Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Anti-plane interfacial waves in a square lattice

  • Received: 31 October 2024 Revised: 26 December 2024 Accepted: 06 January 2025 Published: 10 January 2025
  • Using the lattice dynamics approach, we discussed the propagation of interfacial waves localized near the interface in an infinite square lattice. The interface has been modeled as a single-particle layer of material particles with masses and elastic bonds different from those in the bulk. In this lattice structure there were anti-plane interface waves, i.e., waves that decayed exponentially with distance from the interface. Such waves could be useful for determining material properties in the vicinity of the interface. We obtained equations of motion and analyzed the corresponding dispersion relations for steady-state solutions. Here, the dispersion equation related the circular frequency to the wave number. In addition, we provided a comparison of the dispersion relations with those derived within the Gurtin-Murdoch surface elasticity. To do this, we have used the scaling law that links the continuum and discrete models. Unlike the continuum model, in the discrete model the wave number was limited by the first Brillouin zone, whereas in the continuum model it took a range from zero to infinity. The detailed parametric analysis was given for the discrete model. Finally, other models of interfaces in the case of a square lattice were discussed.

    Citation: Victor A. Eremeyev. Anti-plane interfacial waves in a square lattice[J]. Networks and Heterogeneous Media, 2025, 20(1): 52-64. doi: 10.3934/nhm.2025004

    Related Papers:

    [1] Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007
    [2] Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311
    [3] Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051
    [4] Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652
    [5] Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888
    [6] Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250
    [7] Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139
    [8] Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022
    [9] Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786
    [10] Naqash Sarfraz, Muhammad Aslam . Some weighted estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561
  • Using the lattice dynamics approach, we discussed the propagation of interfacial waves localized near the interface in an infinite square lattice. The interface has been modeled as a single-particle layer of material particles with masses and elastic bonds different from those in the bulk. In this lattice structure there were anti-plane interface waves, i.e., waves that decayed exponentially with distance from the interface. Such waves could be useful for determining material properties in the vicinity of the interface. We obtained equations of motion and analyzed the corresponding dispersion relations for steady-state solutions. Here, the dispersion equation related the circular frequency to the wave number. In addition, we provided a comparison of the dispersion relations with those derived within the Gurtin-Murdoch surface elasticity. To do this, we have used the scaling law that links the continuum and discrete models. Unlike the continuum model, in the discrete model the wave number was limited by the first Brillouin zone, whereas in the continuum model it took a range from zero to infinity. The detailed parametric analysis was given for the discrete model. Finally, other models of interfaces in the case of a square lattice were discussed.



    Let T be the Calderón-Zygmund singular integral operator and b be a locally integrable function on Rn. The commutator generated by b and T is defined by [b,T]f=bT(f)T(bf). The investigation of the commutator begins with Coifman-Rochberg-Weiss pioneering study and classical result (see [6]). The classical result of Coifman, Rochberg and Weiss (see [6]) states that the commutator [b,T]f=T(bf)bTf is bounded on Lp(Rn) for 1<p< if and only if bBMO(Rn). The major reason for considering the problem of commutators is that the boundedness of commutator can produces some characterizations of function spaces (see [1,6]). Chanillo (see [1]) proves a similar result when T is replaced by the fractional integral operator. In [11], the boundedness properties of the commutators for the extreme values of p are obtained. In recent years, the theory of Herz space and Herz type Hardy space, as a local version of Lebesgue space and Hardy space, have been developed (see [8,9,12,13]). The main purpose of this paper is to establish the endpoint continuity properties of some multilinear operators related to certain non-convolution type fractional singular integral operators on Herz and Herz type Hardy spaces.

    First, let us introduce some notations (see [8,9,10,12,13,15]). Throughout this paper, Q will denote a cube of Rn with sides parallel to the axes. For a cube Q and a locally integrable function f, let fQ=|Q|1Qf(x)dx and f#(x)=supQx|Q|1Q|f(y)fQ|dy. Moreover, f is said to belong to BMO(Rn) if f#L and define ||f||BMO=||f#||L; We also define the central BMO space by CMO(Rn), which is the space of those functions fLloc(Rn) such that

    ||f||CMO=supr>1|Q(0,r)|1Q|f(y)fQ|dy<.

    It is well-known that (see [9,10])

    ||f||CMOsupr>1infcC|Q(0,r)|1Q|f(x)c|dx.

    For kZ, define Bk={xRn:|x|2k} and Ck=BkBk1. Denote by χk the characteristic function of Ck and ˜χk the characteristic function of Ck for k1 and ˜χ0 the characteristic function of B0.

    Definition 1. Let 0<p< and αR.

    (1) The homogeneous Herz space ˙Kαp(Rn) is defined by

    ˙Kαp(Rn)={fLploc(Rn{0}):||f||˙Kαp<},

    where

    ||f||˙Kαp=k=2kα||fχk||Lp;

    (2) The nonhomogeneous Herz space Kαp(Rn) is defined by

    Kαp(Rn)={fLploc(Rn):||f||Kαp<},

    where

    ||f||Kαp=k=02kα||f˜χk||Lp.

    If α=n(11/p), we denote that ˙Kαp(Rn)=˙Kp(Rn), Kαp(Rn)=Kp(Rn).

    Definition 2. Let 0<δ<n and 1<p<n/δ. We shall call Bδp(Rn) the space of those functions f on Rn such that

    ||f||Bδp=supd>1dn(1/pδ/n)||fχQ(0,d)||Lp<.

    Definition 3. Let 1<p<.

    (1) The homogeneous Herz type Hardy space H˙Kp(Rn) is defined by

    H˙Kp(Rn)={fS(Rn):G(f)˙Kp(Rn)},

    where

    ||f||H˙Kp=||G(f)||˙Kp.

    (2) The nonhomogeneous Herz type Hardy space HKp(Rn) is defined by

    HKp(Rn)={fS(Rn):G(f)Kp(Rn)},

    where

    ||f||HKp=||G(f)||Kp.

    where G(f) is the grand maximal function of f.

    The Herz type Hardy spaces have the atomic decomposition characterization.

    Definition 4. Let 1<p<. A function a(x) on Rn is called a central (n(11/p),p)-atom (or a central (n(11/p),p)-atom of restrict type), if

    1) SuppaB(0,d) for some d>0 (or for some d1),

    2) ||a||Lp|B(0,d)|1/p1,

    3) a(x)dx=0.

    Lemma 1. (see [9,13]) Let 1<p<. A temperate distribution f belongs to H˙Kp(Rn)(or HKp(Rn)) if and only if there exist central (n(11/p),p)-atoms(or central (n(11/p),p)-atoms of restrict type) aj supported on Bj=B(0,2j) and constants λj, j|λj|< such that f=j=λjaj (or f=j=0λjaj)in the S(Rn) sense, and

    ||f||H˙Kp( or ||f||HKp)j|λj|.

    In this paper, we will consider a class of multilinear operators related to some non-convolution type singular integral operators, whose definition are following.

    Let m be a positive integer and A be a function on Rn. We denote that

    Rm+1(A;x,y)=A(x)|β|m1β!DβA(y)(xy)β

    and

    Qm+1(A;x,y)=Rm(A;x,y)|β|=m1β!DβA(x)(xy)β.

    Definition 5. Fixed ε>0 and 0<δ<n. Let Tδ:SS be a linear operator. Tδ is called a fractional singular integral operator if there exists a locally integrable function K(x,y) on Rn×Rn such that

    Tδ(f)(x)=RnK(x,y)f(y)dy

    for every bounded and compactly supported function f, where K satisfies:

    |K(x,y)|C|xy|n+δ

    and

    |K(y,x)K(z,x)|+|K(x,y)K(x,z)|C|yz|ε|xz|nε+δ

    if 2|yz||xz|. The multilinear operator related to the fractional singular integral operator Tδ is defined by

    TAδ(f)(x)=RnRm+1(A;x,y)|xy|mK(x,y)f(y)dy;

    We also consider the variant of TAδ, which is defined by

    ˜TAδ(f)(x)=RnQm+1(A;x,y)|xy|mK(x,y)f(y)dy.

    Note that when m=0, TAδ is just the commutators of Tδ and A (see [1,6,11,14]). It is well known that multilinear operator, as a non-trivial extension of commutator, is of great interest in harmonic analysis and has been widely studied by many authors (see [3,4,5]). In [7], the weighted Lp(p>1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In [2], the weak (H1, L1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In this paper, we will study the endpoint continuity properties of the multilinear operators TAδ and ˜TAδ on Herz and Herz type Hardy spaces.

    Now we state our results as following.

    Theorem 1. Let 0<δ<n, 1<p<n/δ and DβABMO(Rn) for all β with |β|=m. Suppose that TAδ is the same as in Definition 5 such that Tδ is bounded from Lp(Rn) to Lq(Rn) for any p,q(1,+] with 1/q=1/pδ/n. Then TAδ is bounded from Bδp(Rn) to CMO(Rn).

    Theorem 2. Let 0<δ<n, 1<p<n/δ, 1/q=1/pδ/n and DβABMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q(1,+) with 1/q=1/pδ/n. Then ˜TAδ is bounded from H˙Kp(Rn) to ˙Kαq(Rn) with α=n(11/p).

    Theorem 3. Let 0<δ<n, 1<p<n/δ and DβABMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q(1,+) with 1/q=1/pδ/n. Then the following two statements are equivalent:

    (ⅰ) ˜TAδ is bounded from Bδp(Rn) to CMO(Rn);

    (ⅱ) for any cube Q and z3Q2Q, there is

    1|Q|Q||β|=m1β!|DβA(x)(DβA)Q|(4Q)cKβ(z,y)f(y)dy|dxC||f||Bδp,

    where Kβ(z,y)=(zy)β|zy|mK(z,y) for |β|=m.

    Remark. Theorem 2 is also hold for nonhomogeneous Herz and Herz type Hardy space.

    To prove the theorem, we need the following lemma.

    Lemma 2. (see [5]) Let A be a function on Rn and DβALq(Rn) for |β|=m and some q>n. Then

    |Rm(A;x,y)|C|xy|m|β|=m(1|˜Q(x,y)|˜Q(x,y)|DβA(z)|qdz)1/q,

    where ˜Q(x,y) is the cube centered at x and having side length 5n|xy|.

    Proof of Theorem 1. It suffices to prove that there exists a constant CQ such that

    1|Q|Q|TAδ(f)(x)CQ|dxC||f||Bδp

    holds for any cube Q=Q(0,d) with d>1. Fix a cube Q=Q(0,d) with d>1. Let ˜Q=5nQ and ˜A(x)=A(x)|β|=m1β!(DβA)˜Qxβ, then Rm+1(A;x,y)=Rm+1(˜A;x,y) and Dβ˜A=DβA(DβA)˜Q for all β with |β|=m. We write, for f1=fχ˜Q and f2=fχRn˜Q,

    TAδ(f)(x)=RnRm+1(˜A;x,y)|xy|mK(x,y)f(y)dy=RnRm(˜A;x,y)|xy|mK(x,y)f1(y)dy|β|=m1β!RnK(x,y)(xy)β|xy|mDβ˜A(y)f1(y)dy+RnRm+1(˜A;x,y)|xy|mK(x,y)f2(y)dy,

    then

    1|Q|Q|TAδ(f)(x)T˜Aδ(f2)(0)|dx1|Q|Q|Tδ(Rm(˜A;x,)|x|mf1)(x)|dx+|β|=m1β!1|Q|Q|Tδ((x)β|x|mDβ˜Af1)(x)|dx+|T˜Aδ(f2)(x)T˜Aδ(f2)(0)|dx:=I+II+III.

    For I, note that for xQ and y˜Q, using Lemma 2, we get

    Rm(˜A;x,y)C|xy|m|β|=m||DβA||BMO,

    thus, by the Lp(Rn) to Lq(Rn)-boundedness of TAδ for 1<p,q< with 1/q=1/pδ/n, we get

    IC|Q|Q|Tδ(|β|=m||DβA||BMOf1)(x)|dxC|β|=m||DβA||BMO(1|Q|Q|Tδ(f1)(x)|qdx)1/qC|β|=m||DβA||BMO|Q|1/q||f1||LpC|β|=m||DβA||BMOrn(1/pδ/n)||fχ˜Q||LpC|β|=m||DβA||BMO||f||Bδp.

    For II, taking 1<s<p such that 1/r=1/sδ/n, by the (Ls,Lr)-boundedness of Tδ and Holder's inequality, we gain

    IIC|Q|Q|Tδ(|β|=m(DβA(DβA)˜Q)f1)(x)|dxC|β|=m(1|Q|Q|Tδ((DβA(DβA)˜Q)f1)(x)|rdx)1/rC|Q|1/r|β|=m||(DβA(DβA)˜Q)f1||LsC|Q|1/r||f1||Lp|β|=m(1|Q|˜Q|DβA(y)(DβA)˜Q|ps/(ps)dy)(ps)/(ps)|Q|(ps)/(ps)C|β|=m||DβA||BMOrn/q||fχ˜Q||LpC|β|=m||DβA||BMO||f||Bδp.

    To estimate III, we write

    T˜Aδ(f2)(x)T˜Aδ(f2)(0)=Rn[K(x,y)|xy|mK(0,y)|y|m]Rm(˜A;x,y)f2(y)dy+RnK(0,y)f2(y)|y|m[Rm(˜A;x,y)Rm(˜A;0,y)]dy|β|=m1β!Rn(K(x,y)(xy)β|xy|mK(0,y)(y)β|y|m)Dβ˜A(y)f2(y)dy:=III1+III2+III3.

    By Lemma 2 and the following inequality (see [15])

    |bQ1bQ2|Clog(|Q2|/|Q1|)||b||BMO for Q1Q2,

    we know that, for xQ and y2k+1˜Q2k˜Q,

    |Rm(˜A;x,y)|C|xy|m|β|=m(||DβA||BMO+|(DβA)˜Q(x,y)(DβA)˜Q|)Ck|xy|m|β|=m||DβA||BMO.

    Note that |xy||y| for xQ and yRn˜Q, we obtain, by the condition of K,

    |III1|CRn(|x||y|m+n+1δ+|x|ε|y|m+n+εδ)|Rm(˜A;x,y)||f2(y)|dyC|β|=m||DβA||BMOk=02k+1˜Q2k˜Qk(|x||y|n+1δ+|x|ε|y|n+εδ)|f(y)|dyC|β|=m||DβA||BMOk=1k(2k+2εk)(2kr)n(1/pδ/n)||fχ2k˜Q||LpC|β|=m||DβA||BMOk=1k(2k+2εk)||f||BδpC|β|=m||DβA||BMO||f||Bδp.

    For III2, by the formula (see [5]):

    Rm(˜A;x,y)Rm(˜A;x0,y)=|γ|<m1γ!Rm|γ|(Dγ˜A;x,x0)(xy)γ

    and Lemma 2, we have

    |Rm(˜A;x,y)Rm(˜A;x0,y)|C|γ|<m|β|=m|xx0|m|γ||xy||γ|||DβA||BMO,

    thus, similar to the estimates of III1, we get

    |III2|C|β|=m||DβA||BMOk=02k+1˜Q2k˜Q|x||y|n+1δ|f(y)|dyC|β|=m||DβA||BMO||f||Bδp.

    For III3, by Holder's inequality, similar to the estimates of III1, we get

    |III3|C|β|=mk=02k+1˜Q2k˜Q(|x||y|n+1δ+|x|ε|y|n+εδ)|Dβ˜A(y)||f(y)|dyC|β|=mk=1(2k+2εk)(2kr)n(1/pδ/n)(|2k˜Q|12k˜Q|DβA(y)(DβA)˜Q|pdy)1/p||fχ2k˜Q||LpC|β|=m||DβA||BMOk=1(2k+2εk)(2kr)n(1/pδ/n)||fχ2k˜Q||LpC|β|=m||DβA||BMO||f||Bδp.

    Thus

    IIIC|β|=m||DβA||BMO||f||Bδp,

    which together with the estimates for I and II yields the desired result. This finishes the proof of Theorem 1.

    Proof of Theorem 2. Let fH˙Kp(Rn), by Lemma 1, f=j=λjaj, where ajs are the central (n(11/p),p)-atom with suppajBj=B(0,2j) and ||f||H˙Kpj|λj|. We write

    ||˜TAδ(f)||˙Kαq=k=2kn(11/p)||χk˜TAδ(f)||Lqk=2kn(11/p)k1j=|λj|||χk˜TAδ(aj)||Lq+k=2kn(11/p)j=k|λj|||χk˜TAδ(aj)||Lq=J+JJ.

    For JJ, by the (Lp,Lq)-boundedness of ˜TAδ for 1/q=1/pδ/n, we get

    JJCk=2kn(11/p)j=k|λj|||aj||LpCk=2kn(11/p)j=k|λj|2jn(1/p1)Cj=|λj|jk=2(kj)n(11/p)Cj=|λj|C||f||H˙Kp.

    To obtain the estimate of J, we denote that ˜A(x)=A(x)|β|=m1β!(DβA)2Bjxβ. Then Qm(A;x,y)=Qm(˜A;x,y) and Qm+1(A;x,y)=Rm(A;x,y)|β|=m1β!(xy)βDβA(x). We write, by the vanishing moment of a and for xCk with kj+1,

    ˜TAδ(aj)(x)=RnK(x,y)Rm(A;x,y)|xy|maj(y)dy|β|=m1β!RnK(x,y)Dβ˜A(x)(xy)β|xy|maj(y)dy=Rn[K(x,y)|xy|mK(x,0)|x|m]Rm(˜A;x,y)aj(y)dy+RnK(x,0)|x|m[Rm(˜A;x,y)Rm(˜A;x,0)]aj(y)dy|β|=m1β!Rn[K(x,y)(xy)β|xy|mK(x,0)xβ|x|m]Dβ˜A(x)aj(y)dy.

    Similar to the proof of Theorem 1, we obtain

    |˜TAδ(aj)(x)|CRn[|y||x|m+n+1δ+|y|ε|x|m+n+εδ]|Rm(˜A;x,y)||aj(y)|dy+C|β|=mRn[|y||x|n+1δ+|y|ε|x|n+εδ]|Dβ˜A(x)||aj(y)|dyC|β|=m||DβA||BMO[2j2k(n+1δ)+2jε2k(n+εδ)]+C|β|=m[2j2k(n+1δ)+2jε2k(n+εδ)]|Dβ˜A(x)|,

    thus

    JC|β|=m||DβA||BMOk=2kn(11/p)k1j=|λj|[2j2k(n+1δ)+2jε2k(n+εδ)]2kn/q+C|β|=mk=2kn(11/p)k1j=|λj|[2j2k(n+1δ)+2jε2k(n+εδ)](Bk|Dβ˜A(x)|qdx)1/qC|β|=m||DβA||BMOk=2kn(1δ/n)k1j=|λj|[2j2k(n+1δ)+2jε2k(n+εδ)]C|β|=m||DβA||BMOj=|λj|k=j+1[2jk+2(jk)ε]C|β|=m||DβA||BMOj=|λj|C|β|=m||DβA||BMO||f||H˙Kp.

    This completes the proof of Theorem 2.

    Proof of Theorem 3. For any cube Q=Q(0,r) with r>1, let fBδp and ˜A(x)=A(x)|β|=m1β!(DβA)˜Qxβ. We write, for f=fχ4Q+fχ(4Q)c=f1+f2 and z3Q2Q,

    ˜TAδ(f)(x)=˜TAδ(f1)(x)+RnRm(˜A;x,y)|xy|mK(x,y)f2(y)dy|β|=m1β!(DβA(x)(DβA)Q)(Tδ,β(f2)(x)Tδ,β(f2)(z))|β|=m1β!(DβA(x)(DβA)Q)Tδ,β(f2)(z)=I1(x)+I2(x)+I3(x,z)+I4(x,z),

    where Tδ,β is the singular integral operator with the kernel (xy)β|xy|mK(x,y) for |β|=m. Note that (I4(,z))Q=0, we have

    ˜TAδ(f)(x)(˜TAδ(f))Q=I1(x)(I1())Q+I2(x)I2(z)[I2()I2(z)]QI3(x,z)+(I3(x,z))QI4(x,z).

    By the (Lp,Lq)-bounded of ˜TAδ, we get

    1|Q|Q|I1(x)|dx(1|Q|Q|˜TAδ(f1)(x)|qdx)1/qC|Q|1/q||f1||LpC||f||Bδp.

    Similar to the proof of Theorem 1, we obtain

    |I2(x)I2(z)|C||f||Bδp

    and

    1|Q|Q|I3(x,z)|dxC||f||Bδp.

    Then integrating in x on Q and using the above estimates, we obtain the equivalence of the estimate

    1|Q|Q|˜TAδ(f)(x)(˜TAδ(f))Q|dxC||f||Bδp

    and the estimate

    1|Q|Q|I4(x,z)|dxC||f||Bδp.

    This completes the proof of Theorem 3.

    In this section we shall apply the theorems of the paper to some particular operators such as the Calderón-Zygmund singular integral operator and fractional integral operator.

    Application 1. Calderón-Zygmund singular integral operator.

    Let T be the Calderón-Zygmund operator defined by (see [10,11,15])

    T(f)(x)=RnK(x,y)f(y)dy,

    the multilinear operator related to T is defined by

    TA(f)(x)=RnRm+1(A;x,y)|xy|mK(x,y)f(y)dy.

    Then it is easily to see that T satisfies the conditions in Theorems 1–3, thus the conclusions of Theorems 1–3 hold for TA.

    Application 2. Fractional integral operator with rough kernel.

    For 0<δ<n, let Tδ be the fractional integral operator with rough kernel defined by (see [2,7])

    Tδf(x)=RnΩ(xy)|xy|nδf(y)dy,

    the multilinear operator related to Tδ is defined by

    TAδf(x)=RnRm+1(A;x,y)|xy|m+nδΩ(xy)f(y)dy,

    where Ω is homogeneous of degree zero on Rn, Sn1Ω(x)dσ(x)=0 and ΩLipε(Sn1) for some 0<ε1, that is there exists a constant M>0 such that for any x,ySn1, |Ω(x)Ω(y)|M|xy|ε. Then Tδ satisfies the conditions in Theorem 1. In fact, for suppf(2Q)c and xQ=Q(x0,d), by the condition of Ω, we have (see [16])

    |Ω(xy)|xy|nδΩ(x0y)|x0y|nδ|C(|xx0|ε|x0y|n+εδ+|xx0||x0y|n+1δ),

    thus, the conclusions of Theorems 1–3 hold for TAδ.

    The author would like to express his deep gratitude to the referee for his/her valuable comments and suggestions. This research was supported by the National Natural Science Foundation of China (Grant No. 11901126), the Scientific Research Funds of Hunan Provincial Education Department. (Grant No. 19B509).

    The authors declare that they have no competing interests.



    [1] P. S. Laplace, Sur l'action capillaire, Supplément au livre X du Traité de mécanique céleste, Gauthier–Villars et fils, Paris, 4 (1805), 771–777.
    [2] P. S. Laplace, Supplément à la théorie de l'action capillaire, Traité de mécanique céleste, Gauthier–Villars et fils, Paris, 4 (1806), 909–945.
    [3] T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95 (1805), 65–87. https://doi.org/10.1098/rstl.1805.0005 doi: 10.1098/rstl.1805.0005
    [4] J. Willard Gibbs, The Collected Works, in Thermodynamics, Longmans, Green, New York, 1 (1928), 320.
    [5] H. L. Duan, J. Wang, B. L. Karihaloo, Theory of elasticity at the nanoscale, Adv. Appl. Mech., 42 (2008), 1–68. https://doi.org/10.1016/S0065-2156(08)00001-X doi: 10.1016/S0065-2156(08)00001-X
    [6] J. Wang, Z. Huang, H. Duan, S. Yu, X. Feng, G. Wang, et al., Surface stress effect in mechanics of nanostructured materials, Acta Mech. Solida Sin., 24 (2011), 52–82. https://doi.org/10.1016/S0894-9166(11)60009-8 doi: 10.1016/S0894-9166(11)60009-8
    [7] V. A. Eremeyev, On effective properties of materials at the nano- and microscales considering surface effects, Acta Mech., 227 (2016), 29–42. https://doi.org/10.1007/s00707-015-1427-y doi: 10.1007/s00707-015-1427-y
    [8] S. G. Mogilevskaya, A. Y. Zemlyanova, V. I. Kushch, Fiber-and particle-reinforced composite materials with the Gurtin–Murdoch and Steigmann–Ogden surface energy endowed interfaces, Appl. Mech. Rev., 73 (2021), 1–18. https://doi.org/10.1115/1.4051880 doi: 10.1115/1.4051880
    [9] M. E. Gurtin, A. I. Murdoch, A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal., 57 (1975), 291–323. https://doi.org/10.1007/BF00261375 doi: 10.1007/BF00261375
    [10] M. E. Gurtin, A. I. Murdoch, Surface stress in solids, Int. J. Solids Struct., 14 (1978), 431–440. https://doi.org/10.1016/0020-7683(78)90008-2 doi: 10.1016/0020-7683(78)90008-2
    [11] A. I. Murdoch, The propagation of surface waves in bodies with material boundaries, J. Mech. Phys. Solids, 24 (1976), 137–146. https://doi.org/10.1016/0022-5096(76)90023-5 doi: 10.1016/0022-5096(76)90023-5
    [12] A. I. Murdoch, The effect of interfacial stress on the propagation of stoneley waves, J. Sound Vib., 50 (1977), 1–11. https://doi.org/10.1016/0022-460X(77)90547-8 doi: 10.1016/0022-460X(77)90547-8
    [13] D. J. Steigmann, R. W. Ogden, Surface waves supported by thin-film/substrate interactions, IMA J. Appl. Math., 72 (2007), 730–747. https://doi.org/10.1093/imamat/hxm018 doi: 10.1093/imamat/hxm018
    [14] V. A. Eremeyev, G. Rosi, S. Naili, Surface/interfacial anti-plane waves in solids with surface energy, Mech. Res. Commun., 74 (2016), 8–13. https://doi.org/10.1016/j.mechrescom.2016.02.018 doi: 10.1016/j.mechrescom.2016.02.018
    [15] G. Mikhasev, B. Erbaş, V. A. Eremeyev, Anti-plane shear waves in an elastic strip rigidly attached to an elastic half-space, Int. J. Eng. Sci., 184 (2023), 103809. https://doi.org/10.1016/j.ijengsci.2022.103809 doi: 10.1016/j.ijengsci.2022.103809
    [16] S. Dhua, A. Maji, A. Nath, The influence of surface elasticity on shear wave propagation in a cylindrical layer structure with an imperfect interface, Eur. J. Mech. A. Solids, 106 (2024), 105318. https://doi.org/10.1016/j.euromechsol.2024.105318 doi: 10.1016/j.euromechsol.2024.105318
    [17] F. Jia, Z. Zhang, H. Zhang, X. Q. Feng, B. Gu, Shear horizontal wave dispersion in nanolayers with surface effects and determination of surface elastic constants, Thin Solid Films, 645 (2018), 134–138. https://doi.org/10.1016/j.tsf.2017.10.025 doi: 10.1016/j.tsf.2017.10.025
