An extended duality theorem for continuous linear programming problems, SIAM J. Appl. Math., 15 (1967), 1294-1298. doi: 10.1137/0115112 |
[33] | X. Q. Wang, S. Zhang, D. D. Yao, Separated Continuous Conic Programming: Strong Duality and an Approximation Algorithm, SIAM J. Control Optim., 48 (2009), 2118-2138. doi: 10.1137/060650532 |
[34] | G. Weiss, A simplex based algorithm to solve separated continuous linear programs, Math. Program., 115 (2008), 151-198. doi: 10.1007/s10107-008-0217-x |
[35] | C.-F. Wen, H.-C. Wu, Using the Dinkelbach-Type Algorithm to Solve the Continuous-Time Linear Fractional Programming Problems, J. Global Optim., 49 (2011), 237-263. doi: 10.1007/s10898-010-9542-8 |
[36] | C.-F. Wen, H.-C. Wu, Using the Parametric Approach to Solve the Continuous-Time Linear Fractional Max-Min Problems, J. Global Optim., 54 (2012), 129-153. doi: 10.1007/s10898-011-9751-9 |
[37] | C.-F. Wen, H.-C. Wu, The Approximate Solutions and Duality Theorems for the Continuous-Time Linear Fractional Programming Problems, Numer. Func. Anal. Opt., 33 (2012), 80-129. doi: 10.1080/01630563.2011.629312 |
[38] | H.-C. Wu, Solving the Continuous-Time Linear Programming Problems Based on the Piecewise Continuous Functions, Numer. Func. Anal. Opt., 37 (2016), 1168-1201. doi: 10.1080/01630563.2016.1193517 |
[39] | G. J. Zalmai, Duality for a Class of Continuous-Time Homogeneous Fractional Programming Problems, Zeitschrift für Operations Research, 30 (1986), A43-A48. |
[40] | G. J. Zalmai, Duality for a Class of Continuous-Time Fractional Programming Problems, Utilitas Mathematica, 31 (1987), 209-218. |
[41] | G. J. Zalmai, Optimality Conditions and Duality for a Class of Continuous-Time Generalized Fractional Programming Problems, J. Math. Anal. Appl., 153 (1990), 365-371. |
[42] | G. J. Zalmai, Optimality Conditions and Duality models for a Class of Nonsmooth Constrained Fractional Optimal Control Problems, J. Math. Anal. Appl., 210 (1997), 114-149. doi: 10.1006/jmaa.1997.5377 |