Group pinning consensus under fixed and randomly switching topologies with acyclic partition

  • Received: 01 December 2013 Revised: 01 June 2014
  • Primary: 93C05, 37H10, 05C20; Secondary: 05C50, 60J27.

  • This paper addresses group consensus problems in generic linear multi-agent systems with directed information flow over (i) fixed topology and (ii) randomly switching topology governed by a continuous-time homogeneous Markov process. We propose two types of pinning control protocols to ensure group consensus regardless of the magnitude of the coupling strengths among the agents. In the case of randomly switching topology, we show that the group consensus behavior is unrelated to the magnitude of the couplings among agents if the union of the topologies corresponding to the positive recurrent states of the Markov process possesses an acyclic partition. Sufficient conditions for achieving group consensus are presented in terms of simple graphic conditions, which are easy to be checked compared to conventional algebraic criteria. Simulation examples are also presented to validate the effectiveness of the theoretical results.

    Citation: Yilun Shang. Group pinning consensus under fixed and randomlyswitching topologies with acyclic partition[J]. Networks and Heterogeneous Media, 2014, 9(3): 553-573. doi: 10.3934/nhm.2014.9.553

    Related Papers:

    [1] Yilun Shang . Group pinning consensus under fixed and randomly switching topologies with acyclic partition. Networks and Heterogeneous Media, 2014, 9(3): 553-573. doi: 10.3934/nhm.2014.9.553
    [2] Wenlian Lu, Fatihcan M. Atay, Jürgen Jost . Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks and Heterogeneous Media, 2011, 6(2): 329-349. doi: 10.3934/nhm.2011.6.329
    [3] Zhuchun Li, Xiaoping Xue, Seung-Yeal Ha . A revisit to the consensus for linearized Vicsek model under joint rooted leadership via a special matrix. Networks and Heterogeneous Media, 2014, 9(2): 335-351. doi: 10.3934/nhm.2014.9.335
    [4] Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf . Sparse control of alignment models in high dimension. Networks and Heterogeneous Media, 2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647
    [5] Luca Schenato, Sandro Zampieri . On rendezvous control with randomly switching communication graphs. Networks and Heterogeneous Media, 2007, 2(4): 627-646. doi: 10.3934/nhm.2007.2.627
    [6] Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang . Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks and Heterogeneous Media, 2015, 10(4): 749-785. doi: 10.3934/nhm.2015.10.749
    [7] Laura Sigalotti . Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7(3): 543-582. doi: 10.3934/nhm.2012.7.543
    [8] Mickaël Dos Santos, Oleksandr Misiats . Ginzburg-Landau model with small pinning domains. Networks and Heterogeneous Media, 2011, 6(4): 715-753. doi: 10.3934/nhm.2011.6.715
    [9] Riccardo Bonetto, Hildeberto Jardón Kojakhmetov . Nonlinear diffusion on networks: Perturbations and consensus dynamics. Networks and Heterogeneous Media, 2024, 19(3): 1344-1380. doi: 10.3934/nhm.2024058
    [10] Michael Damron, C. L. Winter . A non-Markovian model of rill erosion. Networks and Heterogeneous Media, 2009, 4(4): 731-753. doi: 10.3934/nhm.2009.4.731
  • This paper addresses group consensus problems in generic linear multi-agent systems with directed information flow over (i) fixed topology and (ii) randomly switching topology governed by a continuous-time homogeneous Markov process. We propose two types of pinning control protocols to ensure group consensus regardless of the magnitude of the coupling strengths among the agents. In the case of randomly switching topology, we show that the group consensus behavior is unrelated to the magnitude of the couplings among agents if the union of the topologies corresponding to the positive recurrent states of the Markov process possesses an acyclic partition. Sufficient conditions for achieving group consensus are presented in terms of simple graphic conditions, which are easy to be checked compared to conventional algebraic criteria. Simulation examples are also presented to validate the effectiveness of the theoretical results.


    [1] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex networks, Phys. Rep., 469 (2008), 93-153. doi: 10.1016/j.physrep.2008.09.002
    [2] J. Bang-Jensen and G. Z. Gutin, Digraphs: Theory, Algorithm and Applications, 2nd Ed., Springer-Verlag, London, 2009. doi: 10.1007/978-1-84800-998-1
    [3] V. N. Belykh, I. V. Belykh and M. Hasler, Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems, Phys. Rev. E, 62 (2000), 6332-6345. doi: 10.1103/PhysRevE.62.6332
    [4] V. Borkar and P. P. Varaiya, Asymptotic agreement in distributed estimation, IEEE Trans. Automat. Control, 27 (1982), 650-655. doi: 10.1109/TAC.1982.1102982
    [5] T. Chen, X. Liu and W. Lu, Pinning complex networks by a single controller, IEEE Trans. Circuit Syst. I, 54 (2007), 1317-1326. doi: 10.1109/TCSI.2007.895383
    [6] O. Costa and M. Fragoso, A unified approach for stochastic and mean square stability of continuous-time linear systems with Markovian jumping parameters and additive disturbances, SIAM J. Contr. Optim., 44 (2005), 1165-1191. doi: 10.1137/S0363012903434753
    [7] T. Dahms, J. Lehnert and E. Schöll, Cluster and group synchronization in delay-coupled networks, Phys. Rev. E, 86 (2012), 016202. doi: 10.1103/PhysRevE.86.016202
    [8] X. Feng and K. A. Loparo, Stability of linear Markovian jump systems, Proc. of the 29th IEEE Conf. Decision and Control, Honolulu, HI, (1990), 1408-1413. doi: 10.1109/CDC.1990.203842
    [9] Y. Z. Feng, J. Lu, S. Xu and Y. Zou, Couple-group consensus for multi-agent networks of agents with discrete-time second-order dynamcis, J. Franklin Institute, 350 (2013), 3277-3292. doi: 10.1016/j.jfranklin.2013.07.004
    [10] Y. Han, W. Lu and T. Chen, Cluster consensus in discrete-time networks of multiagents with inter-cluster nonidentical inputs, IEEE Trans. Neural Networks and Learning Syst., 24 (2013), 566-578.
    [11] A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control, 48 (2003), 988-1001. doi: 10.1109/TAC.2003.812781
    [12] Z. Li, Z. Duan and G. Chen, Dynamic consensus of linear multi-agent systems, IET Control Theory Appl., 5 (2011), 19-28. doi: 10.1049/iet-cta.2009.0466
    [13] W. Lu, F. M. Atay and J. Jost, Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays, Netw. Heterog. Media, 6 (2011), 329-349. doi: 10.3934/nhm.2011.6.329
    [14] I. Matei and J. S. Baras, Convergence results for the linear consensus problem under Markovian random graphs, SIAM J. Control Optim., 51 (2013), 1574-1591. doi: 10.1137/100816870
    [15] G. Miao, S. Xu and Y. Zou, Necessary and sufficient conditions for mean square consensus under Markov switching topologies, Int. J. Syst. Sci., 44 (2013), 178-186. doi: 10.1080/00207721.2011.598961
    [16] R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE, 95 (2007), 215-233. doi: 10.1109/JPROC.2006.887293
    [17] R. Olfati-Saber and R. M. Murray, Consensus problem in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49 (2004), 1520-1533. doi: 10.1109/TAC.2004.834113
    [18] L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80 (1998), 2109-2112. doi: 10.1103/PhysRevLett.80.2109
    [19] J. Qin and C. Yu, Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition, Automatica, 49 (2013), 2898-2905. doi: 10.1016/j.automatica.2013.06.017
    [20] W. Ren and R. W. Beard, Consensus seeking in multiagent systems under dynamically changing interation topologies, IEEE Trans. Autom. Control, 50 (2005), 655-661. doi: 10.1109/TAC.2005.846556
    [21] A. H. Roger and R. J. Charles, Matrix Analysis, Cambridge University Press, Cambridge, 1985. doi: 10.1017/CBO9780511810817
    [22] E. Seneta, Non-negative Matrices and Markov Chains, Springer, New York, 2006.
    [23] Y. Shang, Multi-agent coordination in directed moving neighborhood random networks, Chin. Phys. B, 19 (2010), 070201.
    [24] Y. Shang, Finite-time consensus for multi-agent systems with fixed topologies, Int. J. Syst. Sci., 43 (2012), 499-506. doi: 10.1080/00207721.2010.517857
    [25] Y. Shang, $L^1$ group consensus of multi-agent systems with stochastic inputs under directed interaction topology, Int. J. Control, 86 (2013), 1-8. doi: 10.1080/00207179.2012.715753
    [26] Y. Shang, Continuous-time average consensus under dynamically changing topologies and multiple time-varying delays, Appl. Math. Comput., 244 (2014), 457-466. doi: 10.1016/j.amc.2014.07.019
    [27] Int. J. Syst. Sci. doi: 10.1080/00207721.2013.862582
    [28] Y. Shang, Group consensus in generic linear multi-agent sytesms with inter-group non-identical inputs, Cogent Engineering, 1 (2014), 947761. doi: 10.1080/23311916.2014.947761
    [29] F. Sorrentino and E. Ott, Network synchronization of groups, Phys. Rev. E, 76 (2007), 056114. doi: 10.1103/PhysRevE.76.056114
    [30] R. Stanley, Acyclic orientations of graphs, Discrete Math., 5 (1973), 171-178. doi: 10.1016/0012-365X(73)90108-8
    [31] W. Sun, Y. Q. Bai, R. Jia, R. Xiong and J. Chen, Multi-group consensus via pinning control with non-linear heterogeneous agents, Proc. 8th Asian Control Conference, Taiwan, (2011), 323-328.
    [32] C. Tan, G.-P. Liu and G.-R. Duan, Couple-group consensus of multi-agent systems with directed and fixed topology, Proc. 30th Chinese Contr. Conf., Yantai, (2011), 6515-6520.
    [33] B. Touri and A. Nedić, On ergodicity, infinite flow, and consensus in random models, IEEE Trans. Autom. Control, 56 (2011), 1593-1605. doi: 10.1109/TAC.2010.2091174
    [34] J. N. Tsitsiklis, Problems in Decentralized Decision Making and Computation, Ph.D. Dissertation, Massachusetts Inst. Technol., Cambridge, MA, 1984.
    [35] F. Xiao and L. Wang, Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays, IEEE Trans. Autom. Control, 53 (2008), 1804-1816. doi: 10.1109/TAC.2008.929381
    [36] K. You, Z. Li and L. Xie, Consensus condition for linear multi-agent systems over randomly switching topologies, Automatica, 49 (2013), 3125-3132. doi: 10.1016/j.automatica.2013.07.024
    [37] W. Yu, G. Chen and J. Lü, On pinning control synchronization of complex dynamical networks, Automatica, 45 (2009), 429-435. doi: 10.1016/j.automatica.2008.07.016
    [38] J. Yu and L. Wang, Group consensus of multi-agent sytems with undirected communication graphs, Proc. 7th Asian Control Conf., (2009), 105-110.
    [39] J. Yu and L. Wang, Group consensus in multi-agent systems with switching topologies and communication delays, Syst. Control Lett., 59 (2010), 340-348. doi: 10.1016/j.sysconle.2010.03.009
  • This article has been cited by:

    1. Dinh Hoa Nguyen, Minimum-Rank Dynamic Output Consensus Design for Heterogeneous Nonlinear Multi-Agent Systems, 2018, 5, 2325-5870, 105, 10.1109/TCNS.2016.2580908
    2. Jueqi Wang, Xiwei Liu, Cluster Synchronization for Multi-Weighted and Directed Complex Networks via Pinning Control, 2022, 69, 1549-7747, 1347, 10.1109/TCSII.2021.3108116
    3. Yilun Shang, Consensus of Noisy Multiagent Systems with Markovian Switching Topologies and Time-Varying Delays, 2015, 2015, 1024-123X, 1, 10.1155/2015/453072
    4. Rui-Li Wen, Shu-Gen Chai, Hongyinping Feng, Adaptive stabilization and parameters estimation for a Kirchhoff's nonlinear beam with uncertain input disturbances under boundary output feedback control, 2017, 31, 08906327, 1375, 10.1002/acs.2771
    5. Abbas Tariverdi, Heidar A. Talebi, Masoud Shafiee, Fault-tolerant consensus of nonlinear multi-agent systems with directed link failures, communication noise and actuator faults, 2021, 94, 0020-7179, 60, 10.1080/00207179.2019.1583376
    6. Yilun Shang, Finite-time cluster average consensus for networks via distributed iterations, 2017, 15, 1598-6446, 933, 10.1007/s12555-015-0407-2
    7. Po-An Chen, Ya-Wen Cheng, Yao-Wei Tseng, 2022, Chapter 71, 978-3-030-93408-8, 867, 10.1007/978-3-030-93409-5_71
    8. Bidirectional Power Flow Control of a Multi Input Converter for Energy Storage System, 2019, 12, 1996-1073, 3756, 10.3390/en12193756
    9. Yilun Shang, Consensus seeking over Markovian switching networks with time-varying delays and uncertain topologies, 2016, 273, 00963003, 1234, 10.1016/j.amc.2015.08.115
    10. Gaoyang Yin, Shaolei Zhou, Shuailei Wang, 2021, Group Consensus Control for Multi-agent Systems with Group-distributed Switching Topologies and Group-distributed Event-triggered Mechanism, 9781450389471, 35, 10.1145/3462648.3462656
    11. Wei Ni, Dongya Zhao, Yuanhua Ni, Xiaoli Wang, Stochastic averaging approach to leader-following consensus of linear multi-agent systems, 2016, 353, 00160032, 2650, 10.1016/j.jfranklin.2016.05.020
    12. Yilun Shang, Consensus in averager-copier-voter networks of moving dynamical agents, 2017, 27, 1054-1500, 023116, 10.1063/1.4976959
    13. Yilun Shang, A combinatorial necessary and sufficient condition for cluster consensus, 2016, 216, 09252312, 611, 10.1016/j.neucom.2016.08.025
    14. Yilun Shang, Finite-Time Weighted Average Consensus and Generalized Consensus Over a Subset, 2016, 4, 2169-3536, 2615, 10.1109/ACCESS.2016.2570518
    15. Can Li, Zunguang Guo, Zhiyu Zhang, Dynamics of almost periodic Schoener’s competition model with time delays and impulses, 2016, 5, 2193-1801, 10.1186/s40064-016-2068-x
    16. Gholam H. Shirdel, Mohsen Abdolhosseinzadeh, A genetic algorithm for the arrival probability in the stochastic networks, 2016, 5, 2193-1801, 10.1186/s40064-016-2265-7
    17. Mingyue Cui, Hongzhao Liu, Wei Liu, Xiaodong Lv, Orientation-error observer-based tracking control of nonholonomic mobile robots, 2017, 90, 0924-090X, 935, 10.1007/s11071-017-3703-y
    18. Yilun Shang, Fixed‐time group consensus for multi‐agent systems with non‐linear dynamics and uncertainties, 2018, 12, 1751-8652, 395, 10.1049/iet-cta.2017.1021
    19. Yilun Shang, Couple-group consensus of continuous-time multi-agent systems under Markovian switching topologies, 2015, 352, 00160032, 4826, 10.1016/j.jfranklin.2015.08.003
    20. Ali Namadchian, Mehdi Ramezani, Xinggang Yan, Pseudo-spectral optimal control of stochastic processes using Fokker Planck equation, 2019, 6, 2331-1916, 10.1080/23311916.2019.1691804
    21. Junhao Guo, Zhijian Ji, Yungang Liu, Sufficient conditions and limitations of equivalent partition in multiagent controllability, 2022, 65, 1674-733X, 10.1007/s11432-020-3159-9
    22. Mateusz Malarczyk, Jules-Raymond Tapamo, Marcin Kaminski, Application of Neural Data Processing in Autonomous Model Platform—A Complex Review of Solutions, Design and Implementation, 2022, 15, 1996-1073, 4766, 10.3390/en15134766
    23. Scaled Group Consensus in Multiagent Systems With First/Second-Order Continuous Dynamics, 2018, 48, 2168-2267, 2259, 10.1109/TCYB.2017.2731601
    24. Kairui Chen, Junwei Wang, Yun Zhang, Distributed Consensus of Nonlinear Multi-Agent Systems on State-Controlled Switching Topologies, 2016, 18, 1099-4300, 29, 10.3390/e18010029
    25. Bo Hou, Fuchun Sun, Hongbo Li, Yao Chen, Guangbin Liu, Scaled cluster consensus of discrete-time multi-agent systems with general directed topologies, 2016, 47, 0020-7721, 3839, 10.1080/00207721.2015.1129675
    26. Saber Jafarizadeh, Achieving Network Stability via Optimal Pinning Control in Weighted Complex Networks, 2024, 12, 2169-3536, 195256, 10.1109/ACCESS.2024.3520735
    27. Yongheng Wu, Yongwei Zhang, Yonghua Wang, Pin Wan, Optimal Control Method for Sliding Self‐Balancing Biased Inverted Pendulum Based on Integral Sliding Mode, 2025, 0143-2087, 10.1002/oca.3280
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4252) PDF downloads(173) Cited by(27)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog