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1. Introduction

Specially, let us consider € (viscosity coefficient) and ¢, (scaling parameter, written as a function of
€) both be non-negatives, such that

e
H.1 lim—:=y (yeR}).
>0 &

Our concern is the following d-dimensional stochastic differential equations (SDE) :

t Xx,s,ég t Xx,s,ég t Xx,s,ég
X520 _ x = \/Ef o[ =—]dw, + if b(= ds+f c|=—|ds+ L%, xeR?, (1.1)
0 & (55 0 58 0 (55

)
where {W, : ¢ > 0} is a d-dimensional standard Brownian motion and L% := {Lf"sf > O} is a
Poisson point process with continuous compensator, independent of W, both defined on a given
filtered probability space (QQ, 7, P, F) with F := {F, : ¢ > 0} being the P-completion of the filtration
¥ . More precisely, we assume that L*% takes the form:

1 Xx,s,(ig _
L5 f f k( - ,y)(stl(de)’)—V(d)’)dS)’ (>0 (1.2)
0 JRY (8
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where k is a given predictable function (see [10], Chap. IV Sect. 9), and N is a Poisson random
counting measure on R? with mean Lévy measure (or intensity measure) v. The coefficients b, c, o are
subject to suitable conditions.

The family of equation (1.1) subject to a combination effect of homogenization and large deviations,
is a classical problem which goes back to Paolo Baldi [1] at the end of 20’th century. Such a problem,
when Lf’ég = 0, has been extensively investigated by Freidlin and Sowers [9]. They have shown
three classical regimes depending on the relative rate at which the small viscosity coefficient € and
the scaling parameter J, tend to zero. They have provided some effective rate functions associated to
a large deviation principle (LDP) for SDE which have been used as direct applications to wavefront
propagation. Recently, we have focused the problem (1.1) in the sense that homogenization dominates
(see [4]), at the same time, we have provided lower and upper bounds of LDP for SDE which allows
jumps processes. The purpose of the present article is to carry out the program outlined in [4] regarding
the following case: The small coefficients (¢ and d,) go at the same rate, which is technically more
difficult. Indeed, in this case, the logarithm moment generating function of X;’g"si noted g7 . below,
may not have an explicit value limit. Thanks to Baxendale and Stroock [2], we overcome this challenge
by using the superior and inferior limits of the function g7. ..

Definition 1. Let X** be a R%-valued random variable and let P, s denote its distribution on the Borel
subsets of R, that is, P,5(A) = P (X""S‘S € A). The family {X“"S; £,0> O} satisfies an LDP if there
exists a lower semi-continuous function I : RY —s [0, +o0] such that

e for each open set A C R? liminf £log P (Xx"g"sg € A) > — in£ I(x),
XE.

=0
e for each closed set B C R? lim sup £log P (Xx’g’és € B) < - in£ I(x).
-0 xe

I is called the rate function for the LDP. A rate function is good if for each a € R, {x: I(x) < a} is
compact.

Our program will be as follows. In Section (2) we set up some notation, make precisely our
hypothesis and state the main result. In Section (3) we give an overview of some existing
characterizations of large deviations, comparing them with ours, and we give the outline of the proofs.

Finally, we wish to say that the subject related to this topic, besides those of the references
mentioned earlier can be found in [12, 15] and references therein.

2. Preliminaries

2.1. Notations and formulation

Denote expectation with respect to P by E and the gradient operator by V. We have already defined
(., .y as the standard Euclidean inner product on R?, and ||.|| as the associated norm. Let C, (Rd , Rd) be
the collection of continuous mapping from R into RY which are periodic of period 1 in each
coordinate of the argument and let ”.”CP(Rd’Rd) be the associated sup norm. Let T be the
d-dimensional torus of size 1, and let ||.||C(Td,Rd) be the standard sup norm on C (T", Rd), the space of
continuous mapping from T¢ into RY. Also we define P(Td) as the collection of all probability
measure on T¢.
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The {0 : 1 <i<d}in(l.1)are assumed to be in C, (R",Rd), and we also assume that

d

= inf {Z O,0:(x)*: xeRL0eR || = 1} > 0. 2.1)
i=1

We assume that b, ¢ in (1.1) are in C), (Rd, Rd).

