Citation: Najeeb Alam Khan, Samreen Ahmed, Tooba Hameed, Muhammad Asif Zahoor Raja. Expedite homotopy perturbation method based on metaheuristic technique mimicked by the flashing behavior of fireflies[J]. AIMS Mathematics, 2019, 4(4): 1114-1132. doi: 10.3934/math.2019.4.1114
[1] | X. J. Yang, D. Baleanu and J. H. He, Transport equations in fractal porous media within fractional complex transform method, Proc. Rom. Acad. Ser. A, 14 (2013), 287-292. |
[2] | J. H. He, A tutorial review on fractal spacetime and fractional calculus, Int. J. Theor. Phys., 53 (2014), 3698-3718. doi: 10.1007/s10773-014-2123-8 |
[3] | J. H. He, Fractal calculus and its geometrical explanation. Results Phys., 10 (2018), 272-276. |
[4] | N. A. Pirim and F. Ayaz, Hermite collocation method for fractional order differential equations, Int. J. Optim. Control Theor. Appl. (IJOCTA), 8 (2018), 228-236. |
[5] | S. V. Lototsky and B. L. Rozovsky, Classical and generalized solutions of fractional stochastic differential equations, arXiv preprint arXiv:1810.12951, 2018. |
[6] | A. Ara, O. A. Razzaq and N. A. Khan, A single layer functional link artificial neural network based on chebyshev polynomials for neural evaluations of nonlinear nth order fuzzy differential equations, Ann. West Univ. Timisoara Math. Comput. Sci., 56 (2018), 3-22. doi: 10.2478/awutm-2018-0001 |
[7] | H. Aminikhah, Approximate analytical solution for quadratic Riccati differential equation, Iran. J. Numer. Anal. Optim., 3 (2013), 21-31. |
[8] | R. Dascaliuc, E. A. Thomann and E. C. Waymire, Stochastic explosion and non-uniqueness for α-Riccati equation, J. Math. Anal. Appl., 476 (2019), 53-85. doi: 10.1016/j.jmaa.2018.11.064 |
[9] | R. Guglielmi and K. Kunisch, Sensitivity analysis of the value function for infinite dimensional optimal control problems and its relation to Riccati equations, Optimization, 67 (2018), 1461-1485. doi: 10.1080/02331934.2018.1476514 |
[10] | E. Pereira, E. Suazo and J. Trespalacios, Riccati-Ermakov systems and explicit solutions for variable coefficient reaction-diffusion equations, Appl. Math. Comput., 329 (2018), 278-296. |
[11] | D Schuch, Analytical solutions for the quantum parametric oscillator from corresponding classical dynamics via a complex Riccati equation, J. Phys. Conf. Ser., 1071 (2018), 012020. |
[12] | S. Abbasbandy, Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian's decomposition method, Appl. Math. Comput., 172 (2006), 485-490. |
[13] | B. S. Kashkari and M. I. Syam, Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order, Appl. Math. Comput., 290 (2016), 281-291. |
[14] | M. G. Sakar, Iterative reproducing kernel Hilbert spaces method for Riccati differential equations, J. Comput. Appl. Math., 309 (2017), 163-174. doi: 10.1016/j.cam.2016.06.029 |
[15] | M. Hamarsheh, A. I. Ismail and Z. Odibat, An analytic solution for fractional order Riccati equations by using optimal homotopy asymptotic method, Appl. Math. Sci., 10 (2016), 1131-1150. |
[16] | V. Mishra and D. Rani. Newton-Raphson based modified Laplace Adomian decomposition method for solving quadratic Riccati differential equations, MATEC Web of Conferences, 57 (2016), 05001. |
[17] | H. Jafari, H. Tajadodi and D. Baleanu, A numerical approach for fractional order Riccati differential equation using B-spline operational matrix, Fract. Calc. Appl. Anal., 18 (2015), 387-399. |
[18] | S. Shiralashetti and A. Deshi, Haar wavelet collocation method for solving riccati and fractional Riccati differential equations, Bull. Math. Sci. Appl., 17 (2016), 46-56. |
[19] | D. N. Yu, J. H. He and A. G. Garcıa, Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators, J. Low Freq. Noise V. A., 2018. Available from: https://doi.org/10.1177/1461348418811028. |
[20] | J. H. He, Homotopy perturbation method with an auxiliary term, Abstr. Appl. Anal., 2012 (2012), Article ID 857612. |
[21] | J. H. He, Asymptotic methods for solitary solutions and compactons, Abstr. appl. anal., 2012 (2012), Article ID 916793. |
[22] | M. Francisco, S. Revollar, P. Vega, et al. A comparative study of deterministic and stochastic optimization methods for integrated design of processes, IFAC Proc. Vol., 38 (2005), 335-340. |
[23] | D. B. Shmoys and C. Swamy, Stochastic optimization is (almost) as easy as deterministic optimization. 45th Annual IEEE Symposium on Foundations of Computer Science, 2004. |
[24] | R. Dhar and N. Doshi, Simulation for variable transmission using mono level genetic algorithm, In: Proceedings of International Conference on Intelligent Manufacturing and Automation, Springer, 2019. |
[25] | W. Zhang, A. Maleki, M. A. Rosen, et al. Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage, Energy, 163 (2018), 191-207. doi: 10.1016/j.energy.2018.08.112 |
[26] | A. Ara, N. A. Khan, F. Maz, et al. Numerical simulation for Jeffery-Hamel flow and heat transfer of micropolar fluid based on differential evolution algorithm, AIP Adv., 8 (2018), 015201. |
[27] | Y. Mokhtari and D. Rekioua, High performance of maximum power point tracking using ant colony algorithm in wind turbine, Renewable energy, 126 (2018), 1055-1063. doi: 10.1016/j.renene.2018.03.049 |
[28] | X. S. Yang, Nature-Inspired Metaheuristic Algorithms. Luniver press, 2010. |
[29] | E. Fouladi and H. Mojallali, Design of optimised backstepping controller for the synchronisation of chaotic Colpitts oscillator using shark smell algorithm, Pramana, 90 (2018), 1-6. doi: 10.1007/s12043-017-1492-y |
[30] | N. A. Khan, T. Hameed, O. A. Razzaq, et al. Intelligent computing for Duffing-Harmonic oscillator equation via the bio-evolutionary optimization algorithm, J. Low Freq. Noise V. A., 2018. |
[31] | D. K. Bui, T. Nguyen, J. S. Chou, et al. A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete, Constr. Build. Mater., 180 (2018), 320-333. doi: 10.1016/j.conbuildmat.2018.05.201 |
[32] | D. T. Le, D. K. Bui, T. D. Ngo, et al. A novel hybrid method combining electromagnetism-like mechanism and firefly algorithms for constrained design optimization of discrete truss structures, Comput. Struct., 212 (2019), 20-42. doi: 10.1016/j.compstruc.2018.10.017 |
[33] | X. S. Yang, Firefly algorithms for multimodal optimization, In: InternationalSymposium on Stochastic Algorithms, Springer, 2009, 169-178. |
[34] | S. Arora and S. Singh, A conceptual comparison of firefly algorithm, bat algorithm and cuckoo search, In: 2013 International Conference on Control, Computing, Communication and Materials (ICCCCM), 2013, IEEE. |
[35] | N. A. Khan, A. Ara and M. Jamil, An efficient approach for solving the Riccati equation with fractional orders, Comput. Math. Appl., 61 (2011), 2683-2689. doi: 10.1016/j.camwa.2011.03.017 |
[36] | M. Ali, I. Jaradat and M. Alquran, New computational method for solving fractional Riccati equation, J. Math. Comput. Sci., 17 (2017), 106-114. doi: 10.22436/jmcs.017.01.10 |
[37] | K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3-22. doi: 10.1023/A:1016592219341 |