Citation: Chang Wan, Zehui Shao, Nasrin Dehgardi, Rana Khoeilar, Marzieh Soroudi, Asfand Fahad. Mixed domination and 2-independence in trees[J]. AIMS Mathematics, 2020, 5(6): 5564-5571. doi: 10.3934/math.2020357
[1] | J. Amjadi, M. Valinavaz, Relating total double Roman domination to 2-independence in trees, Acta Math. Univ. Comenianae, 2020, 1-9. |
[2] | Y. Alavi, M. Behzad, L. Lesniak, et al. Total matchings and total coverings of graphs, J. Graph Theor., 1 (1977), 135-140. doi: 10.1002/jgt.3190010209 |
[3] | Y. Alavi, J. Q. Liu, J. F. Wang, et al. On total covers of graphs, Discrete Math., 100 (1992), 229-233. doi: 10.1016/0012-365X(92)90643-T |
[4] | J. Amjadi, S. M. Sheikholeslami, M. Valinavaz, et al. Independent Roman domination and 2- independence in trees, Discrete Mathematics, Algorithms and Applications, 10 (2018), 1850052. |
[5] | N. Dehgardi, S. M. Sheikholeslami, M. Valinavaz, et al. Domination number, independent domination number and 2-independence number in trees, Discuss. Math. Graph T., 2018, 1-11. |
[6] | Y. Caro, A. Hansberg, New approach to the k-independence number of a graph, Electron. J. Comb., 20 (2013), 1-17. |
[7] | Y. Caro, Z. Tuza, Improved lower bounds on k-independence, J. Graph Theor., 15 (1991), 99-107. doi: 10.1002/jgt.3190150110 |
[8] | M. Chellali, O. Favaron, A. Hansberg, et al. k-domination and k-independence in graphs: A survey, Graph. Combinator., 28 (2012), 1-55. |
[9] | M. Chellali, N. Meddah, Trees with equal 2-domination and 2-independence numbers, Discuss. Math. Graph T., 32 (2012), 263-270. doi: 10.7151/dmgt.1603 |
[10] | N. Dehgardi, Mixed Roman domination and 2-independence in trees, Communications in Combinatorics and Optimization, 3 (2018), 79-91. |
[11] | O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence, J. Combin. Theory, B, 39 (1985), 101-102. doi: 10.1016/0095-8956(85)90040-1 |
[12] | J. F. Fink, M. S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, In: Graph Theory with Applications to Algorithms and Computer Science, John Wiley & Sons, Inc., 1985, 301-311. |
[13] | S. Kogan, New results on k-independence of graphs, Electron. J. Comb., 24 (2017), 2-15. |
[14] | P. Hatami, An approximation algorithm for the total covering problem, Discuss. Math. Graph Theory, 27 (2007), 553-558. doi: 10.7151/dmgt.1380 |
[15] | J. K. Lan, G. J. Chang, On the mixed domination problem in graphs, Theor. Comput. Sci., 467 (2013), 84-93. |
[16] | N. Meddah, M. Chellali, Roman domination and 2-independence in trees, Discrete Mathematics, Algorithms and Applications, 9 (2017), 1-6. |
[17] | D. F. Manlove, On the algorithmic complexity of twelve covering and independence parameters of graphs, Discrete Appl. Math., 91 (1999), 155-175. doi: 10.1016/S0166-218X(98)00147-4 |
[18] | E. Nordhaus, Generalizations of graphical parameters, in: Theory and Applications of Graphs, 1978. |
[19] | D. B. West, Introduction to Graph Theory (Second Edition), Prentice Hall, USA, (2001). |
[20] | Y. Zhao, L. Kang, M. Y. Sohn, The algorithmic complexity of mixed domination in graphs, Theor. Comput. Sci., 412 (2011), 2387-2392. doi: 10.1016/j.tcs.2011.01.029 |
[21] | E. Zhu, C. Liu, On the semitotal domination number of line graphs, Discrete Appl. Math., 254 (2019), 295-298. doi: 10.1016/j.dam.2018.06.010 |
[22] | E. Zhu, C. Liu, F. Deng, et al. On upper total domination versus upper domination in graphs, Graph. Combinator., 35 (2019), 767-778. doi: 10.1007/s00373-019-02029-y |
[23] | E. Zhu, Z. Shao, J. Xu, Semitotal domination in claw-free cubic graphs, Graph. Combinator., 33 (2017), 1119-1130. doi: 10.1007/s00373-017-1826-z |