We now turn our attention to the Poisson part. We first consider a Poisson random measure N & (..
on [0, T)xR¢ defined on the space probability (Q, ¥, P), with Lévy measure £™'v such that the standard
integrability condition holds:

f (1 A yP) v(dy) < +oo. (2.2)
RA\{0}

The compensator of &N is thus the deterministic measure eN® (dtdy) := dtv(dy) on [0,T) x R? . In
this paper we shall be interested in Poisson point process of class (QL), namely a point process whose
counting measure has continuous compensator (see Ikeda and Watanabe [10]). More precisely, in light
of the representation theorem of the Poisson point process ( [10], Chap. II, Theorem 7.4), we shall
assume that L#% is a pure jump process of the following form :

85 f f ( ,y) (s) (SNS (dsdy) — v(dy)ds) t>0,
R4\{0 s

where k is C, (Rd x R4, R") with respect to first variable, integrable with respect to dtdy, so that the
counting measure of L%, denoted by N (dtdy) takes the form :

Npes: ((0,1] X A) == f f 1A( ( ,y) (s))st (dsdy) = ) Lyueireq) (2.3)
R4

0<s<t

and its compensator is therefore Njeo (dtdy) = k((S , y) ($)E [Npes: (dtdy)] = k( , y) (s)v(dy)dt, and

hence continuous, i.e., %% has continuous statistic.
The Markov processes X*% that we consider include jump processes and diffusion. Next let’s write
down its generator on twice continuously differentiable functions with compact support by

8 p(x) x\0p(x) 5 [ x)0s(x)
Los.¢(x): ZZ u( )(9x8xj_+ 8;[71'(5—8) o, +;Ci(a) o,

hil - (2.4)

d
+1f ¢(x+8k( )) Pd(x) — 8Zk(x )a¢(x)]v(dy) x e R4,
E Jrd

=
where the matrix a := (ai j) is factored as a := 00, and * denotes the transpose. We set

L, = 2Z:al](x) +Zb(x)—+)/Zc,(x)—, x e R4, (2.5

i,j=1

and require the followings :
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(Global Lipshitz) there exists a constant C; such that for any ¢ := 0;,b,c, 1 <i<d, and k:

i) 1€(x") = Lol + fRd Ik(x', y) = k(e nIIv(dy) < Cy lIX' = xll,  ¥x',x € R,
H.2 (Growth) there exists constant C, such that for any ¢ := 0, b,¢, 1 <i<d, and k:

i) I + fR ke IP V(x) < Co (1 +IP). Ve R

By requirement there exists a £L,-diffusion with jumps on R? and by periodicity assumption on the
coeflicients such a process induces process X which has both a diffusion component and a jump
component on the d-dimensional torus T¢, moreover the £,-diffusion-part process is ergodic. We

denote by my its unique invariant measure. To move the SDE (1.1) to the torus T¢, we define the

1
pull-back X —X**%  which satisfies the SDE :
(5 (6 / 8) t

—e, ! —e,6:,\ —¢ ! £,0, 5 ! —&,0, —&,0¢
XX f o-(XSé‘)dWS +f b(X ’ )ds+ —f C(Xsé’)ds+Lt5', 2.6)
O 0 0 € Jo

—.  +F

W, = 6_8W(58 / \/E)zt 1s Brownian motion

—eds ! —eds 5.\
oo 2 f f k(xsf | y)(N«ss/sf (dsdy)—(—) v(dy)ds), t>0.
65 0 R4 E

. . . ey . . . &0
The infinitesimal generator L s_ of the diffusion component associated to the process X" s

where

Loy, : 2Za,,(x) +Zb(x)—+—z (x)—, xeT, 2.7)

i,j=1

This generator tends to £, defined in (2.5), as € — 0.

2.2. Usual formulas

The proof of the main Theorem 4 (below) relies on explicit calculation of the logarithm moments
of X*% and the followings Girsanov’s formula and It6’s formula. Before proceeding, let us introduce
some space.

For E locally compact, let H*(T, 1) be the linear space of all equivalence classes of mappings
F :[0,T] x E X Q — R which coincide almost everywhere with respect to dt ® dA ® dP and which
satisfy the following conditions :

e F is predictable;

T
.f f E(lF(t,Z)|2)dt/l(dz)<+oo.
0 EN{0}

T
We endow H*(T, A) with the inner product (F,G);, := f f E(F (t, 2)G(t, z))dt/l(dz). Then, it is
0 E\{0}
well know that (7—( 2(T, ;4. T, 1) is a real separable Hilbert space.
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Let N, be a Poisson random measure on R, X (E\{0}) with intensity measure A, according to a given
Fr-adapted, o-finite point process p which is independent of the Brownian motion W. Let N, be the
associated compensated Poisson random measure. Now we have (see, D. Applebaum [3] Chapter 5,
Section 2)

Lemma 2 (Girsanov’s formula).  Let X be a Lévy process such that X is a martingale, i.e.,

Xt:fb(s)ds+f0'(s)dWs+f fH(s,z)Np(dsdz)+f fK(s,z)Np(dsdz),
0 0 0 JE 0o JE

b(r) = —%O'Q(I) - f(eH(”Z) - 1-H(@, z)) A(dz) — f(ek(”Z) - 1)/l(dz), P-a.s.
E

E

with

We suppose that there exists C > 0 such that

K(t,2)| < C, Vt>0,Yz€E.

M, ::ff L(s,z)ﬁ(dsdz).
0 z#0

Ut = ("9 - 1) Yy} + (e = 1) 1

For L € H*(T, A) we define

Set

llzi>1}

' H(s,2) 2
S — 1) Adz)ds < +oo.
fo f{||z||<1}(e ) (de)ds

and we suppose that

Finally, we define

! !
B, =W, - f o(syds and N,=M,— f f L(s,2)U(s,2)A(dz)ds, 0 <t<T.
0 0 Jz#0

Let Q be the probability measure on (Q, Fr) defined as:

@Q _ xr

dpP
Then under Q, B, is a Brownian motion and N, is a Q-martingale.

Next define a d-dimensional semi-martingale Y; := (Y;,...,Y,) by

! !
Y=Y, + M +Al +f fﬁ(s, z, )N, (dsdz) +f fgi(s, 2, )N, (dsdz), i:=1,---,d (2.8)
o JE o JE

where

e M, is locally continuous square integrable (F;)-martingale and M, := 0;
e A, is a continuous (¥F;)-adapted process whose almost all sample functions are of bounded
variation on each finite interval and A, := 0;
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!
e g is (F,)-predictable and for ¢ > 0, f f llg(s, z, )| A(dz)ds < +o0 a.s;
0o JE

t
e fis (F,)-predictable and for ¢ > 0, f fllf(s, 2, )P Adz)ds < +0 a.s.
0o JE

We have (see, for example Ikeda and Watanabe [10] Theorem 5.1)

Lemma 3 (It6’s formula). Let F be a function of class C*> on R? and Y, a d-dimensional semi-
martingale given in (2.8). Then the stochastic process F (Y,;) is also a (F,)-semi-martingale and the
following formula holds :

F(Y) - F(Yy) = Zf—(Y)dM‘ Zf—(Y)Ad +22f8x(9x (Y)d M, Mf)
iOA

+f f[F(Ys— +8(s5,2,.)) = F (Y;2)] Ny(dzdss)
0 JVE

+ f f [F (Y, + f(s,2,.)) = F (Y,)] N,(dzds)
0 E

i

2.3. The main result

A(dz)ds.

¢ OF
F(Yot f(5.2.0) = F (V) = 3 fi(si )7 (Y)
i=1 !

A version of the next theorem (without jumps) can be seen in Baxendale and Stroock [2] (Corollary
1.12). This is a very long one and we now have all the necessary arguments to be able to copy it,
mutatis mutandis, by replacing it back in our frame. For this reason, we will content ourselves with the
statement of the theorem, referring the careful reader to the aforementioned paper.

Before proceeding, we give some definitions. Denote by C* (Td) the space of functions of class C*

on T¢. For all function ¢ € C® (Td) and all probability measure u € P (Td), let us set

@)= [0+ 9 @bou), 6@ = [ 1+ 70 (etomcan,

663 i= [0+ 8 ke (e, 6@ = o)~ [ Ko,

a@) = [ IO WU+ IO @, 8,0 =5 [ T{TemacTauan.
Define

J,6 := inf sup {;(9,aﬂ(¢)9> <cﬂ(¢) = (A, +b,) (@), 9>

9eC>(T') ep(T4)
N f f (e<k(z,y),9> _ 1) ,u(dz)v(dy)}-
R4 JTd

Now fix u € P(Td), fix also ¢ € C* (Td), by assumption on a, the matrix a,(¢) is strictly positive-

definite. Then letting a,,

Qe (6, a;()0) for all
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0 € R4. Next, we define

Qo )y = {w eR: w= a,(¢p)u for some u € Rd} +S,,

where §, denotes the support of v. Let con (Qaﬂ((,;),v) be the smallest convex cone that contains Q,,).y
and define

T 00 = {Cu(@)} + con (Qu ) - 2.9)

Let ri(A) denotes the relative interior of a set A. In light of the characterization lemma (see Ikeda and
Watanabe [10], Lemma 10.2.3) to the effective domain of J(6) := infd {(9, 0y-9 (9’)}, we have
R

ri{ inf  sup Ta#(q,),v} = ri(dom.J (9)).

$eC>(T) yep(T4)

By the requirements (2.1) and (2.2), it is well know that

J,0:= sup inf {lHe—z(qs)—l(Aa +b)(¢)”2 +ffg( ey )u(dz)v(dy)}
! 2 g y o @' @ Jra Jra \|Ik(zZ, Y|

gece(Td) rP(T4)
where o(r) :=rlogr—r+1, re(0,+00).

Finally, let us define, for T > 0 and x € R,

1
g‘;‘x(g) = SlOgE {eXp (— <9, X;v€,55>)} , > 0, = Rd. (210)
? &

Now we state our main result.

Theorem 4 (Main result).  Forall T > 0, we assume that the hypothesis (H.1) and (H.2) hold true.
Suppose that

1
T,x 13 & . - X,E,0¢
8,"(0) :=limg, (6) = limelog E {exp - (9, X7 )}
exists uniformly with respect to x € RY. In addition
8,7(0) = (x,0) + TT,(0).
Then we have

liminf g7 (6) > (x.6) + T (0,(0) + a1,(8) + 22,(0))

lim sup 870 <(x,0)+T (67(9) +B1,(0) + ﬁz,y(g))
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where .
éy(g) =3 9 am7(¢)9 + <cmy(¢) + - am + bm,,) (#), 9>

3
.\ f f k(x),6) _ 1)my(dx)v(dy)
R4 Td

a1,(0) := inf {y fR d fT e y)V‘I’H(x)Hmy(dx)v(dy) W, € C” (Td)}

2
,,(6) ::inf{y? fT ,,
B1,(0) = inf sup { ff
PpeC=(T4) peP(T4) R4 JTd

. {)/2
inf sup {—
WoeC=(T¢) yep(Td)

" (dx) : By € C° (Td)}

K, y)%(x)ﬂu(dx)v(dy)}

2

B2,(0) :

Td

and we have used ¥y to denote the unique u € C* (Td) which satisfies

Lyu= 0,0 - 0,0) and f u(xym,(dx) = 0
Td
and with

O(x, ) ::%(9, (1+ V¢)(x)o‘(x)>2 + f (6. (1 + V¢)(x)(c(x) — k(x, ) W(dy)

R4

<9, %Tr{VqﬁaVQS}(x) w1+ V¢)(x)b(x)> + fR d (e<k(x’ 36 1)V(dy)’ ¢eC(T).

1
+_
Y

Finally, set

)

17 n) = sup {(0.0) = (@) = sup {<6.n — x) = 770 = 7.7 ("
Then for every set 1" on B (Rd),

liminf & log P{Xx 00 ¢ F} —inf IyT’x(n)

e—0 nel

lim sup £ log P{X“‘S € F} —inf I”(n)

&—0 nel’
3. Outline of the LDP characterization

3.1. Overview and discussion

Freidlin-Wentzell’s theory is interested in the behaviour of a stochastic process seen as the Brownian
perturbation of an ordinary differential equation (ODE). For the description and the background for
ODE over-amortised by a Brownian martingale, we refer to [5, 8, 13] and the papers therein. At the
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same time, non-linear stochastic evolution equations have been studied in various literatures. However,
there are still few results on the large deviation for stochastic evolution equations with jumps (see, for
example [12, 15]).

In all the references listed above the question is: What do SDE’s trajectories look like when the
viscosity parameter g is small? The answer is twofold depending on the time scales considered: Finite
time interval or increasingly large time scale. Another question can also be considered: “When the
process is ergodic and has an invariant distribution u., what is the asymptotic behaviour of u, when
e— 07

This is the question in all the references available for us in this direction, with the one important
exception given by the paper [9] (see also [1]). In [9] large deviations problems arising in stochastic
homogenization are discussed. The scope of our approach based on the LDP with combination of
homogenization, differs substantially from that of [9].

Our version of SDE contains a substantial novelty, which makes it possible to handle the Freidlin-
Wentzell’s large deviation arising in stochastic homogenization for non-linear evolution equations with
Poisson jumps and Brownian motions. To explain this modified construction in the most transparent
way, we took the “jump component” in a relatively simple form, that is, we consider Poisson point
process of class (QL).

There are several roolbox for the large deviations (see, for example [6]). The way we choose allows
us to characterize the LDP with help of the analysis of the logarithmic moment generating function.

We refer to Baxendale et al. [2] for the characterization and the general results on the LDP with
help of the analysis of the logarithmic moment generating function. However, on this way we meet
substantial difficulties already when we try to prove that the LDP holds. Initially the corresponding
rate function (this one is denoted by /) is identified as the Legendre transform (or convex conjugate) of
the logarithmic moment generating function defined, when the limit exists, as

1
T,x _ 1 _ X,E,0¢
g, (0) = ll_r)r(}slogE {exp - <9, X5 >}

Subsequently, the Cameron-Martin-Girsanov transformation is used to find an alternative expression
for I. Although from the standpoint of large deviation theory it is the rate function / which is of
paramount interest, it is the logarithmic moment generating function gg’x which is most important for
the analysis of Lyapunov exponents. Indeed, one sees that gg’x is here what is called the moment
Lyapunov function.

3.2. LDP results

The proof of the main result can be conducted in six steps, which we outline below.

Proof. (Theorem 4 )

Step 1: (calculation of the moment Lyapunov function).
The calculation of this limit is inspired by Freidlin [8], Lemma 2.1 (without jumps) Section 7.2.
For any 6 € R¢

lim g7 (6) = 8,(0) = (x.6) + T.T ,(6).
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exists uniformly in x € R?, with

— 1 1
J,0 = inf sup {2<9, aﬂ(¢)9)+<zﬂ(¢)+;(Aaﬂ+bﬂ) (@), 9>

9eC (1) yep(Td)
N f f (e<k(z,y),9)_1)ﬂ(dz)v(dy)}
R4 JTd

being the largest eigenvalue of the differential operator

R C
?‘£7+;Za’f(x)9 +Z( b +C1) (X)e + = Zg al_](x)e
ij=1 i= ljl

d
; de{k(x )6 + k(x y)—}v(dy) +L ( (k(x, ), 6) _ 1)v(dy).

1=

Step 2: (change of probability measure).
. 1
We set X5 := 6—X,x"9’68, by the Itd’s formula we have for all ¢ € C* (Td)

&

VEDe _ vX.E0e
X7 =X+ 0,

58,0, X
o(2) o[
= x +f(I+V¢) X”)[c

+\/_f(I+V¢) &0

55) f (X‘9 % y) v(dy)] ds

O'(XM)

(£
)

+_f[ Tr X85r)a(X56s)V¢(Xs‘5‘)}+(I+ng)()?f"sg)b()?f’ég)]ds

+6, f f (R0 + 8k (X5, y)) - ¢ (R2%)| N* (dyds)
Rd

+8ff X‘E‘Se,y N® (dyds)
R4

Let us define for z € T¢

H*%(z) = (,o(z + &k (z, .)) —p(z) YpelC® (Td).

So, we are going to consider the logarithm moment generating function of X*%, g7, (2.10). By
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Girsanov’s formula, we have
2 (Ve/s.)'T . .
ol B[ [ e mo o s
( ‘/5/68)2 T —e&,0, —e&,0, —&,0¢
+ fo <9, (I + V) (Xx ) [c (XS ) _ fR k (XS_ , y) v(dy)]> ds]
= e (6,370 (85 (1) W ($5)} 1+ V) () (8% s

+ (%)2 fo o f (e{% <9’ H! ()_(?(sg’y )>} - 1)v(dy)ds

&

+(%)2 fo (et f: (e<‘9’k()_(i’ég’y)>_1)v(dy)ds—5—;(¢(Yf’6s)—¢(§s))ﬂ

3.1

8r..(0) =<(x,0) + clogE

where E is the expectation operator with respect to the probability P defined as

2 con(%) [ ot w0 (2o (v
Y L o))
X exp [f(;( T ,L;d <9, k ()_(ifs,y» N©ele? (dydss)
i ( 5 )2 f(ﬁ/ag)zT f (e<9,k(fj’5g,y)> ~ l)v( dy) ds]
£ 0 RY

2
5, ((VEle)T e,
X exp [; f f ) <9, H? (XS_(s , y)> N(és/g)z(dyds)
0 R

s

o [ L ]
Rd

g

Step 3: (ergodicity).
Let us set, for all z € T4, for all € R¢ :

(2, 6) ::é (6.(1+ Vo@)o ) + fR A1+ 94@)(c@) - k(z. ). 6) vidy)
3.2)
+ %(9 %Tr{Vqﬁ(Z)a(Z)qu(z)} +(1+96@)b(2)) + f (e<k(z’ ,6) _ l)v(dy).

R4
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and let us set ¥y € C* (Td) be the unique solution of

LY =0 - f ®(z,0)m,(dz), which satisfies f Yo(x)m,(dz) = 0
Td

Td
Such a solution ¥y must exist again by the assumptions on the coefficients (see, for instance,

5. \2
Pardoux et al. [11]). So applying It6 formula to ( \/_) Yy (X) we have
g

0

(@)2 j;wz/ag)%q) ()_(i,(sg’ 9) G fT o, )my(dz)+(ff)2 [%(X( m)T) %(51)]
_(%)2£(ﬁ/65)TJ(X85)VW9( )a’W
(Velo:)'T 5

e (5 =7)e(x")omn(x")as

+; (e f _f_‘”,y)wg( " vidyds

( ) f " Tf [ (R ok (X2 y)) = 0 (X2 | W47y,
y

(3.3)
Then putting (3.3) into the formula (3.1), we have
S\ [ (=ede
¢ () =(x.0) + T f <I>(z,9)m(dz)+slogE[exp{( )(%(X(fm”) \Pa(éﬁ))
68 865 _
- Efot)-o(3)
6
2 ~(Vels)'T X
N %) f f (e c <9 " (X y)>} - 1)v(dy)ds
E 0 R4
5, 2 ~(Velse ) T 66
Z) fo a(x )V‘I’(,(X )dW (3.4)
5 (

L)

o)

+

v}

(
-

2 ~(VEls:)'T s, e,
(G [ ) rn(E)as
(%)3f0(w”fk X ,y)V‘Pg( , )v(dy)ds
(%)21-( Ma)le;ng%(X )N“ L/ (dyds)}

Step 4: (upper bound).
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First, we have

log

(L [ oo

2o 2] [ o i)

xexp{_;(%)“ [ ey
0

confie [

E (exp

< |log|E

Iy

Secondly, we can see

T5 1817(9)
& & Y

log

E[exp { ( % )3 fo(x/é/ag)2r fde ()_(55 y)v%( )V( i) ds}]

Thirdly, we observe

Bl (%) (o) (3)) - 2 (o () - (2)
&€ 2 (\/5/68)2T & €,0¢g €,0¢
-(%) L (ool (x)as
f(«f/é 0’ Tf H.g\m, =& E)N((sp/s) (dyds) 35)
f(\f/a)r f ( 9 H8¢(XS , y)>} ) 1)V(dy)ds
R
< exp {(5—;)2 K+ %KZ + g(d_; — y)K3 + T(%)2 K, + T%Ig}.
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In fact, we notice that

_ 2 ~(Vels:)'T
E[exp{— (%) f f HEYo (X )N(5 =/€) (a’yds)}] l
0
(Vels:)'T
< |log [exp{ f f HST" o0y N (dyds)
R4

—&.0¢

2 65 E, 19
_(%)2 fo (et fR d [e{(;) i (XS y)} - 1]v(dy)ds

log

2
%) HE,“]”@ ()_(8’65

xexp{(%)Z j; (T fR d [e{(g ' ’y)}—l]v(dY)ds}
ol

)
< exp T(—)
&

7Y ()—(jﬁg’ )

k (Yﬁ’éi )

+ 0(1)}.

C(Td,RA)

+ 0(1)} ;
C=(T4.RY)

and

e (2 [ [ (LA N s

+ 0(1)} .
C=(T¢,R)

From (3.5) we have

hmslogE[exp {(5 )2 (‘Pg( zf}/é % T) Wy (6%)) - %(‘l’( zf}/ég) T) ¢(5£8))
() [ el o
5\ f( VE/5.)'T H&% Yj_é) NG (dyds)
R

5_8 f(\f/ég) Tf ( Hw XS ,y)>} - l)v(dy)ds — 0.
R

8

Then, for all € R¢, T > 0, we have

lim sup g5. .(6) < (6, x) + T (Q,(6) + B1,(0) + Bo,(0)). (3.6)

-0
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Step 5: (lower bound).
As it has already been seen previously, we then have

liminf g7 .(6) > (6, x) + T (Q,(6) + @1,(6) + @2,(6)).. (3.7)

Step 6: (Fentchel-Legendre transform).
Let us set for 6 € R?, X; be a Gaussian random vector with logarithm moment generating function

_ 1 1
Aiy(0):= inf  sup {—<Q,aﬂ(¢)9>+<5#(¢)+;(Aaﬂ+bﬂ)(¢),9>}.

0eC(T9) yep(ra) (2

and X, be a stationary Poisson process on R? independent of X; with logarithm moment
generating function

Ay(0) := sup {f f (e<k(z’y)’9>— l)u(dz)v(dy)}.
pep(nd) \Jrd Jov

We notice that
TH(0) := A, (0) + A2 (0).

Let A1(0) and A,(0) denote respectively the Fenchel-Legendre transform of A, and A,, we have

. 1 _ 1 2
A (@)= ¢egololgfd)ﬂegégd) {5H0 Gy (A0, + ) (@Ha;l(@}

. 16l
A (6) = f d d .
2(6) ,le;‘}w){fw fRdQ (nk(x,y)u)v( YIHC x)}

Since J(6) is the logarithm moment generating of X; + X, it follows that its Fenchel-Legendre
transform is

and

Jy(0) := A1, (0) + Aa2(0).
For the final assertion of the Theorem 4, we can observe that 7, is convex.

O

We also need to know that X} “0 is exponentially tight in the path space. Indeed, let D ([(), T], Rd)
be the space of functions that map [0, 7] into R, which are right continuous and having left hand
limits. D ([O, T, Rd) is metricated by the Skorohod metric, with respect to which it is complete and
separable. Then, as in Proposition 3.2 [9], we have

Remark 5. We assume that the hypothesis (H.1) and (H.2) hold true. For any fixed T > 0, x € R? and
a€(0,1/2),

lim sup lim sup £ log P{ ||X;”9"5€

00— e—0

De([0,T],R4) > Q} =%
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To complete this part, we point out that the previous proof also provides the LDP in the path space
D ([O, T], Rd). Let us consider some definitions :

fOTj(¢(s)) ds ifeD([0,T],RY) and @(0) = x
SO,T(‘P) =
+00 else.

Since the function 7 is convex we can show that

T

Z—X
inf o(s))ds = T ( )
sen(l0r1 ) ](; J (@(s)) J T
w(0)=x, o(T)=z

So we have

Remark 6. For all T > 0, we assume that the hypothesis (H.1) and (H.2) hold true. Then for every
x € R?, the family {X;’g"sé‘ Ee> 0} of Z)([O, T], Rd)—valued random variables has a large deviations

principle with good rate function S, 7(¢) forall ¢ € D ([O, T, Rd).
4. Conclusion

We have derived the general expression of the action functional for stochastic processes with jumps.
In particular, we generalize the Regime 2 considered in Freidlin-Sowers [9] for some classical SDE, as
well as the version in Baldi [1] for a family of measures on a topological vector space. Furthermore,
we have analysed a general LDP arising in stochastic homogenization and we have extended the result
in [4].

Before finishing, we notice that the large deviations established in this paper generalizes Schilder’s
theorem, which is useful both to probabilist who are interested in the trajectories consequences of
stochastic process and to statisticians who are interested in the weights of small balls given by the
Wiener measure. Such results can have implications in both random optimization and Bayesian
statistics when studying trajectories of posterior density estimates or regression problems. For
example, one may consult the following works to see how highly theoretical probabilistic
developments can rebound on unexpected statistical applications [7, 14].
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