Citation: Saima Rashid, Ahmet Ocak Akdemir, Fahd Jarad, Muhammad Aslam Noor, Khalida Inayat Noor. Simpson’s type integral inequalities for ĸ-fractional integrals and their applications[J]. AIMS Mathematics, 2019, 4(4): 1087-1100. doi: 10.3934/math.2019.4.1087
[1] | Chunyan Luo, Yuping Yu, Tingsong Du . Estimates of bounds on the weighted Simpson type inequality and their applications. AIMS Mathematics, 2020, 5(5): 4644-4661. doi: 10.3934/math.2020298 |
[2] | Sabir Hussain, Javairiya Khalid, Yu Ming Chu . Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Mathematics, 2020, 5(6): 5859-5883. doi: 10.3934/math.2020375 |
[3] | Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831 |
[4] | Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara . New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218 |
[5] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[6] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[7] | Areej A. Almoneef, Abd-Allah Hyder, Fatih Hezenci, Hüseyin Budak . Simpson-type inequalities by means of tempered fractional integrals. AIMS Mathematics, 2023, 8(12): 29411-29423. doi: 10.3934/math.20231505 |
[8] | Naila Mehreen, Matloob Anwar . Some inequalities via Ψ-Riemann-Liouville fractional integrals. AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403 |
[9] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[10] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
The following inequality is named the Simpson's integral inequality:
|16[φ(ε)+4φ(ε+ζ2)+φ(ζ)]−1ζ−εζ∫εφ(t)dt|≤‖φ(4)‖∞(ζ−ε)4, | (1.1) |
where φ:[ε,ζ]→R is a four-order differentiable mapping on (ε,ζ) and ‖φ(4)‖∞=supt∈(ε,ζ)|φ(4)(t)|<∞.
Considering the Simpson-type inequality via mappings of different classes, many results involving the ordinary integrals can be found in [1,3,4,5,18,19] and the references therein.
Definition 1.1. A set Ω⊆Rn is named as invex set with respect to the mapping η:Ω×Ω→Rn, if
ε+η(ζ,ε)∈Ω |
holds, for all ε,ζ∈Ω and θ∈[0,1].
Definition 1.2. A mapping φ:Ω→R is called preinvex respecting η, if
φ(ε+η(ζ,ε))≤(1−θ)φ(ε)+θφ(ζ), |
holds for all ε,ζ∈Ω and θ∈[0,1].
The preinvex function is an important substantive generalization of the convex function. For the properties, applications, integral inequalities and other aspects of preinvex functions, see [5,7,8,9,10,11,12,13,14] and the references therein.
Definition 1.3. Let s∈(0,1) and a mapping φ:Ω→R is called s-preinvex respecting η, if
φ(ε+η(ζ,ε))≤(1−θs)φ(ε)+θsφ(ζ), |
holds for all ε,ζ∈Ω and θ∈[0,1].
Fractional calculus has recently been the focus of mathematics and many related sciences. In addition to defining new integral-derivative operators and their properties, many researchers have achieved important results in applied mathematics, engineering and statistics. It is appropriate for the reader to review articles [2,15,16,17] for some recent studies. We end this section by reciting a well known κ-fractional integral operators in the literature.
Definition 1.4. ([6]) Let φ∈L[ε,ζ], the κ-fractional integrals Jα,κε+ and Jα,κζ− of order α>0 are defined by
Jα,κε+=1κΓκ(α)x∫ε(x−θ)ακ−1φ(θ)dθ,(0≤α<x<ζ) | (1.2) |
and
Jα,κζ+=1κΓκ(α)ζ∫x(θ−x)ακ−1φ(θ)dθ,(0≤α<x<ζ), | (1.3) |
respectively, where κ>0, and Γκ is the κ-gamma function defined as Γκ(x):=∞∫0θx−1e−θκκdθ,ℜ(x)>0, with the properties Γκ(x+κ)=xΓκ(x) and Γκ(κ)=1.
This paper aims to obtain estimation type results of Simpson-type inequality related to κ- fractional integral operators. Next, we derive the results with the boundedness of the derivative and with a Lipschitzian condition for the derivative of the considered mapping to derive integral inequalities with new bounds. Application of our results to random variables are also provided.
Throughout of this work, let Ω⊆R be an open subset respecting η:Ω×Ω→R∖{0} and ε,ζ∈Ω with ε<ζ.
To prove our results, we obtain a new integral identity as following:
Lemma 2.1. Let φ:Ω=[ε+η(ζ,ε)]→R be a differentiable function on (ε+η(ζ,ε)) with η(ζ,ε)>0. If φ′∈L[ε,ε+η(ζ,ε)],n≥0 and α,κ>0, then the following identity holds:
Ψ(ε,ζ;n,α,κ):=η(ζ,ε)2(n+1)[1∫0(2(1−θ)ακ−θακ3)φ′(ε+1−θn+1η(ζ,ε))dθ+1∫0(θακ−2(1−θ)ακ3)]φ′(ε+n+θn+1η(ζ,ε))dθ], | (2.1) |
where
Ψ(ε,ζ;n,α,κ):=16[φ(ε)+φ(ε+η(ζ,ε))+2φ(ε+1n+1η(ζ,ε))+2φ(ε+nn+1η(ζ,ε))−Γκ(α+κ)(n+1)ακ6(η(ζ,ε))ακ[Jα,κ(ε)+φ(a+1n+1η(ζ,ε))]+Jα,κ(ε+η(ζ,ε))−φ(ε+nn+1η(ζ,ε))]−Γκ(α+κ)(n+1)ακ3(η(ζ,ε))ακ[Jα,κ(ε+nn+1η(ζ,ε))+φ(ε+η(ζ,ε))+Jα,κ(ε+1n+1η(ζ,ε))+φ(ε)]]. |
Proof. Integration by parts, one can have
I1=1∫0(2(1−θ)ακ−θακ3)φ′(ε+1−θn+1η(ζ,ε))dθ=n+13η(ζ,ε)φ(ε)+2(n+1)3η(ζ,ε)φ(ε+1n+1η(ζ,ε))−α(n+1)ακ+13κ(η(ζ,ε))ακ+1ε+1n+1η(ζ,ε)∫ε(ε+1n+1η(ζ,ε)−x)ακ−1φ(x)dx−2α(n+1)ακ+13κ(η(ζ,ε))ακε+1n+1η(ζ,ε)∫ε(x−ε)ακ−1φ(x)dx |
and
I2=1∫0(θακ−2(1−θ)ακ3)]φ′(ε+n+θn+1η(ζ,ε))dθ=n+13(η(ζ,ε))φ(ε+η(ζ,ε))+2(n+1)3η(ζ,ε)φ(ε+nn+1η(ζ,ε))−α(n+1)ακ+13κ(η(ζ,ε))ακ+1ε+η(ζ,ε)∫ε+nn+1η(ζ,ε)(x−(ε+nn+1η(ζ,ε)))ακ−1φ(x)dx−α(n+1)ακ+13κ(η(ζ,ε))ακ+1ε+η(ζ,ε)∫ε+nn+1η(ζ,ε)((ε+η(ζ,ε))−x)ακ−1φ(x)dx. |
By adding I1 and I2 and multiplying the both sides η(ζ,ε)2(n+1), we can write
I1+I2=16[φ(ε)+φ(ε+η(ζ,ε))+2φ(ε+1n+1η(ζ,ε))+2φ(ε+nn+1η(ζ,ε))]−α(n+1)ακ6κ(η(ζ,ε))ακ[ε+1n+1η(ζ,ε)∫ε(ε+1n+1η(ζ,ε))ακ−1φ(x)dx+ε+η(ζ,ε)∫ε+nn+1η(ζ,ε)(x−(ε+nn+1η(ζ,ε)))ακ−1φ(x)dx]−α(n+1)ακ3κ(η(ζ,ε))ακ[ε+nn+1η(ζ,ε)∫ε(ε+η(ζ,ε)−x)ακ−1φ(x)dx+ε+1n+1η(ζ,ε)∫ε(x−ε)ακ−1φ(x)dx]. |
Using the fact that
1κΓκ(α)ε+1n+1η(ζ,ε)∫ε(x−ε)ακ−1φ(x)dx=Jα,κ(ε+1n+1η(ζ,ε))−φ(ε),1κΓκ(α)ε+η(ζ,ε)∫ε+nn+1η(ζ,ε)(ε+η(ζ,ε)−x)ακ−1φ(x)dx=Jα,κ(ε+nn+1η(ζ,ε))+φ(ε+η(ζ,ε)),1κΓκ(α)ε+1n+1η(ζ,ε)∫ε(ε+1n+1η(ζ,ε)−x)ακ−1φ(x)dx=Jα,κ(ε)+φ(ε+1n+1η(ζ,ε)),1κΓκ(α)ε+η(ζ,ε)∫ε+nn+1η(ζ,ε)(x−(ε+1n+1η(ζ,ε)))ακ−1φ(x)dx=Jα,κ(ε+η(ζ,ε))−φ(ε+nn+1η(ζ,ε)), |
we get the result.
Remark 2.1. If we choose η(ζ,ε)=ζ−ε with κ=1, then under the assumption of Lemma 2.1 one has Lemma 2.1 in [19].
Theorem 2.2. Let φ:Ω=[ε,ε+η(ζ,ε)]→R be a differentiable function on Ω. If φ′∈L[ε,ε+η(ζ,ε)]and |φ′|λ for λ>1 with μ−1+λ−1=1 is s-preinvex function, then the following inequality holds for fractional integrals with α,κ>0, then the following integral inequality holds:
|Ψ(ε,ζ;n,α,κ)|≤η(ζ,ε)2(n+1)(1∫0|2(1−θ)ακ−θακ3|μdθ)1μ×[[(1−1(n+1)s(s+1)|φ′(ε)|λ+1(n+1)s(s+1)|φ′(ζ)|λ)]1λ+[1(n+1)s(s+1)|φ′(ε)|λ+(21−s−1(n+1)s(s+1))|φ′(ζ)|λ]1λ]. | (2.2) |
Proof. From the integral identity given in Lemma 2.1, the H¨older integral inequality and the s-preinvexity of |φ′(x)|λ, we have
|Ψ(ε,ζ;n,α,κ)|≤η(ζ,ε)2(n+1)[1∫0|(2(1−θ)ακ−θακ3)||φ′(ε+1−θn+1η(ζ,ε))|dθ+|1∫0(θακ−2(1−θ)ακ3)||φ′(ε+n+θn+1η(ζ,ε))|dθ]≤η(ζ,ε)2(n+1)[(1∫0|(2(1−θ)ακ−θακ3)|μdθ)1μ×[1∫0((1−(1−θn+1)s)|φ′(ε)|λ+(1−θn+1)s|φ′(ζ)|λ)dθ]1λ+(1∫0|(θακ−2(1−θ)ακ3)|μdθ)1μ[1∫0((1−(n+θn+1)s)|φ′(ε)|λ+(n+θn+1)s|φ′(ζ)|λ)dθ]1λ]. | (2.3) |
Using the fact that 1−χs≤(1−χ)s≤21−s−χs for χ∈[0,1] with s∈(0,1], we have
1∫0(1−(n+θn+1)s|φ′(ε)|λ+(n+θn+1)|φ′(ζ)|λ)dθ≤1∫0[(1−θn+1)|φ′(ε)|λ+(21−s−(1−θn+1)s)|φ′(ζ)|λ]dθ=1(n+1)s(s+1)|φ′(ε)|λ+(21−s−1(n+1)s(s+1))|φ′(ζ)|λ | (2.4) |
and
1∫0[(1−(1−θn+1)s)|φ′(ε)|λ+(1−θn+1)s|φ′(ζ)|λ]dθ=(1−1(n+1)s(s+1)|φ′(ε)|λ+1(n+1)s(s+1)|φ′(ζ)|λ). | (2.5) |
Remark 2.2. If we choose η(ζ,ε)=ζ−ε with κ=1, then under the assumption of Theorem 2.2, one has Theorem 2.3 in [19].
Corollary 2.1. If we choose α=κ=1, and n=s=1, then under the assumption of Theoremm 2.2 we have
|16[φ(ε)+4φ(2ε+η(ζ,ε)2)+φ(ε+η(ζ,ε))]−1η(ζ,ε)ε+η(ζ,ε)∫εφ(x)dx|≤η(ζ,ε)4[1+2μ+13μ+1(μ+1)]1μ[(34)1λ+(14)1λ][|φ′(ε)|+|φ′(ζ)|]. |
Corollary 2.2. If we choose η(ζ,ε)=ζ−ε with α=κ=1, and n=s=1, then under the assumption of Theoremm 2.2 we have
|16[φ(ε)+4φ(ε+ζ2)+φ(ζ)]−1ζ−εζ∫εφ(x)dx|≤ζ−ε4[1+2μ+13μ+1(μ+1)]1μ[(34)1λ+(14)1λ][|φ′(ε)|+|φ′(ζ)|]. |
Proof. The proof of the last inequality is obtained by using the fact that
n∑i=1(ωi+νi)j≤n∑i=1(ωi)j+n∑i=1(νi)j |
for 0≤j≤1,ω1,ω2,ω3,...,ωn≥0;ν1,ν2,ν3,...,νn≥0.
Theorem 2.3. Let φ:Ω=[ε,ε+η(ζ,ε)]→R be a differentiable function on Ω. If φ′∈L[ε,ε+η(ζ,ε)]and |φ′| is s-preinvex function, then the following inequality holds for fractional integrals with α,κ>0, then the following integral inequality holds:
|Ψ(ε,ζ;n,α,κ)|≤η(ζ,ε)2(n+1){(Δ1+Δ3)|φ′(ε)|+(Δ1+Δ2)|φ′(ζ)|}, | (2.6) |
where
Δ1=2−4(1−2κα2κα+1)ακ+s+13(n+1)s(ακ+s+1)+13(n+1)s[β(ακ+1,s+1)−2β(2κα2κα+1;ακ+1,s+1)], |
Δ2=21−s{3−2(2κα2ακ+1)ακ+1−4(1−2κα2ακ+1)ακ+1}3(ακ+1)−2−4(1−2κα2κα+1)ακ+s+13(n+1)s(ακ+s+1)+13(n+1)s[2β(2κα2ακ+1;ακ+1,s+1)−β(ακ+1,s+1)] |
and
Δ3={3−2(2κα2ακ+1)ακ+1−4(1−2κα2ακ+1)ακ+1}3(ακ+1)−2−4(1−2κα2κα+1)ακ+s+13(n+1)s(ακ+s+1)+13(n+1)s[2β(2κα2ακ+1;ακ+1,s+1)−β(ακ+1,s+1)]. |
Proof. From Lemma 2.1 and using the s-preinvexity of |φ′(x)|, we have
|Ψ(ε,ζ;n,α,κ)|≤η(ζ,ε)2(n+1)[1∫0|2(1−θ)ακ−θακ3|[(1−(1−θn+1)s)|φ′(ε)|+(1−θn+1)s|φ′(ζ)|]dθ+1∫0|θακ−2(1−θ)ακ3|[(1−(n+θn+1)s)|φ′(ε)|+(n+θn+1)s|φ′(ζ)|]dθ] | (2.7) |
From (2.7), we have
1∫0|θακ−2(1−θ)ακ3|[(1−(n+θn+1)s)|φ′(ε)|+(n+θn+1)s|φ′(ζ)|]dθ≤|φ′(ε)|1∫0|θακ−2(1−θ)ακ3|(1−θn+1)sdθ+|φ′(ζ)|1∫0|θακ−2(1−θ)ακ3|(21−s−1−θn+1)sdθ, | (2.8) |
By taking into account
Δ1=1∫0|θακ−2(1−θ)ακ3|(1−θn+1)sdθ=2−4(1−2κα2κα+1)ακ+s+13(n+1)s(ακ+s+1)+13(n+1)s[β(ακ+1,s+1)−2β(2κα2κα+1;ακ+1,s+1)], | (2.9) |
Δ2=1∫0|θακ−2(1−θ)ακ3|(21−s−1−θn+1)sdθ=21−s{3−2(2κα2ακ+1)ακ+1−4(1−2κα2ακ+1)ακ+1}3(ακ+1)−2−4(1−2κα2κα+1)ακ+s+13(n+1)s(ακ+s+1)+13(n+1)s[2β(2κα2ακ+1;ακ+1,s+1)−β(ακ+1,s+1)] | (2.10) |
and
Δ3=1∫0|θακ−2(1−θ)ακ3|(1−1−θn+1)sdθ={3−2(2κα2ακ+1)ακ+1−4(1−2κα2ακ+1)ακ+1}3(ακ+1)−2−4(1−2κα2κα+1)ακ+s+13(n+1)s(ακ+s+1)+13(n+1)s[2β(2κα2ακ+1;ακ+1,s+1)−β(ακ+1,s+1)], | (2.11) |
Theorem 2.4. Let φ:Ω=[ε,ε+η(ζ,ε)]→R be a differentiable function on Ω. If φ′∈L[ε,ε+η(ζ,ε)]and |φ′| is s-preinvex function, then the following inequality holds for fractional integrals with α,κ>0, then the following integral inequality holds:
|Ψ(ε,ζ;n,α,κ)|≤η(ζ,ε)2(n+1)(Δ0)1−1λ{(Δ1|φ′(ε)|λ+Δ3|φ′(ζ)|λ)1λ+(Δ1|φ′(ε)|λ+Δ2|φ′(ζ)|λ)1λ}, | (2.12) |
where
Δ0={3−2(2κα2ακ+1)ακ+1−4(1−2κα2ακ+1)ακ+1}3(ακ+1). |
Proof. By using Lemma 2.1 and the H¨older's integral inequality for λ>1 we have
|Ψ(ε,ζ;n,α,κ)|≤η(ζ,ε)2(n+1)[(1∫0|2(1−θ)ακ−θακ3|dθ)1−1λ×[1∫0|2(1−θ)ακ−θακ3||φ′(ε+1−θn+1η(ζ,ε))|λdθ)1λ+1∫0|θακ−2(1−θ)ακ3||φ′(ε+n+θn+1η(ζ,ε))|λdθ)1λ] |
Using s-preinvexity of |φ′|, we get
|Ψ(ε,ζ;n,α,κ)|≤η(ζ,ε)2(n+1)[(1∫0|2(1−θ)ακ−θακ3|dθ)1−1λ×[1∫0|2(1−θ)ακ−θακ3|[((1−(1−θn+1)s)|φ′(ε)|λ+(1−θn+1)λ|φ′(ζ)|λ)dθ]1λ+1∫0|θακ−2(1−θ)ακ3|[((1−(n+θn+1)s)|φ′(ε)|λ+(n+θn+1)λ|φ′(ζ)|λ)dθ]1λ,] | (2.13) |
using the fact that
Δ0=1∫0|2(1−θ)ακ−θακ3|dθ={3−2(2κα2ακ+1)ακ+1−4(1−2κα2ακ+1)ακ+1}3(ακ+1). | (2.14) |
A combination of (2.9)–(2.11) with (2.14) into (2.13) gives the desired inequality (2.12). The proof is completed.
Corollary 2.3. If we take n=s=1 and α=κ=1, then under the assumption of Theorem 2.4, we have
|16(φ(ε)+4φ(2ε+η(ζ,ε)2)+φ(ε+η(ζ,ε)))−1η(ζ,ε)ε+η(ζ,ε)∫εφ(x)dx|≤η(ζ,ε)4(518)1−1λ[(61324)1λ+(29324)1λ][|φ′(ε)|+|φ′(ζ)|]. |
Corollary 2.4. If we take η(ζ,ε)=ζ−ε with n=s=1 and α=κ=1, then under the assumption of Theorem 2.4, we have
|16(φ(ε)+4φ(ε+ζ2)+φ(ζ))−1ζ−εζ∫εφ(x)dx|≤ζ−ε4(518)1−1λ[(61324)1λ+(29324)1λ][|φ′(ε)|+|φ′(ζ)|]. |
Remark 2.3. If we take η(ζ,ε)=ζ−ε with λ=1 and κ=s=1, then Theorem 2.4 reduces to Theorem 2.2 in [19].
Remark 2.4. If we take η(ζ,ε)=ζ−ε with λ=1, κ=s=1, and α=n=1 then Theorem 2.4 reduces to Corollary 1 in [18].
For deriving further results, we deal with the boundedness and the Lipschitzian condition of φ′.
Theorem 2.5. Let φ:Ω=[ε,ε+η(ζ,ε)]→R be a differentiable function on Ω. If |φ′| is s-preinvex function, there exists constants m<M satisfying that ∞<m≤φ′(x)≤M<∞ for all x∈[ε,ε+η(ζ,ε)] and α,κ>0, and n≥0, then the following integral inequality holds:
|Ψ(ε,ζ;n,α,κ)|≤(M−m)η(ζ,ε)2(n+1)Δ0, | (2.15) |
where Δ0 given in (2.14).
Proof. From Lemma 2.1, we have
Ψ(ε,ζ;n,α,κ)|=η(ζ,ε)2(n+1)[1∫0(2(1−θ)ακ−θακ3)(φ′(ε+1−θn+1η(ζ,ε))−m+M2)dθ+1∫0(θακ−2(1−θ)ακ3)(φ′(ε+n+θn+1η(ζ,ε))−m+M2)dθ] | (2.16) |
Using the fact that m−m+M2≤φ′(ε+1−θn+1η(ζ,ε))−m+M2≤M−m+M2, one has
|φ′(ε+1−θn+1η(ζ,ε))−m+M2|≤M−m2, |
similarly,
|φ′(ε+n+θn+1η(ζ,ε))−m+M2|≤M−m2, |
Inequality (2.16) implies that
|Ψ(ε,ζ;n,α,κ)|≤(M−m)η(ζ,ε)2(n+1)1∫0|2(1−θ)ακ−θακ3|dθ=(M−m)η(ζ,ε)2(n+1)Δ0. |
The proof is completed.
Corollary 2.5. If we take η(ζ,ε)=ζ−ε with α=κ=1, then under the assumption of Theorem 2.5, we have
|Ψ(ε,ζ;n,α,κ)|≤7(M−m)(ζ−ε)36(n+1). |
Theorem 2.6. Let φ:Ω=[ε,ε+η(ζ,ε)]→R be a differentiable function on Ω. If φ′ satisfies Lipchitz conditions on [ε,ε+η(ζ,ε)] for certain L>0, with α>0,κ>0,n≥0, then the following inequality holds:
|Ψ(ε,ζ;n,α,κ)|≤L(η(ζ,ε))22(n+1)2[(n−1)Δ0−4(2ακ2ακ+1)ακ+2−23(ακ)+2+83β(2ακ2ακ+1;ακ+1,2)−43β(ακ+1,2)], | (2.17) |
where Δ0 given in (2.14).
Proof. From Lemma 2.1, we have
Ψ(ε,ζ;n,α,κ)|=η(ζ,ε)2(n+1)[1∫0(2(1−θ)ακ−θακ3)[φ′(ε+1−θn+1η(ζ,ε))−φ′(ε+n+θn+1η(ζ,ε))]dθ. |
Since φ′ is Lipschitz condition on [ε,ε+η(ζ,ε)], for certain L>0, we have
|φ′(ε+1−θn+1η(ζ,ε))−φ′(ε+n+θn+1η(ζ,ε))|≤Lη(ζ,ε)(n−1+2tn+1) |
Thus
|Ψ(ε,ζ;n,α,κ)|≤η(ζ,ε)2(n+1)[1∫0|2(1−θ)ακ−θακ3||φ′(ε+1−θn+1η(ζ,ε))−φ′(ε+n+θn+1η(ζ,ε)|]dθ≤L(η(ζ,ε))22(n+1)1∫0|2(1−θ)ακ−θακ3|(n−1+2tn+1)dθ=L(η(ζ,ε))22(n+1)2[(n−1)Δ0−4(2ακ2ακ+1)ακ+2−23(ακ)+2+83β(2ακ2ακ+1;ακ+1,2)−43β(ακ+1,2)]. |
The proof is completed.
Corollary 2.6. If we take η(ζ,ε)=ζ−ε with α=κ=1, then under the assumption of Theorem 2.6, we have
|Ψ(ε,ζ;n,α,κ)|≤L(ζ−ε)22(n+1)2[7n−1118+22135+83β(23;2,2)]. |
Let the set ψ and the δ-finite measure ϱ be given, and let the set of all probability densities on ϱ to be defined on Λ:={z|z:ψ→R,z(x)>0,∫ψz(x)dϱ(x)=1}.
Let F:(0,∞)→R be given mapping and consider DF(z,w) be defined by
DF(z,w):=∫ψz(x)F(z(x)w(x))dϱ(x),z,w∈Λ. | (3.1) |
If F is convex, then (3.1) is called as the Csiszar F-divergence.
Consider the following Hermite-Hadamard divergence
DFHH(z,w):=∫ψw(x)z(x)∫1F(t)dtw(x)z(x)−1dϱ(x),w,z∈Λ, | (3.2) |
where F is convex on (0,∞) with F(1)=0. Note that DFHH(z,w)≥0 with the equality holds if and only if w=z.
Proposition 3.1. Suppose all assumptions of Corollary 2.2 hold for (0,∞) and F(1)=0, if w,z∈Λ, then the following inequality holds:
|16[DF(w,z)+4∫ψz(x)F(z(x)+w(x)2w(x)dϱ(x))]−DFHH(w,z)|≤(1+2λ+1)1λ4(3λ+1(1+λ))1λ[(34)1λ+(14)1λ]×[|F′(1)|∫ψ|z(x)−w(x)|dϱ(x)+∫ψ|z(x)−w(x)||F′z(x)w(x)|dϱ(x)]. | (3.3) |
Proof. Let Θ1={x∈ψ:z(x)=w(x)}. Θ2={x∈ψ:z(x)<w(x)} and Θ3={x∈ψ:z(x)>w(x)} and Obviously, if x∈Θ1, then equality holds in (3.3).
Now if x∈Θ2, then using Corollary 2.2 for ε=z(x)w(x) and ζ=1, multiplying both sides of the obtained results by w(x) and then integrating over Θ2, we obtain
|16[4∫ψ2w(x)F(w(x)+z(x)2w(x))dϱ(x)+∫ψ2w(x)F(z(x)w(x))dϱ(x)]−∫ψ2w(x)z(x)w(x)∫1F(t)dtz(x)w(x)−1dϱ(x)|≤(1+2λ+1)1λ4(3λ+1(1+λ))1λ[(34)1λ+(14)1λ]×[|F′(1)|∫ψ2|w(x)−z(x)|dϱ(x)+∫ψ2|w(x)−z(x)||F′z(x)w(x)|dϱ(x)]. | (3.4) |
Similarly if x∈Θ3, then using Corollary 2.2 for ε=1 and ζ=z(x)w(x), multiplying both sides of the obtained results by w(x) and then integrating over Θ3, we obtain
|16[4∫ψ3w(x)F(w(x)+z(x)2w(x))dϱ(x)+∫ψ3w(x)F(z(x)w(x))dϱ(x)]−∫ψ3w(x)z(x)w(x)∫1F(t)dtz(x)w(x)−1dϱ(x)|≤(1+2λ+1)1λ4(3λ+1(1+λ))1λ[(34)1λ+(14)1λ]×[|F′(1)|∫ψ3|z(x)−w(x)|dϱ(x)+∫ψ3|z(x)−w(x)||F′z(x)w(x)|dϱ(x)]. | (3.5) |
Adding inequalities (3.4) and (3.5) and then utilizing triangular inequality, we get the result.
Proposition 3.2. Suppose all assumptions of Corollary 2.4 holds for (0,∞) and f(1)=0, if w,z∈Λ, then the following inequality holds:
|16[DF(w,z)+4∫ψz(x)F(z(x)+w(x)2w(x)dϱ(x))]−DFHH(w,z)|≤(518)1λ[(61324)1λ+(29324)1λ]×[|F′(1)|∫ψ|z(x)−w(x)|4dϱ(x)+∫ψ|z(x)−w(x)|4|F′z(x)w(x)|dϱ(x)]. | (3.6) |
Proof. The proof is similar as one has done for Corollary 2.2.
Let G:[ε,ε+η(ζ,ε)]→[0,1] be the probability density function of a continuous random variable Y with the cumulative distribution function of G
F(y)=P(Y≤y)=x∫εG(t)dt. |
As we know E(y)=ε+η(ζ,ε)∫εtdF(t)=(ε+η(ζ,ε))−ε+η(ζ,ε)∫εF(t)
Proposition 3.3. By Corollary 2.1, we get the inequality
|16[4P(Y≤2ε+η(ζ,ε)2)+1]−1η(ζ,ε)(ε+η(ζ,ε)−E(y))|≤η(ζ,ε)4[1+2μ+13μ+1(μ+1)]1μ[(34)1λ+(14)1λ][|G(ε)|+|G(ζ)|]. |
Proposition 3.4. By Corollary 2.3, we get the inequality
|16[4P(Y≤2ε+η(ζ,ε)2)+1]−1η(ζ,ε)(ε+η(ζ,ε)−E(y))|≤η(ζ,ε)4(518)1−1λ[(61324)1λ+(29324)1λ][|G(ε)|+|G(ζ)|]. |
Same applications can be found for Corollary 2.2 and Corollary 2.4, respectively. We leave it to the interested readers.
In this paper, we have established several Simpson's type inequalities via κ-fractional integrals in terms of preinvex functions. We also have obtained the inequalities applied to F-divergence measures and application for probability density functions. These results can be viewed as refinement and significant improvements of the previously known for [18,19] and preinvex functions. Applications can be provided in terms of the obtained results to special means. The ideas and techniques of this paper may be attracted to interested readers.
The authors declare that there is no conflicts of interest in this paper.
