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1. Introduction 

In the past few years, fractal calculus and fractional calculus has been one of the most rapidly 

growing areas of mathematical analysis, which are used to model various problems of real life. 

Fractal calculus is considered as a fruitful field of research in science and technology and is 

extensively used to elucidate the phenomena of hierarchical or porous media [1]. Owing to the simplicity 

and effectiveness of fractal derivative it has defined an alternative approach of fractional derivatives, to 

explain some of the most fundamental theories with considerable ease and elegance [2,3]. The 

fractional derivative and fractional integral operators are the valuable tools which are used in the 

modeling of various physical phenomena of science and engineering. Anomalous dynamics of 

numerous complex nonlinear systems are elegantly modeled by the assistance of fractional 

differential equations, which are acknowledged as the generalization of the classical differential 

equations of integer order [4–6]. 

The fractional order Ricatti equation (RE) accommodates an extremely significant class of 

nonlinear differential equations which includes: The nth order linear homogenous ODE, one-dimensional 

Schrödinger equation, wave solution of nonlinear partial differential equation (PDE), etc [7]. These REs 

has substantial importance in classical, as well as, modern science and engineering problems because 

of their multifarious applications in various fields. For instance, optimal control, variational calculus, 

random processes, quantum mechanics, thermodynamics, robust stabilization, stochastic realization 

theory and diffusion problems [8–11]. 

The mathematical formulation for the nonlinear Ricatti differential equations with the fractional 

derivative defined in the Caputo sense is read as, 

            TttrtxtqtxtptxDC  0         ,2
0



      
(1) 

with the initial condition defined as, 

  0tx ,          (2) 

where,   is the order of equation, 0 and  , with ,, 0tT ;      trtqtp ,,  are the real 

continuous functions and  tx is the solution of the equation. The behavior of the aforementioned 

Eq. (1) depends on the parameter , which can be varied to analyze the dynamical behavior of these 

equations. In order to study the nonlinear Eq. (1) various analytical and numerical techniques 

developed in the past were applied by many researchers and scientists to compute the solutions 

of these equations among which some of them are cited here: The homotopy perturbation 

method (HPM) [12], the fractional-order Legendre operational matrix method [13], the iterative 

reproducing kernel Hilbert space method [14], the optimal homotopy asymptotic method [15], the 

modified Laplace Adomian decomposition method [16], the B-spline operational method [17] and 

the Haar wavelet collocation method [18]. The HPM introduced by He has been successfully used to 

solve numerous linear and nonlinear problems of real life. Since, its development it has been 

modified by He and many other scientists to solve various ordinary and partial differential equations 

of integer and non-integer order [19–21]. 

The demand of global optimization technique is increasing day by day, which are utilized in the 

assessment of numerous nonlinear and multimodal problems of real life. The deterministic algorithm 
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and the stochastic algorithm are the two types of optimization algorithm that are found in the 

literature [22,23]. The deterministic algorithm are often gradient-based whereas, the stochastic 

algorithm are further subcategorized as heuristic or metaheuristic algorithm. In recent trends, the 

popularity and demand of the nature inspired algorithms have increased extensively. Nature 

inspired metaheuristic algorithms which efficiently deals with the nonlinear optimization problems 

includes the genetic algorithm (GA) [24], simulated annealing (SA) algorithm [25], differential 

evolution (DE) algorithm [26], the ant colony optimization (ACO) algorithm [27], particle swarm 

optimization (PSO) algorithms [28], the shark smell algorithm [29] and the most powerful and 

demanding firefly (FA) algorithm [30–32]. 

The FA which mimics the flashing pattern and behavior of the fireflies was first developed by 

Yang in 2008 and since then it has been modified by various scientist and researcher to solve 

different types of challenging optimization problems. Some of the flashing characteristic of these 

unisex fireflies are idealized to develop the FA. The three idealized rule used by the firefly algorithm 

are as follows: 

 A firefly is attracted to the other fireflies regardless of their gender. 

 Attractiveness of fireflies is directly proportional to their brightness. The attractiveness and 

brightness of fireflies both increases as the distance between them deceases. 

 Brightness of a firefly is determined by the objective function. 

The literature of this modern, self-adaptive, highly efficient and truly intelligent algorithm has 

expanded dramatically [30–34]. 

