Research article Special Issues

Simpson’s type integral inequalities for ĸ-fractional integrals and their applications

  • Received: 12 June 2019 Accepted: 25 July 2019 Published: 09 August 2019
  • MSC : 26D15, 26D10, 90C23

  • In this paper, some new inequalities of Simpson's type are set up for the classes of functions whose derivatives of absolute are preinvex by means of $% \kappa$-fractional integrals. Additionally, by extraordinary choices of $n$ and $\kappa$, we give some diminished outcomes. Meanwhile, we also provide the inequalities for $\mathcal{F}$-divergence measures and in probabilistic versions.

    Citation: Saima Rashid, Ahmet Ocak Akdemir, Fahd Jarad, Muhammad Aslam Noor, Khalida Inayat Noor. Simpson’s type integral inequalities for ĸ-fractional integrals and their applications[J]. AIMS Mathematics, 2019, 4(4): 1087-1100. doi: 10.3934/math.2019.4.1087

    Related Papers:

  • In this paper, some new inequalities of Simpson's type are set up for the classes of functions whose derivatives of absolute are preinvex by means of $% \kappa$-fractional integrals. Additionally, by extraordinary choices of $n$ and $\kappa$, we give some diminished outcomes. Meanwhile, we also provide the inequalities for $\mathcal{F}$-divergence measures and in probabilistic versions.


    加载中


    [1] S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533-579.
    [2] J. Alzabut, T. Abdeljawad, A generalized discrete fractional Gronwall inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system, Appl. Anal. Discr. Math., 12 (2018), 36-48. doi: 10.2298/AADM1801036A
    [3] T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson's inequality via differentiable mapping using extended (s, m)-convex functions, Appl. Math. Comput., 293 (2017), 358-369.
    [4] K. C. Hsu, S. R. Hwang, K. L. Tseng, Some extendedSimpson-type inequalities and applications, B. Iran. Math. Soc.,43 (2017), 409-425.
    [5] M. Matloka, Weighted Simpson type inequalities for h-convexfunctions, J. Nonlinear Sci. Appl., 10 (2017), 5770-5780. doi: 10.22436/jnsa.010.11.15
    [6] S. Mubeen, G. M. Habibullah, On k-fractional integrals andapplication, Int. J. Contemp. Math. Sci., 7 (2012), 89-94.
    [7] M. A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323-330. doi: 10.1080/02331939408843995
    [8] M. A. Noor, Invex Equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463-475. doi: 10.1016/j.jmaa.2004.08.014
    [9] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126-131.
    [10] M. A. Noor, Hadamard integral inequalities for product of two preinvex functions, Nonlinear Anal. Forum, 14 (2009), 167-173.
    [11] M. A. Noor, K. I. Noor, Some characterization of strongly preinvex functions, J. Math. Anal. Appl., 316 (2006), 697-706. doi: 10.1016/j.jmaa.2005.05.014
    [12] M. A. Noor, K. I. Noor, Generalized preinvex functions and their properties, Journal of Applied Mathematics and Stochastic Analysis, 2006 (2006), 1-13.
    [13] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242-251.
    [14] M. A. Noor, K. I. Noor, S. Rashid, On some new classes of preinvex functions and inequalities, Mathematics., 7 (2018), 29.
    [15] C. Ravichandran, K. Jothimani, H. M. Baskonus, et al. New results on nondensely characterized integrodifferential equations with fractional order, Eur. Phys. J. Plus , 133 (2018), 109.
    [16] C. Ravichandran, K. Logeswari, F. Jarad,New results on existence in the framework of Atangana-Baleanu derivative for fractionalintegro-differential equations, Chaos Soliton. Fract., 125 (2019), 194-200. doi: 10.1016/j.chaos.2019.05.014
    [17] C. Ravichandran, N. Valliammal, J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin I. , 356 (2019), 1535-1565. doi: 10.1016/j.jfranklin.2018.12.001
    [18] M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl.,60 (2010), 2191-2199. doi: 10.1016/j.camwa.2010.07.033
    [19] E. Set, A. O. Akdemir, M. E. Ozdemir, Simpson type integral inequalities for convex functionsvia Riemann-Liouville integrals, Filomat, 31 (2017), 4415-4420. doi: 10.2298/FIL1714415S
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3907) PDF downloads(649) Cited by(34)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog