Citation: Gerard Marx, Chaim Gilon. The Molecular Basis of Neural Memory. Part 7: Neural Intelligence (NI) versus Artificial Intelligence (AI)[J]. AIMS Medical Science, 2017, 4(3): 241-260. doi: 10.3934/medsci.2017.3.241
[1] | Boole G (1853) The Laws of Thought. In: The Mathematical Theories of Logic and Probabilities. Project Gutenberg (EBook #15114). |
[2] | Calderone J (2014) 10 Big Ideas in 10 Years of Brain Science. Scientific American MIND, November 6. |
[3] | Chalmers DJ (1996) The Conscious Mind: In Search for a Fundamental Theory. New York: Oxford University Press. |
[4] | Dehaene S (2014) Consciousness and the Brain. In: Deciphering How the Brain Codes Our Thoughts. New York: Penguin Publishers. |
[5] | Edelman G, Tononi G (2000) A universe of consciousness: How matter becomes imagination. Basic books. |
[6] | LeDoux JE (2003) Synaptic self: How our brains become who we are. New York: Penguin Publishers. |
[7] | LeDoux JE (2012) Evolution of human emotion: A view through fear. Prog Brain Res 195:431-442. doi: 10.1016/B978-0-444-53860-4.00021-0 |
[8] | Penrose R (1989) The Emperor's New Mind. New York: Oxford University Press. |
[9] | Shiffman D, Fry S, Marsh Z (2012) The nature of code. D. Shiffman. |
[10] | Bostrom N (2014) Superintelligence: Paths, dangers, strategies. OUP Oxford. |
[11] | Zimme (2014) The New Science of the Brain. National Geographic. |
[12] | McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. B Math Biol 5: 115-133. |
[13] | Turing AM (1950) Computing machinery and intelligence. Mind 59: 433-460. |
[14] | Graves A, Wayne G, Danihelka I (2014) Neural turing machines. arXiv preprint arXiv:1410.5401 |
[15] | Von Neumann J (2012) The computer and the brain. 3rd ed. New Haven: Yale University Press: 66. |
[16] | Jeffress LA (1951) Cerebral mechanisms in behavior; the Hixon Symposium. a. von Neumann J. The general and logical theory of automata: 1-41. b. McCullogh WS. Why the mind is in the head: 42-57. |
[17] | Arbib MA (1987) Brains, Machines and Mathematics. In: Neural Nets and Finite Automata. 2nd ed. Berlin: Springer US: 15-29. |
[18] | Franklin S (1995) Artificial Minds. Cambridge, MA: MIT Press. |
[19] | Longuet-Higgins HC (1981) Artificial intelligence-a new theoretical psychology? Cognition 10: 197-201. |
[20] | Neisser U (1963) The imitation of man by machine. Science 139: 193-197. doi: 10.1126/science.139.3551.193 |
[21] | Sloman A (1979) Epistemology and Artificial Intelligence: Expert Systems in the Microelectronic Age. Edinburgh: Edinburgh University Press. |
[22] | Gardner H (1985) The Mind's New Science. New York: Basic Books. |
[23] | Garland A (2015) Ex Machina – Movie. |
[24] | Sejnowski TJ, Koch C, Churchland PS (1988) Computational neuroscience. Science 24: 1299-1330. |
[25] | Russel S, Norvig P (2009) Artificial Intelligence: A Modern Approach. 3rd ed. NY: Pearson Publishers. |
[26] | Aho AV (2012) Computation and computational thinking. Comput J 55: 832-835. |
[27] | Guidolin D, Albertin G, Guescini M, et al. (2011) Central nervous system and computation. Quart Rev Biol 86: 265-85 doi: 10.1086/662456 |
[28] | Howard N (2012) Brain Language: The fundamental code unit. Brain Sci 1: 6-34. |
[29] | Howard N, Guidere M (2012) LXIO: The mood detection Robopsych Brain Sci 1: 71-77. |
[30] | Pockett S (2014) Problems with theories of consciousness. Front Syst Neurosci: 225. |
[31] | Hirschberg J, Manning CD (2015) Advances in natural language processing. Science 349: 261-266. doi: 10.1126/science.aaa8685 |
[32] | Parkes DC, Wellman MP (2015) Economic reasoning and artificial intelligence. Science 349: 267-272. doi: 10.1126/science.aaa8403 |
[33] | Gershman SJ, Horvitz EJ, Tenenbaum JB (2015) Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science 349: 273-278. doi: 10.1126/science.aac6076 |
[34] | Jordan M, Mitchell TM (2015) Machine learning: Trends, perspectives, and prospects. Science 349: 255-260. doi: 10.1126/science.aaa8415 |
[35] | Wu Y, Schuster M, Chen Z, et al. (2016) Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv 1609.08144. |
[36] | y Cajal SR (1995) Histology of the nervous system of man and vertebrates. USA: Oxford University Press. |
[37] | Garcia-Lopez P, Garcia-Marin V, FreireM (2010) The histological slides and drawing s of Cajal. Front Neuroanat 4: 9 |
[38] | Hebb DO (1949). The Organization of Behavior. New York: Wiley. |
[39] | Kandel ER, Schwartz JH, Jessell TM, et al. (2013) Principles of Neural Science. New York: MacGraw-Hill. |
[40] | Arshavsky YI (2006) "The seven sins" of the Hebbian synapse: can the hypothesis of synaptic plasticity explain long-term memory consolidation?. Prog Neurobiol 80: 99-113. doi: 10.1016/j.pneurobio.2006.09.004 |
[41] | Gallistel CR, KingA (2009) Memory and the Computational Brain. New York: Wiley Blackwell. |
[42] | Hawkins J, Blakeslee S (2005) On Intelligence. New York: St Martin's Press. |
[43] | Zador A, Koch C, Brown TH (1990) Biophysical model of a Hebbian synapse. Proc Natl Acad Sci USA 87: 6718-6722. doi: 10.1073/pnas.87.17.6718 |
[44] | Vizi ES, Fekete A, Karoly R, et al (2010) Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol 160: 785-809. doi: 10.1111/j.1476-5381.2009.00624.x |
[45] | Vizi E (2013) Role of high-affinity receptors and membrane transporters in non-synaptic communication and drug action in the central nervous system. Pharmacol Rev 52: 63-89. |
[46] | Schmitt FO, Samson FE, Irwin LN, et al. (1969) Brain cell micro-environment. NRP Bulletin: 7. |
[47] | Cserr HF (1986) The Neuronal Environment. Ann NY Acad Sci: 481. |
[48] | Juliano RI, Haskill S (1993) Signal transduction from extracellular matrix. J Cell Biol 120: 577-585. doi: 10.1083/jcb.120.3.577 |
[49] | Vargova L, Sykova E (2014) Astrocytes and extracellular matrix in extrasynaptic volume transmission. Phil Trans R Soc B 369: 20130608. doi: 10.1098/rstb.2013.0608 |
[50] | Giaume C, Oliet S (2016) Introduction to the special issue: Dynamic and metabolic interactions between astrocytes and neurons. Neuroscience 323: 1-2. doi: 10.1016/j.neuroscience.2016.02.062 |
[51] | Hrabětová S, Nicholson C (2007) Biophysical properties of brain extracellular space explored with ion-selective microelectrodes, integrative optical imaging and related techniques. In: Michael AC, Borland LM, editors. Electrochemical Methods for Neuroscience. Boca Raton, FL: CRC Press: chapter 10. |
[52] | Kuhn TS (1970) The Structure of Scientific Revolutions. 2nd ed. Chicago, IL: University of Chicago Press. |
[53] | Landauer R (1996) The physical nature of information. Physics Letters A 217: 188-193. doi: 10.1016/0375-9601(96)00453-7 |
[54] | Chua LO (2011) Resistance switching memories are memristors. Applied Physics A 102: 765-783. |
[55] | Di Ventra M, Pershin YY (2011) Memory materials: A unifying description. Mater Today 14: 584-591. doi: 10.1016/S1369-7021(11)70299-1 |
[56] | Kamalanathan D, Akhavan A, Kozicki MN (2011) Low voltage cycling of programmable metallization cell memory devices. Nanotechnology 22: 254017. |
[57] | Tian F, Jiao D, Biedermann F, et al. (2012) Orthogonal switching of a single supramolecular complex. Nat Commun 3: 1207. doi: 10.1038/ncomms2198 |
[58] | Sakata Y, Furukawa S, Kondo M, et al. (2013) Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 339: 193-196. doi: 10.1126/science.1231451 |
[59] | Lin WP, Liu S, Gong T, et al. (2014) Polymer-based resistive memory materials and devices. Adv Mater 26: 570-606. doi: 10.1002/adma.201302637 |
[60] | Zhou X, Xia M, Rao F, et al. (2014) Understanding phase-change behaviors of carbon-doped Ge₂Sb₂Te₅ for phase-change memory application. ACS Appl Mater Interfaces 6: 14207-14214. doi: 10.1021/am503502q |
[61] | Agnati LF, Fuxe K (2014) Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks. Philos Trans R Soc Lond B Biol Sci 369: pii: 20130505. |
[62] | Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, et al. (2013) Volume transmission and its different forms in the central nervous system. Chin J Integr Med 19: 323-329. doi: 10.1007/s11655-013-1455-1 |
[63] | Fuxe L, Borroto-Escuela DO (2016) Volume transmission and receptor-receptor interactions in heteroreceptor complexes: Understanding the role of new concepts for brain communication. Neural Regen Res 11: 1220-1223. doi: 10.4103/1673-5374.189168 |
[64] | Fodor JA (1975) The Language of Thought. Boston, MA: Harvard University Press. |
[65] | Sloman A, Croucher M (1981) Why robots will have emotions. Sussex University. |
[66] | Mayer JD (1986) How mood influences cognition. Advances in Cognitive Science 1: 290-314. |
[67] | Salovey P, Mayer JD (1990) Emotional intelligence. Imagination, Cognition and Personality 9: 285-311. |
[68] | Goleman D (1995) Emotional Intelligence. New York: Bantam Books. |
[69] | Valverdu J, Casacuberta D (2009) Handbook of Research on Synthetic Emotions and Sociable Robotics: New Applications in Affective Computing and Artificial Intelligence. Information Science Reference. New York: Hershey. |
[70] | Meyer JJ, Dastani MM (2010) The logical structure of emotions. Dutch Companion project grant nr: IS053013. SIKS Dissertation Series No. 2010-2. |
[71] | Hasson C (2011) Modelisation des mecanismes emotionnels pour un robot autonome: perspective developpementale et sociale. PhD Thesis, Universite de Cergy Pontoise, France. |
[72] | Meshulam M, Winter E, Ben-Shakhar G, et al. (2011). Rational emotions. Soc Neurosci 1: 1-7. |
[73] | Steunebrink BR. The Logical structure of emotions. Utrecht University, 2010. |
[74] | Steunebrink BR, Dastani M, Meyer JJC (2012) A formal model of emotion triggers: an approach for BDI agents. Synthese 185: 83-129. doi: 10.1007/s11229-011-0004-8 |
[75] | Bosse T, Broekens J, Dias J, et al. (2014) Emotion Modeling. Towards Pragmatic Computational Models of Affective Processes. New York: Springer. |
[76] | a. Hudlicka E. From habits to standards: Towards systematic design of emotion models and affective architecture: 3-23. |
[77] | b. Dastani M, Floor C. Meyer JJ. Programming agents with emotions: 57-75. |
[78] | c. Lowe R, Kiryazov K, Utilizing emotions in autonomous robots: An enactive approach: 76-98. |
[79] | 76. Smailes D, Moseley P, Wilkinson S (2015) A commentary on: Affective coding: the emotional dimension of agency. Front Hum Neurosci 9: 142. |
[80] | 77. Lewis M (2016) The Undoing Project: A Friendship That Changed Our Minds. New York:W.W. Norton & Co. |
[81] | 78. Binet A, Simon T (1916) The Intelligence of the Feeble Minded. Baltimore, MD: Williams and Wilkins. |
[82] | 79. Griffin D (2001) Animal Minds: Beyond Cognition to Consciousness. Chicago, IL: University Chicago Press. |
[83] | 80. Albuquerque N, Guo K, Wilkinson A, et al. (2016) Dogs recognize dog and human emotions. Biol Lett 12: 201508 doi: 10.1098/rsbl.2015.0883 |
[84] | 81. Andics A, Gábor A, Gácsi M, et al. (2016) Neural mechanisms for lexical processing in dogs. Science 353:1030-1032. doi: 10.1126/science.aaf3777 |
[85] | 82. De Waal F (2016) Are We Smart Enough To Know How Smart Animals Are? New York: WW Norton & Co. |
[86] | 83. Kekecs Z, Szollosi A, Palfi B, et al. (2016). Commentary: Oxytocin-gaze positive loop and the coevolution of human-dog bond. Front Neurosci 10:155. |
[87] | 84. Kovács K, Kis A, Kanizsár O, et al. (2016) The effect of oxytocin on biological motion perception in dogs (Canis familiaris). Animal Cogn 19: 513-522. doi: 10.1007/s10071-015-0951-4 |
[88] | 85. Wasserman EA (2016). Thinking abstractly like a duck(ling). Science 353: 222-223. |
[89] | 86. Wynne CDL (2004) Do Animals Think? New Jersey: Princeton University Press. |
[90] | 87. Levy S (1993) Artificial Life. New York: Random House. |
[91] | 88. Marx G, Gilon C (2012) The molecular basis of memory. ACS Chem Neurosci 3: 633-642. doi: 10.1021/cn300097b |
[92] | 89. Marx G, Gilon C (2013) The molecular basis of memory. MBM Pt 2: The chemistry of the tripartite mechanism. ACS Chem Neurosci 4: 983–993. |
[93] | 90. Marx G, Gilon C (2014) The molecular basis of memory. MBM Pt 3: Tagging with neurotransmitters (NTs). Front Neurosci 3: 58. |
[94] | 91. Marx G, Gilon C (2016) The molecular basis of neural memory. MBM Pt 4: The brain is not a computer. "Binary" computation versus "multinary" mentation. Neuroscience and Biomedical Engineering 4: 14-24. |
[95] | 92. Marx G, Gilon C (2016) The Molecular Basis of Neural Memory Part 5: Chemograhic notations from alchemy to psycho-chemistry. In Press. |
[96] | 93. Marx G, Gilon C (2016) The molecular basis of neural memory. MBM Pt 6: Chemical coding of logical and emotive modes. Int J Neurology Res 2: 259-268. |
[97] | 94. Asimov I (1950) I, Robot. New York: Gnome Press. |
[98] | 95. Waldrop MM (1992) Complexity: The Emerging Science at the Edge of Order and Chaos. New York: Viking Penguin Group. |
[99] | 96. Freedman DH (1) Brainmakers. New York: Touchstone Press. |
[100] | 97. Maass W, Joshi P, Sontag ED (2007) Computational aspects of feedback in neural circuits. PLoS Comput Biol 3: e165. |
[101] | 98. Picard RW, Vyzas E, Healey J (2001) Toward machine emotional intelligence: Analysis of affective physiological state. IEEE transactions on pattern analysis and machine intelligence 23: 1175-1191. doi: 10.1109/34.954607 |
[102] | 99. Hirschberg J, Manning CD (2015) Advances in natural language processing. Science 349: 261-266. |
[103] | 100. Critique of Pure Reason (1781) Translated by Norman Kemp Smith. London Macmillan 1934. |
[104] | 101. Sloman A (2008) Kantian philosophy of mathematics and young robots. In: Proceedings 7th International Conference on Mathematical Knowledge Management Birmingham, UK, July 28-30. Available from: http://events.cs.bham.ac.uk/cicm08/mkm08/. |
[105] | 102. Berto F (2010). There's Something about Gödel: The Complete Guide to the Incompleteness Theorem. New York: John Wiley and Sons. |
[106] | 103. Ryle G (1949) The Concept of Mind. UK: Penguin Books. |