The fundamental aim of this paper is to provide a numerical technique for the assessment of 

nonlinear fractional differential model defined as (1) and (2). The concept of classical homotopy 

perturbation method is merged with the modern metaheuristic optimization technique for the 

development of an expedite homptopy perturbation method (EHPM). The developed method—

EHPM transforms the fractional model into a system of algebraic equations leading to a fitness 

function determined by a particular fragment of the weighted series solution, which are trained by the 

using the powerful and reliable optimization technique—FA. The optimal values achieved by the FA 

are utilized to attain the accurate, convergent and reliable solutions. Comparative study is 

conducted by the comparing the EHPM computed results with the available exact solution and the 

solutions obtained by the modified homotopy perturbation (MHPM) [35], the residual power series 

method (RPSM) [36] and the Adam bashforth method (ABMA) [37]. Furthermore, the accuracy and 

competency of the EHPM is also ratified by computing results by the proposed design methodology 

in combination with accelerated particle swarm optimization (APSO), i.e., the fitness function 

determined by EHPM is optimized by using APSO. Various error measures are also carried out to 

validate the correctness and accuracy of the suggested scheme. 

2. Elementary tools 

Some basic definitions of the fractional calculus which are going to be utilized in the further 

discussion are stated below: 

Definition 2.1. Let  xf  be a differential function with  ,1,0 then the Caputo order fractional 

derivative  ,0 xfDC 
 is defined as [36], 



1117 

AIMS Mathematics                                                    Volume 4, Issue 3, 1114–1132. 

   
   
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xfD
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(3) 

with ,00 DC
 for some constant  .

 
Definition 2.2. For any function  xf with   ,,0: x  the Riemann fractional integral of order 

  is given as [35], 

 
 

    ,
1

0

1

0 


 dfxxfI

x

R









      

(4) 

where 0  and .   

3. Analysis of the method 

This section comprehensively describes the procedure to determine the approximate solutions of 

the nonlinear fractional differential equations using the classical idea of HPM with the modern 

optimizing tool. A brief review of the learning solver FA, which is utilized for the development of 

the presented scheme (EHPM) is also demonstrated here. 

3.1. The expedite homotopy perturbation method (EHPM) 

To exemplify the basic ideas of the proposed scheme consider the nonlinear FDE of the form, 

  ,0,, gtxψ    
   T,0        (5) 

with the initial condition defined as 

  ,0 tx
    

,, 0 t
        

(6) 

where g  and x are function of t  and   is the boundary of the domain. Thenψ can be expressed as  

       ,0,,  tgtxtx ANL         (7) 

Where L is the linear operator, N is the nonlinear operator and A  is the known analytical function. 

By the homotopy procedure we rewrite Eq. (7) as 

                   0,,,,  tgttttttttt ANLLL XxxX,XH 00 δδδ
   

(8) 

where  t0x  is an initial approximation, and δ is an embedding parameter defined in some closed 

interval  1,0 . Let the homotopy solution of equation Eq. (8) can be written as 

   





0k

k

k tt XX δ

         

(9) 
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where  tkX  are attained by the kth -order homotopy derivative defined as 

 
0δ

δ







k

k

k
k

t
H

!

1
X

           

(10) 

Now, we let the initial approximation of Eq. (8) of the form 

 
 

 


n

i

i

i

i

t
t

0

0
1


x

           

(11) 

where n ,,,, 210  are the unknown weights to be determined. By utilizing the Eq. (11), Eq. (9) 

and the basic ideas of MHPM [35] with   01 tX  and -1L  as the inverse operator of L  we obtain an 

algebraic system expressed as 

 














 




n

i

i

i

i

t

0

1

0
1


LX

          

(12) 

           tgttttt ANL  ,,1 XxLX 0
-1

      
(13) 

and     032  tt XX . Setting   01 tX  by MHPM, automatically leads the solution of Eq. (8) 

written as: 

   
 











 




n

i

i

i

i

t
tXtx

0

1

0
1


LX

        

(14) 

The aforementioned approximate solution (14) comprises of the unknown weights n ,,,, 210   

which are determined by constructing a fitness function given as 

   



m

j

ji tE
1

1min X

            

(15) 

The weights in Eq. (15) are learned by using a modern and powerful optimization technique FA. The 

graphical abstract of the above presented scheme EHPM is portrayed in Figure 1. 
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Figure1. Generic flow diagram of the expedite homotopy perturbation method. 
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Lemma 3.1. In problem (5) if   0Xtx is the solutions of Eq. (9), which comprises of the unknown 

weights ,,...,2,1,0; nii   then the minimization problem will be simplified as: 

      



m

j

ijtijji tDttE
1

,,,,min  
00 XX

      

(16) 

Theorem 3.2. If the solution of Eq. (8) satisfies   ,01 tX  then Eq. (10) results 

    032  tt XX  and   0Xtx  as the solution of Eq. (8). 

Here we mention that if   trg  and 0X  are analytic at 0tt  , then their power series is defined as 

 





0

00

n

n

n ttX and    





0

0

*

n

n

n tttg 
     

(17) 

where ,,,
*

2

*

1

*

0  are known coefficients and ,,, 210  are unknown ones which are to be 

determined. In order to obtain ,,, 210   we adapt a nature inspired strategy (FA) to find the 

approximate solution, by using the above Lemma 3.1. for constructing the fitness function 

formulated as: 

     
 

    






 

















m

j

jji

n

i

i

j

ji tt
i

t
tgE

1

1

0

1 ,
1

min 0
1- XLLL NA 






   

(18) 

Theorem 3.3. Let  tx  be an integrable and continuous function defined in some domain ],[ Ta  

where ,a  it is bounded and continuous function defined in the same interval ],[ Ta  for 

some,  and real bounded weights, i  then by substituting the real bounded weights 

attained by the FA, the obtained series solution converges as n  approaches to infinity. 

By simple calculations and assuming Mi
ˆ  ;

M̂ then Eq. (14) can be written as: 

 
 1)1(

ˆ

)1(
)(

0 





  

 







i

aTM
dt

i

t
tx

T

a

n

i

i

i

      

(19) 

As the number of terms in the initial approximation, n  it leads    111  n . 

3.2.  Learning solver: Firefly algorithm 

The FA is based on the flashing pattern and behavior of the fireflies. These flies are unisex, so 

they are attracted to the other fireflies regardless of their gender. The attractiveness of these tropical 

fireflies is proportional to their brightness. The main purpose of this attraction is to enable an 

algorithm to converge quickly, by allowing the swarming agents to interact and move towards the 

true global optimality. In FA the attractiveness between the fireflies at iβ and jβ  are determined as 

   









2

1~,  k

i

k

jji

k

i

1k

i ββββββ

       

(20) 

where the middle term is due to the attraction  ji ββ,  of the fireflies, which varies with the distance 

ijr  between them and can be modeled as: 
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  ijeji

2rββ  

0,  
        

(21) 

where 

jiijr ββ 
           

(22) 

The attractiveness at distance zero is represented by 0 ,  1,0~  is a randomization parameter and 

  is a random number generator that is uniformly distributed in the interval  1,0 . The light 

absorption coefficient is denoted by   ,0 , which is assumed to be very large but in practice it is 

determined by the characteristic distance   of the system, over which the attractiveness varies from 

0  to
1

0

e . The convergence of the algorithm can be further improved by varying the 

randomization parameter ~  that is decreased gradually as the optima is approached.  

The nonlinear updating equation used by the FA yields a richer behavior and higher 

convergence than the other optimization algorithms with linear updating equating. The middle term 

of the updating equation becomes negligible by setting a very large value of  , leading to the 

standard SA algorithm. For 0~  and 0  the exponential term in Eq. (21) tends to one, leading 

Eq. (20) to be a variant of the DE algorithm. Moreover, the APSO algorithm and the harmonic 

search (HS) algorithm are also the special cases of the FA. Therefore, we can essentially say that the 

FA is an amalgamation of all these four algorithm (SA, DE, APSO, HS) to a certain extent and can 

easily outperform other modern and powerful optimization algorithms [33,34]. 

4. Design methodology 

The step by step procedure of the proposed algorithm for Eq. (1) is as follows: 

Step1: Construct homotopy       Ttr ,0:,δX by using Eqs. (9) and (11). 