    [18] W. Wu, H. Zhang, F. Jia, X. Yang, H. Liu, W. Yuan, et al., Surface effects on frequency dispersion characteristics of Lamb waves in a nanoplate, Thin Solid Films, 697 (2020), 137831. https://doi.org/10.1016/j.tsf.2020.137831 doi: 10.1016/j.tsf.2020.137831
    [19] D. J. Steigmann, R. W. Ogden, Plane deformations of elastic solids with intrinsic boundary elasticity, Proc. R. Soc. Ser. A, 453 (1997), 853–877. https://doi.org/10.1098/rspa.1997.0047 doi: 10.1098/rspa.1997.0047
    [20] D. J. Steigmann, R. W. Ogden, Elastic surface–substrate interactions, Proc. R. Soc. Ser. A, 455 (1999), 437–474. https://doi.org/10.1098/rspa.1999.0320 doi: 10.1098/rspa.1999.0320
    [21] V. A. Eremeyev, Strongly anisotropic surface elasticity and antiplane surface waves, Phil. Trans. R. Soc. A, 378 (2020), 20190100. https://doi.org/10.1098/rsta.2019.0100 doi: 10.1098/rsta.2019.0100
    [22] C. Rodriguez, Elastic solids with strain-gradient elastic boundary surfaces, J. Elast., 156 (2024), 769–797. https://doi.org/10.1007/s10659-024-10073-w doi: 10.1007/s10659-024-10073-w
    [23] L. Brillouin, Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, Mcgraw Hill Book Company, New York, 1953. https://doi.org/10.1038/158926a0
    [24] A. I. Murdoch, Some fundamental aspects of surface modelling, J. Elast., 80 (2005), 33–52. https://doi.org/10.1007/s10659-005-9024-2 doi: 10.1007/s10659-005-9024-2
    [25] V. A. Eremeyev, B. L. Sharma, Anti-plane surface waves in media with surface structure: Discrete vs. continuum model, Int. J. Eng. Sci., 143 (2019), 33–38. https://doi.org/10.1016/j.ijengsci.2019.06.007 doi: 10.1016/j.ijengsci.2019.06.007
    [26] B. L. Sharma, V. A. Eremeyev, Wave transmission across surface interfaces in lattice structures, Int. J. Eng. Sci., 145 (2019), 103173. https://doi.org/10.1016/j.ijengsci.2019.103173 doi: 10.1016/j.ijengsci.2019.103173
    [27] J. Achenbach, Wave Propagation in Elastic Solids, North Holland, Amsterdam, 1973.
    [28] G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, New York, 1999.
    [29] E. Barchiesi, M. Laudato, F. Di Cosmo, Wave dispersion in non-linear pantographic beams, Mech. Res. Commun., 94 (2018), 128–132. https://doi.org/10.1016/j.mechrescom.2018.11.002 doi: 10.1016/j.mechrescom.2018.11.002
    [30] N. Shekarchizadeh, M. Laudato, L. Manzari, B. E. Abali, I. Giorgio, A. M. Bersani, Parameter identification of a second-gradient model for the description of pantographic structures in dynamic regime, Z. Angew. Math. Phys., 72 (2021), 190. https://doi.org/10.1007/s00033-021-01620-9 doi: 10.1007/s00033-021-01620-9
    [31] A. Ciallella, I. Giorgio, S. R. Eugster, N. L. Rizzi, F. dell'Isola, Generalized beam model for the analysis of wave propagation with a symmetric pattern of deformation in planar pantographic sheets, Wave Motion, 113 (2022), 102986. https://doi.org/10.1016/j.wavemoti.2022.102986 doi: 10.1016/j.wavemoti.2022.102986
    [32] R. Fedele, L. Placidi, F. Fabbrocino, A review of inverse problems for generalized elastic media: Formulations, experiments, synthesis, Continuum Mech. Thermodyn., 36 (2024), 1413–1453. https://doi.org/10.1007/s00161-024-01314-3 doi: 10.1007/s00161-024-01314-3
    [33] L. Placidi, F. Di Girolamo, R. Fedele, Variational study of a Maxwell-Rayleigh-type finite length model for the preliminary design of a tensegrity chain with a tunable band gap, Mech. Res. Commun., 136 (2024), 104255. https://doi.org/10.1016/j.mechrescom.2024.104255 doi: 10.1016/j.mechrescom.2024.104255
    [34] B. L. Sharma, Diffraction of waves on square lattice by semi-infinite rigid constraint, Wave Motion, 59 (2015), 52–68. https://doi.org/10.1016/j.wavemoti.2015.07.008 doi: 10.1016/j.wavemoti.2015.07.008
    [35] B. L. Sharma, On linear waveguides of square and triangular lattice strips: An application of Chebyshev polynomials, Sādhanā, 42 (2017), 901–927. https://doi.org/10.1007/s12046-017-0646-4 doi: 10.1007/s12046-017-0646-4
    [36] G. I. Mikhasev, V. A. Eremeyev, Effects of interfacial sliding on anti-plane waves in an elastic plate imperfectly attached to an elastic half-space, Int. J. Eng. Sci., 205 (2024), 104158. https://doi.org/10.1016/j.ijengsci.2024.104158 doi: 10.1016/j.ijengsci.2024.104158
    [37] G. S. Mishuris, A. B. Movchan, D. Bigoni, Dynamics of a fault steadily propagating within a structural interface, Multiscale Model. Simul., 10 (2012), 936–953. https://doi.org/10.1137/110845732 doi: 10.1137/110845732
    [38] B. Lal Sharma, G. Mishuris, Scattering on a square lattice from a crack with a damage zone, Proc. R. Soc. A, 476 (2020), 20190686. https://doi.org/10.1098/rspa.2019.0686 doi: 10.1098/rspa.2019.0686
    [39] B. L. Sharma, Scattering of surface waves by inhomogeneities in crystalline structures, Proc. R. Soc. A, 480 (2024), 20230683. https://doi.org/10.1098/rspa.2023.0683 doi: 10.1098/rspa.2023.0683
    [40] M. Brun, A. B. Movchan, N. V. Movchan, Shear polarisation of elastic waves by a structured interface, Continuum Mech. Thermodyn., 22 (2010), 663–677. https://doi.org/10.1007/s00161-010-0143-z doi: 10.1007/s00161-010-0143-z
    [41] G. Rosi, L. Placidi, V. H. Nguyen, S. Naili, Wave propagation across a finite heterogeneous interphase modeled as an interface with material properties, Mech. Res. Commun., 84 (2017), 43–48. https://doi.org/10.1016/j.mechrescom.2017.06.004 doi: 10.1016/j.mechrescom.2017.06.004
    [42] A. Casalotti, F. D'Annibale, G. Rosi, Optimization of an architected composite with tailored graded properties, Z. Angew. Math. Phys., 75 (2024), 126. https://doi.org/10.1007/s00033-024-02255-2 doi: 10.1007/s00033-024-02255-2
    [43] F. dell'Isola, A. Madeo, L. Placidi, Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua, ZAMM J. Appl. Math. Mech., 92 (2012), 52–71. https://doi.org/10.1002/zamm.201100022 doi: 10.1002/zamm.201100022
    [44] L. Placidi, G. Rosi, I. Giorgio, A. Madeo, Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials, Math. Mech. Solids, 19 (2014), 555–578. https://doi.org/10.1177/1081286512474016 doi: 10.1177/1081286512474016
    [45] A. Berezovski, I. Giorgio, A. D. Corte, Interfaces in micromorphic materials: Wave transmission and reflection with numerical simulations, Math. Mech. Solids, 21 (2016), 37–51. https://doi.org/10.1177/1081286515572244 doi: 10.1177/1081286515572244
    [46] E. Barchiesi, L. Placidi, A review on models for the 3D statics and 2D dynamics of pantographic fabrics, Adv. Struct. Mater., (2017), 239–258. https://doi.org/10.1007/978-981-10-3797-9_14 doi: 10.1007/978-981-10-3797-9_14
    [47] E. Turco, E. Barchiesi, A. Ciallella, F. dell'isola, Nonlinear waves in pantographic beams induced by transverse impulses, Wave Motion, 115 (2022), 103064. https://doi.org/10.1016/j.wavemoti.2022.103064 doi: 10.1016/j.wavemoti.2022.103064
    [48] S. R. Eugster, Numerical analysis of nonlinear wave propagation in a pantographic sheet, Math. Mech. Complex Syst., 9 (2022), 293–310. https://doi.org/10.2140/memocs.2021.9.293 doi: 10.2140/memocs.2021.9.293
    [49] E. Turco, E. Barchiesi, F. dell'Isola, A numerical investigation on impulse-induced nonlinear longitudinal waves in pantographic beams, Math. Mech. Solids, 27 (2022), 22–48. https://doi.org/10.1177/10812865211010877 doi: 10.1177/10812865211010877
    [50] V. A. Eremeyev, G. Rosi, S. Naili, On effective surface elastic moduli for microstructured strongly anisotropic coatings, Int. J. Eng. Sci., 204 (2024), 104135. https://doi.org/10.1016/j.ijengsci.2024.104135 doi: 10.1016/j.ijengsci.2024.104135
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(470) PDF downloads(40) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog