The paper is concerned with the three-dimensional magnetohydrodynamic equations in the rotational framework concerning with fluid flow of Earth's core and the variation of the Earth's magnetic field. By establishing new balances between the regularizing effects arising from viscosity dissipation and magnetic diffusion with the dispersive effects caused by the rotation of the Earth, we obtain the global existence and uniqueness of solutions of the Cauchy problem of the three-dimensional rotating magnetohydrodynamic equations in Besov spaces. Moreover, the spatial analyticity of solutions is verified by means of the Gevrey class approach.
Citation: Jinyi Sun, Weining Wang, Dandan Zhao. Global existence of 3D rotating magnetohydrodynamic equations arising from Earth's fluid core[J]. Networks and Heterogeneous Media, 2025, 20(1): 35-51. doi: 10.3934/nhm.2025003
[1] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
[2] | Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311 |
[3] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[4] | Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652 |
[5] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
[6] | Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250 |
[7] | Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139 |
[8] | Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022 |
[9] | Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786 |
[10] | Naqash Sarfraz, Muhammad Aslam . Some weighted estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561 |
The paper is concerned with the three-dimensional magnetohydrodynamic equations in the rotational framework concerning with fluid flow of Earth's core and the variation of the Earth's magnetic field. By establishing new balances between the regularizing effects arising from viscosity dissipation and magnetic diffusion with the dispersive effects caused by the rotation of the Earth, we obtain the global existence and uniqueness of solutions of the Cauchy problem of the three-dimensional rotating magnetohydrodynamic equations in Besov spaces. Moreover, the spatial analyticity of solutions is verified by means of the Gevrey class approach.
Let T be the Calderón-Zygmund singular integral operator and b be a locally integrable function on Rn. The commutator generated by b and T is defined by [b,T]f=bT(f)−T(bf). The investigation of the commutator begins with Coifman-Rochberg-Weiss pioneering study and classical result (see [6]). The classical result of Coifman, Rochberg and Weiss (see [6]) states that the commutator [b,T]f=T(bf)−bTf is bounded on Lp(Rn) for 1<p<∞ if and only if b∈BMO(Rn). The major reason for considering the problem of commutators is that the boundedness of commutator can produces some characterizations of function spaces (see [1,6]). Chanillo (see [1]) proves a similar result when T is replaced by the fractional integral operator. In [11], the boundedness properties of the commutators for the extreme values of p are obtained. In recent years, the theory of Herz space and Herz type Hardy space, as a local version of Lebesgue space and Hardy space, have been developed (see [8,9,12,13]). The main purpose of this paper is to establish the endpoint continuity properties of some multilinear operators related to certain non-convolution type fractional singular integral operators on Herz and Herz type Hardy spaces.
First, let us introduce some notations (see [8,9,10,12,13,15]). Throughout this paper, Q will denote a cube of Rn with sides parallel to the axes. For a cube Q and a locally integrable function f, let fQ=|Q|−1∫Qf(x)dx and f#(x)=supQ∋x|Q|−1∫Q|f(y)−fQ|dy. Moreover, f is said to belong to BMO(Rn) if f#∈L∞ and define ||f||BMO=||f#||L∞; We also define the central BMO space by CMO(Rn), which is the space of those functions f∈Lloc(Rn) such that
||f||CMO=supr>1|Q(0,r)|−1∫Q|f(y)−fQ|dy<∞. |
It is well-known that (see [9,10])
||f||CMO≈supr>1infc∈C|Q(0,r)|−1∫Q|f(x)−c|dx. |
For k∈Z, define Bk={x∈Rn:|x|≤2k} and Ck=Bk∖Bk−1. Denote by χk the characteristic function of Ck and ˜χk the characteristic function of Ck for k≥1 and ˜χ0 the characteristic function of B0.
Definition 1. Let 0<p<∞ and α∈R.
(1) The homogeneous Herz space ˙Kαp(Rn) is defined by
˙Kαp(Rn)={f∈Lploc(Rn∖{0}):||f||˙Kαp<∞}, |
where
||f||˙Kαp=∞∑k=−∞2kα||fχk||Lp; |
(2) The nonhomogeneous Herz space Kαp(Rn) is defined by
Kαp(Rn)={f∈Lploc(Rn):||f||Kαp<∞}, |
where
||f||Kαp=∞∑k=02kα||f˜χk||Lp. |
If α=n(1−1/p), we denote that ˙Kαp(Rn)=˙Kp(Rn), Kαp(Rn)=Kp(Rn).
Definition 2. Let 0<δ<n and 1<p<n/δ. We shall call Bδp(Rn) the space of those functions f on Rn such that
||f||Bδp=supd>1d−n(1/p−δ/n)||fχQ(0,d)||Lp<∞. |
Definition 3. Let 1<p<∞.
(1) The homogeneous Herz type Hardy space H˙Kp(Rn) is defined by
H˙Kp(Rn)={f∈S′(Rn):G(f)∈˙Kp(Rn)}, |
where
||f||H˙Kp=||G(f)||˙Kp. |
(2) The nonhomogeneous Herz type Hardy space HKp(Rn) is defined by
HKp(Rn)={f∈S′(Rn):G(f)∈Kp(Rn)}, |
where
||f||HKp=||G(f)||Kp. |
where G(f) is the grand maximal function of f.
The Herz type Hardy spaces have the atomic decomposition characterization.
Definition 4. Let 1<p<∞. A function a(x) on Rn is called a central (n(1−1/p),p)-atom (or a central (n(1−1/p),p)-atom of restrict type), if
1) Suppa⊂B(0,d) for some d>0 (or for some d≥1),
2) ||a||Lp≤|B(0,d)|1/p−1,
3) ∫a(x)dx=0.
Lemma 1. (see [9,13]) Let 1<p<∞. A temperate distribution f belongs to H˙Kp(Rn)(or HKp(Rn)) if and only if there exist central (n(1−1/p),p)-atoms(or central (n(1−1/p),p)-atoms of restrict type) aj supported on Bj=B(0,2j) and constants λj, ∑j|λj|<∞ such that f=∑∞j=−∞λjaj (or f=∑∞j=0λjaj)in the S′(Rn) sense, and
||f||H˙Kp( or ||f||HKp)≈∑j|λj|. |
In this paper, we will consider a class of multilinear operators related to some non-convolution type singular integral operators, whose definition are following.
Let m be a positive integer and A be a function on Rn. We denote that
Rm+1(A;x,y)=A(x)−∑|β|≤m1β!DβA(y)(x−y)β |
and
Qm+1(A;x,y)=Rm(A;x,y)−∑|β|=m1β!DβA(x)(x−y)β. |
Definition 5. Fixed ε>0 and 0<δ<n. Let Tδ:S→S′ be a linear operator. Tδ is called a fractional singular integral operator if there exists a locally integrable function K(x,y) on Rn×Rn such that
Tδ(f)(x)=∫RnK(x,y)f(y)dy |
for every bounded and compactly supported function f, where K satisfies:
|K(x,y)|≤C|x−y|−n+δ |
and
|K(y,x)−K(z,x)|+|K(x,y)−K(x,z)|≤C|y−z|ε|x−z|−n−ε+δ |
if 2|y−z|≤|x−z|. The multilinear operator related to the fractional singular integral operator Tδ is defined by
TAδ(f)(x)=∫RnRm+1(A;x,y)|x−y|mK(x,y)f(y)dy; |
We also consider the variant of TAδ, which is defined by
˜TAδ(f)(x)=∫RnQm+1(A;x,y)|x−y|mK(x,y)f(y)dy. |
Note that when m=0, TAδ is just the commutators of Tδ and A (see [1,6,11,14]). It is well known that multilinear operator, as a non-trivial extension of commutator, is of great interest in harmonic analysis and has been widely studied by many authors (see [3,4,5]). In [7], the weighted Lp(p>1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In [2], the weak (H1, L1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In this paper, we will study the endpoint continuity properties of the multilinear operators TAδ and ˜TAδ on Herz and Herz type Hardy spaces.
Now we state our results as following.
Theorem 1. Let 0<δ<n, 1<p<n/δ and DβA∈BMO(Rn) for all β with |β|=m. Suppose that TAδ is the same as in Definition 5 such that Tδ is bounded from Lp(Rn) to Lq(Rn) for any p,q∈(1,+∞] with 1/q=1/p−δ/n. Then TAδ is bounded from Bδp(Rn) to CMO(Rn).
Theorem 2. Let 0<δ<n, 1<p<n/δ, 1/q=1/p−δ/n and DβA∈BMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q∈(1,+∞) with 1/q=1/p−δ/n. Then ˜TAδ is bounded from H˙Kp(Rn) to ˙Kαq(Rn) with α=n(1−1/p).
Theorem 3. Let 0<δ<n, 1<p<n/δ and DβA∈BMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q∈(1,+∞) with 1/q=1/p−δ/n. Then the following two statements are equivalent:
(ⅰ) ˜TAδ is bounded from Bδp(Rn) to CMO(Rn);
(ⅱ) for any cube Q and z∈3Q∖2Q, there is
1|Q|∫Q|∑|β|=m1β!|DβA(x)−(DβA)Q|∫(4Q)cKβ(z,y)f(y)dy|dx≤C||f||Bδp, |
where Kβ(z,y)=(z−y)β|z−y|mK(z,y) for |β|=m.
Remark. Theorem 2 is also hold for nonhomogeneous Herz and Herz type Hardy space.
To prove the theorem, we need the following lemma.
Lemma 2. (see [5]) Let A be a function on Rn and DβA∈Lq(Rn) for |β|=m and some q>n. Then
|Rm(A;x,y)|≤C|x−y|m∑|β|=m(1|˜Q(x,y)|∫˜Q(x,y)|DβA(z)|qdz)1/q, |
where ˜Q(x,y) is the cube centered at x and having side length 5√n|x−y|.
Proof of Theorem 1. It suffices to prove that there exists a constant CQ such that
1|Q|∫Q|TAδ(f)(x)−CQ|dx≤C||f||Bδp |
holds for any cube Q=Q(0,d) with d>1. Fix a cube Q=Q(0,d) with d>1. Let ˜Q=5√nQ and ˜A(x)=A(x)−∑|β|=m1β!(DβA)˜Qxβ, then Rm+1(A;x,y)=Rm+1(˜A;x,y) and Dβ˜A=DβA−(DβA)˜Q for all β with |β|=m. We write, for f1=fχ˜Q and f2=fχRn∖˜Q,
TAδ(f)(x)=∫RnRm+1(˜A;x,y)|x−y|mK(x,y)f(y)dy=∫RnRm(˜A;x,y)|x−y|mK(x,y)f1(y)dy−∑|β|=m1β!∫RnK(x,y)(x−y)β|x−y|mDβ˜A(y)f1(y)dy+∫RnRm+1(˜A;x,y)|x−y|mK(x,y)f2(y)dy, |
then
1|Q|∫Q|TAδ(f)(x)−T˜Aδ(f2)(0)|dx≤1|Q|∫Q|Tδ(Rm(˜A;x,⋅)|x−⋅|mf1)(x)|dx+∑|β|=m1β!1|Q|∫Q|Tδ((x−⋅)β|x−⋅|mDβ˜Af1)(x)|dx+|T˜Aδ(f2)(x)−T˜Aδ(f2)(0)|dx:=I+II+III. |
For I, note that for x∈Q and y∈˜Q, using Lemma 2, we get
Rm(˜A;x,y)≤C|x−y|m∑|β|=m||DβA||BMO, |
thus, by the Lp(Rn) to Lq(Rn)-boundedness of TAδ for 1<p,q<∞ with 1/q=1/p−δ/n, we get
I≤C|Q|∫Q|Tδ(∑|β|=m||DβA||BMOf1)(x)|dx≤C∑|β|=m||DβA||BMO(1|Q|∫Q|Tδ(f1)(x)|qdx)1/q≤C∑|β|=m||DβA||BMO|Q|−1/q||f1||Lp≤C∑|β|=m||DβA||BMOr−n(1/p−δ/n)||fχ˜Q||Lp≤C∑|β|=m||DβA||BMO||f||Bδp. |
For II, taking 1<s<p such that 1/r=1/s−δ/n, by the (Ls,Lr)-boundedness of Tδ and Holder's inequality, we gain
II≤C|Q|∫Q|Tδ(∑|β|=m(DβA−(DβA)˜Q)f1)(x)|dx≤C∑|β|=m(1|Q|∫Q|Tδ((DβA−(DβA)˜Q)f1)(x)|rdx)1/r≤C|Q|−1/r∑|β|=m||(DβA−(DβA)˜Q)f1||Ls≤C|Q|−1/r||f1||Lp∑|β|=m(1|Q|∫˜Q|DβA(y)−(DβA)˜Q|ps/(p−s)dy)(p−s)/(ps)|Q|(p−s)/(ps)≤C∑|β|=m||DβA||BMOr−n/q||fχ˜Q||Lp≤C∑|β|=m||DβA||BMO||f||Bδp. |
To estimate III, we write
T˜Aδ(f2)(x)−T˜Aδ(f2)(0)=∫Rn[K(x,y)|x−y|m−K(0,y)|y|m]Rm(˜A;x,y)f2(y)dy+∫RnK(0,y)f2(y)|y|m[Rm(˜A;x,y)−Rm(˜A;0,y)]dy−∑|β|=m1β!∫Rn(K(x,y)(x−y)β|x−y|m−K(0,y)(−y)β|y|m)Dβ˜A(y)f2(y)dy:=III1+III2+III3. |
By Lemma 2 and the following inequality (see [15])
|bQ1−bQ2|≤Clog(|Q2|/|Q1|)||b||BMO for Q1⊂Q2, |
we know that, for x∈Q and y∈2k+1˜Q∖2k˜Q,
|Rm(˜A;x,y)|≤C|x−y|m∑|β|=m(||DβA||BMO+|(DβA)˜Q(x,y)−(DβA)˜Q|)≤Ck|x−y|m∑|β|=m||DβA||BMO. |
Note that |x−y|∼|y| for x∈Q and y∈Rn∖˜Q, we obtain, by the condition of K,
|III1|≤C∫Rn(|x||y|m+n+1−δ+|x|ε|y|m+n+ε−δ)|Rm(˜A;x,y)||f2(y)|dy≤C∑|β|=m||DβA||BMO∞∑k=0∫2k+1˜Q∖2k˜Qk(|x||y|n+1−δ+|x|ε|y|n+ε−δ)|f(y)|dy≤C∑|β|=m||DβA||BMO∞∑k=1k(2−k+2−εk)(2kr)−n(1/p−δ/n)||fχ2k˜Q||Lp≤C∑|β|=m||DβA||BMO∞∑k=1k(2−k+2−εk)||f||Bδp≤C∑|β|=m||DβA||BMO||f||Bδp. |
For III2, by the formula (see [5]):
Rm(˜A;x,y)−Rm(˜A;x0,y)=∑|γ|<m1γ!Rm−|γ|(Dγ˜A;x,x0)(x−y)γ |
and Lemma 2, we have
|Rm(˜A;x,y)−Rm(˜A;x0,y)|≤C∑|γ|<m∑|β|=m|x−x0|m−|γ||x−y||γ|||DβA||BMO, |
thus, similar to the estimates of III1, we get
|III2|≤C∑|β|=m||DβA||BMO∞∑k=0∫2k+1˜Q∖2k˜Q|x||y|n+1−δ|f(y)|dy≤C∑|β|=m||DβA||BMO||f||Bδp. |
For III3, by Holder's inequality, similar to the estimates of III1, we get
|III3|≤C∑|β|=m∞∑k=0∫2k+1˜Q∖2k˜Q(|x||y|n+1−δ+|x|ε|y|n+ε−δ)|Dβ˜A(y)||f(y)|dy≤C∑|β|=m∞∑k=1(2−k+2−εk)(2kr)−n(1/p−δ/n)(|2k˜Q|−1∫2k˜Q|DβA(y)−(DβA)˜Q|p′dy)1/p′||fχ2k˜Q||Lp≤C∑|β|=m||DβA||BMO∞∑k=1(2−k+2−εk)(2kr)−n(1/p−δ/n)||fχ2k˜Q||Lp≤C∑|β|=m||DβA||BMO||f||Bδp. |
Thus
III≤C∑|β|=m||DβA||BMO||f||Bδp, |
which together with the estimates for I and II yields the desired result. This finishes the proof of Theorem 1.
