Citation: Clement Manga, Alioune Coulibaly, Alassane Diedhiou. On some stochastic differential equations with jumps subject to small positives coefficients[J]. AIMS Mathematics, 2019, 4(5): 1369-1385. doi: 10.3934/math.2019.5.1369
[1] | P. Baldi, Large deviations for diffusions processes with homogenization applications, Ann. Probab., 19 (1991), 509–524. |
[2] | P. H. Baxendale, D. W. Stoock, Large deviations and stochastic flows of diffeomorphisms, Probab. Th. Rel. Fields, 80 (1988), 169–215. |
[3] | D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2009. |
[4] | C. Manga, A. Coulibaly, A. Diedhiou, On jumps stochastic evolution equations with application of homogenization and large deviations, J. Math. Res., 11 (2019), 125–134. |
[5] | A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Boston: Jones and Bartlett, 1998. |
[6] | J. Feng, T. G. Kurtz, Large Deviations for Stochastic Processes, Providence: American Mathematical Society, 2006. |
[7] | J. Kueibs, W. V. Li, W. Linde, The gaussian measure of shifted balls, Probab. Th. Rel. Fields, 98 (1994), 143–162. |
[8] | M. I. Freidlin, Functional Integration and Partial Differential Equations, Princeton: Princeton University Press, 1985. |
[9] | M. I. Freidlin, R. B. Sowers, A comparison of homogenization and large deviations, with applications to wavefront propagation, Stoch. Proc. Appl., 82 (1999), 23–52. |
[10] | N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Elsevier, 2014. |
[11] | E. Pardoux, Yu. Veretennikov, On the Poisson equation and diffusion approximation, I. Ann. Probab., 29 (2001), 1061–1085. |
[12] | M. Röckner, T. Zhang, Stochastic evolution equations of jump type: Existence, uniqueness and large deviation principles, T. Potential Anal., 26 (2007), 255–279. |
[13] | S. R. S. Varadhan, Large Deviations and Applications, Philadelphia: Society for Industrial and Applied Mathematics, 1984. |
[14] | A. W. van der Vaart, J. H. van Zanten, Rates of contraction of posterior distributions based on Gaussian process priors, Ann. Statist., 36 (2008), 1435–1463. |
[15] | H. Y. Zhao, S. Y. Xu, Freidlin-Wentzell's large deviations for stochastic evolution equations with Poisson jumps, Adv. Pure Math., 6 (2016), 676–694. |