Citation: Hassen Aydi, M. A. Barakat, Erdal Karapinar, Zoran D. Mitrović, Tawseef Rashid. On $\mathcal{L}$-simulation mappings in partial metric spaces[J]. AIMS Mathematics, 2019, 4(4): 1034-1045. doi: 10.3934/math.2019.4.1034
[1] | T. Abdeljawad, H. Aydi, E. Karapinar, Coupled fixed points for Meir-Keeler contractions in ordered partial metric spaces, Math. Probl. Eng., 2012 (2012). |
[2] | M. Abbas, B. Ali, C. Vetro, A Suzuki type fixed point theorem for a generalized multivalued mapping on partial Hausdorff metric spaces, Topol. Appl., 160 (2013), 553-563. doi: 10.1016/j.topol.2013.01.006 |
[3] | P. Agarwal, M. A. Alghamdi, N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory A., 2012 (2012), 40. |
[4] | I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory A., 2011 (2011), 508730. |
[5] | E. Ameer, H. Aydi, M. Arshad, et al. Hybrid multivalued type contraction mappings in αk-complete partial b-metric spaces and applications, Symmetry, 11 (2019), 86. |
[6] | H. Aydi, M. A. Barakat, Z. D. Mitrović, et al. A Suzuki type multi-valued contraction on weak partial metric spaces and application, J. Inequal. Appl., 2018 (2018), 270. |
[7] | H. Aydi, E. Karapinar, W. Shatanawi, Coupled fixed point results for (ψ,φ)-weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl., 62 (2011), 4449-4460. doi: 10.1016/j.camwa.2011.10.021 |
[8] | H. Aydi, E. Karapinar, New Meir-Keeler type tripled fixed point theorems on ordered partial metric spaces, Math. Probl. Eng., 2012 (2012), 1-17. |
[9] | H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234-3242. doi: 10.1016/j.topol.2012.06.012 |
[10] | B. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1992), 133-181. |
[11] | L. j. Ćirić, B. Samet, H. Aydi, et al. Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., 218 (2011), 2398-2406. |
[12] | S. H. Cho, Fixed point theorems for $\mathcal{L}$-contractions in generalized metric spaces, Abstr. Appl. Anal., 2018 (2018), 1-6. |
[13] | S. Gulyaz, E. Karapinar, A coupled fixed point result in partially ordered partial metric spaces through implicit function, Hacet. J. Math. Stat., 42 (2013), 347-357. |
[14] | M. Jleli, B. Samet, new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. |
[15] | E. Karapınar, R. P. Agarwal, H. Aydi, Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces, Mathematics, 6 (2018), 256. |
[16] | E. Karapinar, W. Shatanawi, K. Tas, Fixed point theorem on partial metric spaces involving rational expressions, Miskolc Math. Notes, 14 (2013), 135-142. doi: 10.18514/MMN.2013.471 |
[17] | E. Karapinar, S. Romaguera, Nonunique fixed point theorems in partial metric spaces, Filomat, 27 (2013), 1305-1314. doi: 10.2298/FIL1307305K |
[18] | E. Karapinar, I. Erhan, A. Ozturk, Fixed point theorems on quasi-partial metric spaces, Math. Comput. Model., 57 (2013), 2442-2448. doi: 10.1016/j.mcm.2012.06.036 |
[19] | W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer International Publishing, Switzerland, 2014. |
[20] | F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29 (2015), 1189-1194. doi: 10.2298/FIL1506189K |
[21] | S. G. Matthews, Partial metric topology, Ann. NY Acad. Sci., 728 (1994), 183-197. doi: 10.1111/j.1749-6632.1994.tb44144.x |
[22] | S. J. O'Neill, Partial metrics, valuations and domain theory, Ann. NY Acad. Sci., 806 (1996), 304-315. doi: 10.1111/j.1749-6632.1996.tb49177.x |
[23] | L. Pasicki, Dislocated quasi-metric and generalized contractions, Fixed Point Theory, 19 (2018), 359-368. doi: 10.24193/fpt-ro.2018.1.27 |
[24] | S. Radenović, Classical fixed point results in 0-complete partial metric spaces via cyclic-type extension, The Allahabad Mathematical Society, 31 (2016), 39-55. |
[25] | S. Radenović, Coincidence point results for generalized weakly (ψ,φ)-contractive mappings in ordered partial metric spaces, J. Indian Math. Soc., 3 (2014), 319-333. |
[26] | S. Romaguera, Fixed point theorems for generalized contraction on partial metric spaces, Topol. Appl., 159 (2012), 194-199. doi: 10.1016/j.topol.2011.08.026 |
[27] | W. Shatanawi, M. Postolache, Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces, Fixed Point Theory A., 2013 (2013), 54. |
[28] | W. Shatanawi, S. Manro, Fixed point results for cyclic (ψ,φ,A,B)-contraction in partial metric spaces, Fixed Point Theory A., 2012 (2012), 165. |
[29] | W. Shatanawi, H. K. Nashine, N. Tahat, Generalization of some coupled fixed point results on partial metric spaces, International Journal of Mathematics and Mathematical Sciences, 2012 (2012), 1-10. |
[30] | W. Shatanawi, B. Samet, M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comput. Model., 55 (2012), 680-687. doi: 10.1016/j.mcm.2011.08.042 |
[31] | S. Shukla, S. Radenović, Some common fixed point theorems for $F$-contraction type mappings in 0-complete partial metric spaces, Journal of Mathematics, 2013 (2013). |