Step2: Fix the number of terms in the initial approximation  t0x . 

Step3: Set   01 tX  and the equidistant points st j ' for mj ,2,1  in the interval  .,0 Tt  

Step4: Configure the error function  iE   specified in Eq. (15). 

Step5: Utilize the FA with  , to optimize the derived error function and attain the minimum 

fitness value for an effective value of each unknown i . 

Step6: Substitute the optimal values of i  in Eq. (14) to acquire the approximate solution. 

Step7: Calculate error norms to validate to correctness and efficiency of the suggested scheme. 

5. Problem simulation and discussion 

In this section, the accuracy and competency of the proposed scheme is illustrated by 

considering several examples of the form (1). Comparison is made with the available exact solution 

and the results obtained by some former techniques such as, ABMA, APSO, MHPM and RPSM. 

Also, the accuracy of the algorithm are assessed in terms of the error norms mathematically 

formulated as 

*

j

rf

jabs xxL  ,        (23) 

absLL max ,        (24) 
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2ˆ

1

*

ˆ

1




n

j

j

rf

jrms xx
n

L ,       (25) 

where n̂  stands for the number of input grid points in the computational domain  Tt ,0 , for 
T and 

rf

jx  and *

jx  represents the reference solution and the approximate solution, respectively. 

Test problem 1 

Consider a nonlinear fractional differential equation 

     txtxtx 2

0 Dc ,  10  ,       (26) 

with initial condition   5.00 x . The exact solution of above problem for 1  is given as 

 
1






t

t

e

e
tx .        (27) 

Test problem 2 

Consider a nonlinear factional Riccati differential equation with the fractional derivative defined in 

the Caputo sense expressed as 

      122

0  txtxtxDC 
,  10       (28) 

and the initial condition defined as   00 x . The exact solution of the above problem for 1  is 

given as 

 

































12

12
log

2

1
2tanh21 ttx .       (29) 

Test problem 3 

Now we consider another fractional differential equation 

    12

0  txtxDC 
,   10  ,     (30) 

with initial condition   00 x  and the exact solution of Eq. (27) for 1  is 

 
1

1
2

2






t

t

e

e
tx .          (31) 

Test problem 4 

Consider another fractional differential equation 

     
 

 23
2

2

0 1
3

2
tt

t
ttxttxtxDC 









 ,  10  ,    (32) 



1123 

AIMS Mathematics                                                    Volume 4, Issue 3, 1114–1132. 

with initial condition   00 x . By the use of definition (2.1) the exact solution of Eq. (32) is given as 

  2ttx  .         (33) 

The proposed methodology EHPM accompanied by an efficient and powerful optimization technique 

is applied to the nonlinear problems defined above. The fitness function derived in the form (18) for 

the nonlinear problems (26), (28), (30) and (32) are optimized using the FA. The optimal weights 

achieved by the implementation of the developed technique at 1 , 5n  and  1,0x  yielding a 

fitness value 1710177187.3  , 1210316209.4  ,  and 171043145.1   for the test problems 1–4 are 

displayed in Figure 2, respectively. The numerical results accomplished by the utilization of these 

optimal weights for the respective test problems are presented in Tables 1–4. Comparative study is 

conducted by comparing the EHPM computed results with the respective exact solution and the 

results attained by ABMA with the step size 001.0h  and 1000K  , 10  term approximate 

solution by MHPM, the APSO computed results (for 800 iterations and swarm size equal to 40 ) and 

the seventh term approximate solutions obtained by the RPSM. To illustrate the reliability and 

accuracy of the suggested scheme EHPM the values of absolute error attained by the considering 

the exact solution as the reference solution of the respective problems 1–4 are also presented in 

Tables 1–4, respectively. It is observed that generally, the EHPM computed results for all the 

problems coincides the exact solution within five to ten decimal places of accuracy. The error norms 

rmsL  and L  acquired for the above problems by consuming the developed scheme EHPM for the 

computational domain  1,0x  and at distinct values n  are tabulated in Table 5. These error 

estimates presented in Table 5 ensures about the convergence and accuracy of the deliberated 

technique which is seen to be increased as n  increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 2. Set of weights achieved by EHPM at 1  for test problems 1–4. 
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Table1. Comparison of the results obtained by EHPM with other methods at 1  for test problem 1. 

t  
EXACTy  

EHPMy  ABMAy  RPSMy  
MHPMy  APSOy  absP  

0.1 0.475021 0.475021 0.475021 0.475021 0.475021 0.474993 2.46866×10
-9

 

0.2 0.450166 0.450166 0.450166 0.450166 0.450165 0.449984 8.11591×10
-9

 

0.3 0.425557 0.425557 0.425557 0.425557 0.425552 0.425056 2.62871×10
-9

 

0.4 0.401312 0.401312 0.401312 0.401312 0.401291 0.400332 6.47150×10
-9

 

0.5 0.377541 0.377541 0.377541 0.377541 0.377476 0.375992 1.62494×10
-9

 

0.6 0.354344 0.354344 0.354344 0.354344 0.354182 0.352276 6.16224×10
-9

 

0.7 0.331812 0.331812 0.331812 0.331813 0.331462 0.329493 6.81599×10
-10

 

0.8 0.310026 0.310026 0.310026 0.310028 0.309343 0.308033 6.05932×10
-9

 

0.9 0.289050 0.289051 0.289051 0.289058 0.287820 0.288369 3.75236×10
-9

 

1.0 0.268941 0.268941 0.268941 0.268961 0.266858 0.271073 4.53833×10
-9

 

Table2. Comparison of the results obtained by EHPM with other methods at 1  for test problem 2. 

t  
EXACTy  

EHPMy  ABMAy  RPSMy  NHPMy  APSOy  absP  

0.1 0.110295 0.110323 0.110295 0.110295 0.110294 0.132598 2.79559×10-5 

0.2 0.241976 0.241942 0.241976 0.241976 0.241965 0.275045 3.40483×10-5 

0.3 0.395104 0.395107 0.395104 0.395089 0.395106 0.427310 2.56995×10-6 

0.4 0.567812 0.567860 0.567811 0.56766 0.568115 0.589222 4.80912×10-5 

0.5 0.756014 0.756031 0.756014 0.755134 0.757564 0.760469 1.68103×10-5 

0.6 0.953566 0.953530 0.953565 0.949964 0.958259 0.940590 3.57596×10-5 

0.7 1.152949 1.152943 1.152949 1.141423 1.163459 1.128970 5.97971×10-6 

0.8 1.346364 1.346424 1.346363 1.315723 1.365240 1.324840 6.04658×10-5 

0.9 1.526911 1.526896 1.526911 1.456545 1.554960 1.527270 1.51114×10-5 

1.0 1.689498 1.689546 1.689498 1.546030 1.723810 1.735140 4.79364×10-5 

Table3. Comparison of the results obtained by EHPM with other methods at 1  for test problem 3. 

t EXACTy  
EHPMy  ABMAy  RPSMy  

MHPMy  APSOy  absP  

0.1 0.099668 0.099666 0.099668 0.099668 0.099668 0.103891 1.23113×10-6 

0.2 0.197375 0.197378 0.197375 0.197375 0.197375 0.202649 2.55077×10-6 

0.3 0.291313 0.291313 0.291313 0.291312 0.291312 0.295810 1.45452×10-7 

0.4 0.379949 0.379946 0.379949 0.379944 0.379944 0.382931 2.41309×10-6 

0.5 0.462117 0.462117 0.462117 0.462078 0.462078 0.463587 1.66903×10-7 

0.6 0.537050 0.537052 0.537049 0.536857 0.536857 0.537380 2.46396×10-6 

0.7 0.604368 0.604368 0.604368 0.603631 0.603631 0.603935 4.64338×10-7 

0.8 0.664037 0.664034 0.664037 0.661706 0.661706 0.662905 2.81496×10-6 

0.9 0.716298 0.716299 0.716298 0.709919 0.709919 0.713971 1.30183×10-6 

1.0 0.761594 0.761592 0.761594 0.746032 0.746032 0.756838 2.22537×10-6 
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Table 4. Comparison of the results obtained by EHPM with other methods at 1  for test problem 4. 