[1] | S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533-579. |
[2] |
J. Alzabut, T. Abdeljawad, A generalized discrete fractional Gronwall inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system, Appl. Anal. Discr. Math., 12 (2018), 36-48. doi: 10.2298/AADM1801036A
![]() |
[3] | T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson's inequality via differentiable mapping using extended (s, m)-convex functions, Appl. Math. Comput., 293 (2017), 358-369. |
[4] | K. C. Hsu, S. R. Hwang, K. L. Tseng, Some extendedSimpson-type inequalities and applications, B. Iran. Math. Soc.,43 (2017), 409-425. |
[5] |
M. Matloka, Weighted Simpson type inequalities for h-convexfunctions, J. Nonlinear Sci. Appl., 10 (2017), 5770-5780. doi: 10.22436/jnsa.010.11.15
![]() |
[6] | S. Mubeen, G. M. Habibullah, On k-fractional integrals andapplication, Int. J. Contemp. Math. Sci., 7 (2012), 89-94. |
[7] |
M. A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323-330. doi: 10.1080/02331939408843995
![]() |
[8] |
M. A. Noor, Invex Equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463-475. doi: 10.1016/j.jmaa.2004.08.014
![]() |
[9] | M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126-131. |
[10] | M. A. Noor, Hadamard integral inequalities for product of two preinvex functions, Nonlinear Anal. Forum, 14 (2009), 167-173. |
[11] |
M. A. Noor, K. I. Noor, Some characterization of strongly preinvex functions, J. Math. Anal. Appl., 316 (2006), 697-706. doi: 10.1016/j.jmaa.2005.05.014
![]() |
[12] | M. A. Noor, K. I. Noor, Generalized preinvex functions and their properties, Journal of Applied Mathematics and Stochastic Analysis, 2006 (2006), 1-13. |
[13] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242-251. |
[14] | M. A. Noor, K. I. Noor, S. Rashid, On some new classes of preinvex functions and inequalities, Mathematics., 7 (2018), 29. |
[15] | C. Ravichandran, K. Jothimani, H. M. Baskonus, et al. New results on nondensely characterized integrodifferential equations with fractional order, Eur. Phys. J. Plus , 133 (2018), 109. |
[16] |
C. Ravichandran, K. Logeswari, F. Jarad,New results on existence in the framework of Atangana-Baleanu derivative for fractionalintegro-differential equations, Chaos Soliton. Fract., 125 (2019), 194-200. doi: 10.1016/j.chaos.2019.05.014
![]() |
[17] |
C. Ravichandran, N. Valliammal, J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin I. , 356 (2019), 1535-1565. doi: 10.1016/j.jfranklin.2018.12.001
![]() |
[18] |
M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl.,60 (2010), 2191-2199. doi: 10.1016/j.camwa.2010.07.033
![]() |
[19] |
E. Set, A. O. Akdemir, M. E. Ozdemir, Simpson type integral inequalities for convex functionsvia Riemann-Liouville integrals, Filomat, 31 (2017), 4415-4420. doi: 10.2298/FIL1714415S
![]() |
1. | Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, Hermite-Hadamard Type Inequalities for the Class of Convex Functions on Time Scale, 2019, 7, 2227-7390, 956, 10.3390/math7100956 | |
2. | Saima Rashid, Fahd Jarad, Muhammad Aslam Noor, Humaira Kalsoom, Yu-Ming Chu, Inequalities by Means of Generalized Proportional Fractional Integral Operators with Respect to Another Function, 2019, 7, 2227-7390, 1225, 10.3390/math7121225 | |
3. | Saima Rashid, Fahd Jarad, Muhammad Aslam Noor, Grüss-type integrals inequalities via generalized proportional fractional operators, 2020, 114, 1578-7303, 10.1007/s13398-020-00823-5 | |
4. | Muhammad Samraiz, Fakhra Nawaz, Sajid Iqbal, Thabet Abdeljawad, Gauhar Rahman, Kottakkaran Sooppy Nisar, Certain mean-type fractional integral inequalities via different convexities with applications, 2020, 2020, 1029-242X, 10.1186/s13660-020-02474-x | |
5. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9 | |
6. | Zeynep ŞANLI, SIMPSON TYPE INTEGRAL INEQUALITIES FOR HARMONIC CONVEX FUNCTIONS VIA CONFORMABLE FRACTIONAL INTEGRALS, 2020, 2147-1630, 10.37094/adyujsci.780433 | |
7. | Thabet Abdeljawad, 2020, 9781119654223, 133, 10.1002/9781119654223.ch5 | |
8. | Shuang-Shuang Zhou, Saima Rashid, Saima Parveen, Ahmet Ocak Akdemir, Zakia Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, 2021, 6, 2473-6988, 4507, 10.3934/math.2021267 | |
9. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, Yu-Ming Chu, Some new local fractional inequalities associated with generalized $(s,m)$-convex functions and applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02865-w | |
10. | Humaira Kalsoom, Saima Rashid, Muhammad Idrees, Yu-Ming Chu, Dumitru Baleanu, Two-Variable Quantum Integral Inequalities of Simpson-Type Based on Higher-Order Generalized Strongly Preinvex and Quasi-Preinvex Functions, 2019, 12, 2073-8994, 51, 10.3390/sym12010051 | |
11. | Saima Rashid, Fahd Jarad, Zakia Hammouch, Some new bounds analogous to generalized proportional fractional integral operator with respect to another function, 2021, 0, 1937-1179, 0, 10.3934/dcdss.2021020 | |
12. | Saima Rashid, Fahd Jarad, Muhammad Aslam Noor, Khalida Inayat Noor, Dumitru Baleanu, Jia-Bao Liu, On Grüss inequalities within generalized K-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-02644-7 | |
13. | Saad Ihsan Butt, Mehroz Nadeem, Shahid Qaisar, Ahmet Ocak Akdemir, Thabet Abdeljawad, Hermite–Jensen–Mercer type inequalities for conformable integrals and related results, 2020, 2020, 1687-1847, 10.1186/s13662-020-02968-4 | |
14. | Saima Rashid, Muhammad Amer Latif, Zakia Hammouch, Yu-Ming Chu, Fractional Integral Inequalities for Strongly h -Preinvex Functions for a kth Order Differentiable Functions, 2019, 11, 2073-8994, 1448, 10.3390/sym11121448 | |
15. | SAIMA RASHID, ZAKIA HAMMOUCH, FAHD JARAD, YU-MING CHU, NEW ESTIMATES OF INTEGRAL INEQUALITIES VIA GENERALIZED PROPORTIONAL FRACTIONAL INTEGRAL OPERATOR WITH RESPECT TO ANOTHER FUNCTION, 2020, 28, 0218-348X, 2040027, 10.1142/S0218348X20400277 | |
16. | Fatih Hezenci, Hüseyin Budak, Hasan Kara, New version of fractional Simpson type inequalities for twice differentiable functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03615-2 | |
17. | Hüseyin Budak, Seda Kilinç Yildirim, Hasan Kara, Hüseyin Yildirim, On new generalized inequalities with some parameters for coordinated convex functions via generalized fractional integrals, 2021, 44, 0170-4214, 13069, 10.1002/mma.7610 | |
18. | Muhammad Aamir Ali, Hasan Kara, Jessada Tariboon, Suphawat Asawasamrit, Hüseyin Budak, Fatih Hezenci, Some New Simpson’s-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators, 2021, 13, 2073-8994, 2249, 10.3390/sym13122249 | |
19. | Humaira Kalsoom, Hüseyin Budak, Hasan Kara, Muhammad Aamir Ali, Some new parameterized inequalities for co-ordinated convex functions involving generalized fractional integrals, 2021, 19, 2391-5455, 1153, 10.1515/math-2021-0072 | |
20. | İmdat İşcan, Erhan Set, Ahmet Ocak Akdemir, Alper Ekinci, Sinan Aslan, 2023, 9780323909532, 157, 10.1016/B978-0-32-390953-2.00017-7 | |
21. | MIAO-KUN WANG, SAIMA RASHID, YELIZ KARACA, DUMITRU BALEANU, YU-MING CHU, NEW MULTI-FUNCTIONAL APPROACH FOR κTH-ORDER DIFFERENTIABILITY GOVERNED BY FRACTIONAL CALCULUS VIA APPROXIMATELY GENERALIZED (ψ, ℏ)-CONVEX FUNCTIONS IN HILBERT SPACE, 2021, 29, 0218-348X, 2140019, 10.1142/S0218348X21400193 | |
22. | Saima Rashid, Dumitru Baleanu, Yu-Ming Chu, Some new extensions for fractional integral operator having exponential in the kernel and their applications in physical systems, 2020, 18, 2391-5471, 478, 10.1515/phys-2020-0114 | |
23. | Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara, New Simpson type inequalities for twice differentiable functions via generalized fractional integrals, 2022, 7, 2473-6988, 3959, 10.3934/math.2022218 | |
24. | YONG-MIN LI, SAIMA RASHID, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, NEW NEWTON’S TYPE ESTIMATES PERTAINING TO LOCAL FRACTIONAL INTEGRAL VIA GENERALIZED p-CONVEXITY WITH APPLICATIONS, 2021, 29, 0218-348X, 2140018, 10.1142/S0218348X21400181 | |
25. | Miguel Vivas-Cortez, Pshtiwan O. Mohammed, Y. S. Hamed, Artion Kashuri, Jorge E. Hernández, Jorge E. Macías-Díaz, On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities, 2022, 7, 2473-6988, 10256, 10.3934/math.2022571 | |
26. | Yu-Ming Chu, Saima Rashid, Fahd Jarad, Muhammad Aslam Noor, Humaira Kalsoom, More new results on integral inequalities for generalized $ \mathcal{K} $-fractional conformable Integral operators, 2021, 14, 1937-1179, 2119, 10.3934/dcdss.2021063 | |
27. | Nassima Nasri, Badreddine Meftah, Abdelkader Moumen, Hicham Saber, Fractional $ 3/8 $-Simpson type inequalities for differentiable convex functions, 2024, 9, 2473-6988, 5349, 10.3934/math.2024258 | |
28. | Fatih Hezenci, Hüseyin Budak, A note on fractional Simpson-like type inequalities for functions whose third derivatives are convex, 2023, 37, 0354-5180, 3715, 10.2298/FIL2312715H | |
29. | Zeynep Sanlı, Simpson type Katugampola fractional integral inequalities via Harmonic convex functions, 2022, 10, 23193786, 364, 10.26637/mjm1004/007 | |
30. | Meriem Merad, Badreddine Meftah, Abdelkader Moumen, Mohamed Bouye, Fractional Maclaurin-Type Inequalities for Multiplicatively Convex Functions, 2023, 7, 2504-3110, 879, 10.3390/fractalfract7120879 | |
31. | Fatih Hezenci, A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions, 2023, 73, 1337-2211, 675, 10.1515/ms-2023-0049 | |
32. | Hüseyin Budak, Fatih Hezenci, Hasan Kara, Mehmet Zeki Sarikaya, Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule, 2023, 11, 2227-7390, 2282, 10.3390/math11102282 | |
33. | Nazakat Nazeer, Ali Akgül, Faeem Ali, Study of the results of Hilbert transformation for some fractional derivatives, 2024, 0228-6203, 1, 10.1080/02286203.2024.2371685 | |
34. | Tarek Chiheb, Badreddine Meftah, Abdelkader Moumen, Mouataz Billah Mesmouli, Mohamed Bouye, Some Simpson-like Inequalities Involving the (s,m)-Preinvexity, 2023, 15, 2073-8994, 2178, 10.3390/sym15122178 | |
35. | Gamzenur Köksaldı, Tuba Tunç, Simpson-type inequalities for the functions with bounded second derivatives involving generalized fractional integrals, 2025, 2025, 1687-2770, 10.1186/s13661-025-02040-8 |