t  
EXACTy  

EHPMy  ABMAy  MHPMy  APSOy  absP  

0.1 0.01 0.01 0.019966 0.001 0.012254 2.91364×10-13 

0.2 0.04 0.04 0.079449 0.008 0.044342 1.58054×10-13 

0.3 0.09 0.09 0.177089 0.027 0.096103 2.13080×10-13 

0.4 0.16 0.16 0.310209 0.064 0.167389 4.90163×10-14 

0.5 0.25 0.25 0.473957 0.125 0.258064 2.18325×10-13 

0.6 0.36 0.36 0.659526 0.216 0.368016 8.49321×10-14 

0.7 0.49 0.49 0.850389 0.343 0.497157 1.76026×10-13 

0.8 0.64 0.64 1.014271 0.512 0.645426 1.66533×10-13 

0.9 0.81 0.81 1.086366 0.729 0.812795 2.24820×10-13 

1.0 1.00 1.00 0.938449 1.000 0.999274 3.39728×10-14 

Table 5. Error norms for test problems 1–4 at .1  

n  
Test Problem 1 Test Problem 2 Test Problem 3 Test Problem 4 

rmsL  
L  rmsL  

L  rmsL  
L  rmsL  

L  

5 4.82×10-9 8.11×10-9 3.46×10-5 6.04×10-5 1.86×10-6 2.81×10-6 1.79×10-13 2.91×10-13 

4 1.98×10-7 2.63×10-7 1.67×10-4 2.63×10-4 1.78×10-5 2.36×10-5 1.73×10-14 3.25×10-14 

3 1.86×10-6 3.04×10-6 1.12×10-3 2.01×10-3 3.33×10-5 6.10×10-5 6.49×10-9 1.13×10-8 

2 2.94×10-5 5.27×10-5 3.51×10-3 6.39×10-3 1.03×10-3 1.76×10-3 5.17×10-9 8.62×10-9 

Numerical solutions of the above problems are also constructed by the discussed technique for 

the non-integer order. The solutions of the above nonlinear problems are attained by the learning of 

unknown weights in the derived fitness function at two distinct values of   i.e., 95.0  and .85.0  The 

optimal weights achieved by the proposed scheme for the considered fractional values with 2n  and 

 1,0x  for problem 1, with 2n  and  4,0x  for problem 2, with 5n  and  5,0x  for problem 3 

and with 5n  and  1,0x  for problem 4 are showcased in Figure 3, respectively. The results 

obtained by utilizing these real valued and bounded optimal weights for the respective problems 1–4 

are presented in Tables 6–9, respectively. The results obtained by EHPM are compared with the 

available exact solution, MHPM computed results, seventh term approximate solutions obtained by 

the RPSM and the results attained by ABMA for the step 001.0h  and the values K  equal to 

，1000  4000  and 5000 for the test problems 1–3, respectively. In problem 1 by taking smaller value 

n  for a smaller domain  1,0  the results achieved by the EHPM and the RPSM shows a constructive 

agreement with the results obtained by ABMA. While, by taking a smaller value n  for a larger 

domain  4,0  in problem 2, the RPSM is seen to diverge whereas, the solutions obtained by the 

EHPM remains convergent. By taking a larger value n  for a larger domain  5,0  in problem 3 the 

RPSM computed results diverges whereas, the results accomplished by the proposed scheme shows a 

constructive agreement with the results attained by ABMA. The values of absolute error achieved by 

EHPM for the problems 1–3 with the results attained by ABMA as the reference solution are also 

depicted in Tables 6–8. In problem 4 by taking a larger value of n  for a smaller domain  1,0  the 

EHPM computed results are compared with available exact solution and the results obtained by 

MHPM, with the values of absolute error tabulated in Table 9. Furthermore, the correctness and 

reliability of the suggested scheme is validated by the minimize fitness function and the related 

graphical solution attained at distinct values of     1, 0.95, 0.85 for a lager span, that are portrayed 
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in Figures 4a–7a and Figures 4b–7b for the problems 1–4, respectively. One can infer that the 

accuracy of the presented scheme can be further enhanced but at the cost of more computation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Set of weights achieved by EHPM at different values of   for problems 1–4. 

 

 

 

 

 

 

 

 

 

Figure 4. Fitness function along with the corresponding solutions achieved by EHPM at 

different values of  for problem 1. 
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Figure 5. Fitness function along with the corresponding solutions achieved by EHPM at 

different values of  for problem 2. 

 

 

 

 

 

 

 

 

Figure 6. Fitness function along with the corresponding solutions achieved by EHPM at 

different values of  for problem 3. 

 

Figure 7. Fitness function along with the corresponding solutions achieved by EHPM at 

different values of  for problem 4. 
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Table 6. Comparison of the results obtained by EHPM at different values of   for problem 1. 

t  
85.0  95.0  

EHPMy  ABMAy
 RPSMy  absP  

EHPMy  ABMAy
 RPSMy  absP  

0.1 0.458464 0.462742 0.462742 4.27763×10-3 0.470459 0.471407 0.471407 9.4861×10-4 

0.2 0.425630 0.433189 0.433189 7.55906×10-3 0.443171 0.444939 0.444939 1.76834×10-3 

0.3 0.395869 0.406386 0.406387 1.05170×10-2 0.416934 0.419474 0.419474 2.54007×10-3 

0.4 0.368265 0.381546 0.381546 1.32809×10-2 0.391583 0.394880 0.394880 3.29609×10-3 

0.5 0.342440 0.358340 0.358340 1.58994×10-2 0.367092 0.371144 0.371145 4.05246×10-3 

0.6 0.318209 0.336593 0.336596 1.83840×10-2 0.343479 0.348290 0.348291 4.81164×10-3 

0.7 0.295471 0.316194 0.316201 2.07229×10-2 0.320785 0.326348 0.326350 5.56302×10-3 

0.8 0.274172 0.297059 0.297079 2.28877×10-2 0.299065 0.305348 0.305353 6.28306×10-3 

0.9 0.254283 0.279120 0.279167 2.48372×10-2 0.278377 0.285313 0.285327 6.93573×10-3 

1.0 0.235793 0.262314 0.262417 2.65208×10-2 0.258786 0.266259 0.266294 7.47296×10-3 

Table 7. Comparison of the results obtained by EHPM at different values of   for problem 2. 

t  
85.0  95.0  

EHPMy  ABMAy
 RPSMy  absP  

EHPMy  ABMAy
 RPSMy  absP  

0.4 1.128780 0.772076 0.701892 3.56704×10-1 0.951216 0.629409 0.609030 3.21808×10-1 

0.8 1.732609 1.534233 1.292070 1.98376×10-1 1.582695 1.414490 1.339680 1.68205×10-1 

1.2 2.095352 1.965731 -0.689702 1.29622×10-1 1.999238 1.962805 1.116260 3.64331×10-2 

1.6 2.300624 2.159265 -12.26610 1.41359×10-1 2.252742 2.217871 -1.984430 3.48714×10-2 

2.0 2.399864 2.248003 -48.77540 1.51861×10-1 2.384753 2.319886 -9.224490 6.48668×10-2 

2.4 2.430901 2.293382 -139.1670 1.37519×10-1 2.431978 2.361076 -17.66350 7.09018×10-2 

2.8 2.424109 2.319480 -332.8130 1.04629×10-1 2.428249 2.379249 -13.99210 4.89996×10-2 

3.2 2.405166 2.336069 -707.8470 6.90973×10-2 2.405453 2.388335 34.79380 1.71183×10-2 

3.6 2.396527 2.347472 -1381.040 4.90542×10-2 2.394053 2.393514 194.3750 5.39429×10-4 

4.0 2.418283 2.355791 -2519.200 6.24925×10-2 2.423411 2.396826 580.2210 2.65850×10-2 

Table 8. Comparison of the results obtained by EHPM at different values of   for problem 3. 

t  

85.0  95.0  

EHPMy  ABMAy
 RPSMy  absP  

EHPMy  ABMAy
 RPSMy  absP  

0.5 0.571511 0.515900 0.481043 5.56103×10-2 0.497222 0.481137 0.515392 1.60848×10-2 

1.0 0.824167 0.749435 0.731907 7.47319×10-2 0.778543 0.758713 0.675115 1.98303×10-2 

1.5 0.933117 0.855319 0.263158 7.77975×10-2 0.915829 0.888118 -0.334334 2.77111×10-2 

2.0 0.972671 0.906026 -4.400130 6.66455×10-2 0.968915 0.943982 -7.027070 2.49329×10-2 

2.5 0.986094 0.932703 -25.95750 5.33910×10-2 0.985180 0.968440 -32.40280 1.67394×10-2 

3.0 0.993557 0.948165 -97.30430 4.53923×10-2 0.992469 0.979829 -104.6460 1.26404×10-2 

3.5 0.999402 0.957932 -288.1960 4.14707×10-2 0.999263 0.985618 -275.6610 1.36449×10-2 

4.0 1.000703 0.964556 -728.4980 3.61731×10-2 1.001750 0.988867 -631.4190 1.28808×10-2 

4.5 0.997296 0.969315 -1638.840 2.79813×10-2 0.997197 0.990876 -1304.100 6.32101×10-3 

5.0 1.002409 0.972892 -3369.480 2.95975×10-2 1.003140 0.992229 -2486.000 1.09120×10-2 
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Table 9. Comparison of the results obtained by EHPM at different values of   for problem 4. 

 

t  

85.0  95.0  

EHPMy  EXACTy  

MHPMy  absP  
EHPMy  EXACTy  

MHPMy  absP  

0.1 0.009336 0.01 0.001527 6.63272×10-4 0.009782 0.01 0.001150 2.17468×10-4 

0.2 0.037202 0.04 0.011010 2.79761×10-3 0.039123 0.04 0.008892 8.76525×10-4 

0.3 0.083691 0.09 0.034966 6.30802×10-3 0.087988 0.09 0.029411 2.01164×10-3 

0.4 0.148502 0.16 0.079383 1.14971×10-2 0.156347 0.16 0.068718 3.65298×10-3 

0.5 0.231266 0.25 0.149941 1.87333×10-2 0.244079 0.25 0.132726 5.92024×10-3 

0.6 0.331497 0.36 0.251096 2.85027×10-2 0.351006 0.36 0.227269 8.99314×10-3 

0.7 0.448290 0.49 0.391189 4.17099×10-2 0.476835 0.49 0.358125 1.31646×10-2 

0.8 0.579872 0.64 0.572354 6.01272×10-2 0.621014 0.64 0.531020 1.89856×10-2 

0.9 0.723061 0.81 0.800662 8.69390×10-2 0.782501 0.81 0.751641 2.74983×10-2 

1.0 0.872643 1.00 1.081081 1.27356×10-1 0.959450 1.00 1.025641 4.05497×10-2 

6. Conclusion 

In this work, the nonlinear fractional differential equations with the fractional derivative and 

integral operators defined in the Caputo sense are successfully solved by a simple, accurate and 

reliable numerical technique. The designed methodology EHPM is an amalgamation of the classical 

homotopy perturbation technique with the modern bio-inspired metaheuristic technique. The FA 

which is based on the flashing behavior of fireflies fast track the procedure to determine the 

approximate solution of the considered nonlinear FDE. Some instructive examples were undertaken, 

with varying span and different number of terms in the assumed initial approximation to expound the 

potential ability of the proposed technique. The validity, applicability and computational efficiency 

of the EHPM is exposed by comparing the fast track outcomes achieved with the available exact 

solution and the solutions obtained by ABMA, APSO, MHPM and the RPSM. High accuracy and 

consistent convergence were ascertained by the accomplishment of the optimal values of the error 

norms. Thus, the contribution of the discussed scheme is abridged as follows: 

 The expedite design methodology is well suited to solve the nonlinear FDE. 

 The classical approach transformed the nonlinear FDE into an algebraic system which leads 

to a weighted series solution. 

 Fitness function determined by a trivial fragment of the weighted series solution was 

optimized using the FA. 

 Fast track outcomes were achieved by the modern optimization technique (FA). 

 Numerical experiments ratified the correctness and reliability of the EHPM. 

 Converging solutions were attained even for a larger computational domain. 

 High accuracy and consistent convergence achieved by EHPM can be further enhanced by 

increasing the number of term in the initial approximation. 

As the proposed design methodology exhibits a merger of classical idea with the modern 

optimizing metaheuristic technique, which offers promising converging results. One may utilize the 

recommended fusion to solve numerous other mathematical models or may even attempt to 

determine a new combination of modern optimization technique with the former traditional schemes. 
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