Proof of Theorem 2. Let f∈H˙Kp(Rn), by Lemma 1, f=∑∞j=−∞λjaj, where a′js are the central (n(1−1/p),p)-atom with suppaj⊂Bj=B(0,2j) and ||f||H˙Kp≈∑j|λj|. We write
||˜TAδ(f)||˙Kαq=∞∑k=−∞2kn(1−1/p)||χk˜TAδ(f)||Lq≤∞∑k=−∞2kn(1−1/p)k−1∑j=−∞|λj|||χk˜TAδ(aj)||Lq+∞∑k=−∞2kn(1−1/p)∞∑j=k|λj|||χk˜TAδ(aj)||Lq=J+JJ. |
For JJ, by the (Lp,Lq)-boundedness of ˜TAδ for 1/q=1/p−δ/n, we get
JJ≤C∞∑k=−∞2kn(1−1/p)∞∑j=k|λj|||aj||Lp≤C∞∑k=−∞2kn(1−1/p)∞∑j=k|λj|2jn(1/p−1)≤C∞∑j=−∞|λj|j∑k=−∞2(k−j)n(1−1/p)≤C∞∑j=−∞|λj|≤C||f||H˙Kp. |
To obtain the estimate of J, we denote that ˜A(x)=A(x)−∑|β|=m1β!(DβA)2Bjxβ. Then Qm(A;x,y)=Qm(˜A;x,y) and Qm+1(A;x,y)=Rm(A;x,y)−∑|β|=m1β!(x−y)βDβA(x). We write, by the vanishing moment of a and for x∈Ck with k≥j+1,
˜TAδ(aj)(x)=∫RnK(x,y)Rm(A;x,y)|x−y|maj(y)dy−∑|β|=m1β!∫RnK(x,y)Dβ˜A(x)(x−y)β|x−y|maj(y)dy=∫Rn[K(x,y)|x−y|m−K(x,0)|x|m]Rm(˜A;x,y)aj(y)dy+∫RnK(x,0)|x|m[Rm(˜A;x,y)−Rm(˜A;x,0)]aj(y)dy−∑|β|=m1β!∫Rn[K(x,y)(x−y)β|x−y|m−K(x,0)xβ|x|m]Dβ˜A(x)aj(y)dy. |
Similar to the proof of Theorem 1, we obtain
|˜TAδ(aj)(x)|≤C∫Rn[|y||x|m+n+1−δ+|y|ε|x|m+n+ε−δ]|Rm(˜A;x,y)||aj(y)|dy+C∑|β|=m∫Rn[|y||x|n+1−δ+|y|ε|x|n+ε−δ]|Dβ˜A(x)||aj(y)|dy≤C∑|β|=m||DβA||BMO[2j2k(n+1−δ)+2jε2k(n+ε−δ)]+C∑|β|=m[2j2k(n+1−δ)+2jε2k(n+ε−δ)]|Dβ˜A(x)|, |
thus
J≤C∑|β|=m||DβA||BMO∞∑k=−∞2kn(1−1/p)k−1∑j=−∞|λj|[2j2k(n+1−δ)+2jε2k(n+ε−δ)]2kn/q+C∑|β|=m∞∑k=−∞2kn(1−1/p)k−1∑j=−∞|λj|[2j2k(n+1−δ)+2jε2k(n+ε−δ)](∫Bk|Dβ˜A(x)|qdx)1/q≤C∑|β|=m||DβA||BMO∞∑k=−∞2kn(1−δ/n)k−1∑j=−∞|λj|[2j2k(n+1−δ)+2jε2k(n+ε−δ)]≤C∑|β|=m||DβA||BMO∞∑j=−∞|λj|∞∑k=j+1[2j−k+2(j−k)ε]≤C∑|β|=m||DβA||BMO∞∑j=−∞|λj|≤C∑|β|=m||DβA||BMO||f||H˙Kp. |
This completes the proof of Theorem 2.
Proof of Theorem 3. For any cube Q=Q(0,r) with r>1, let f∈Bδp and ˜A(x)=A(x)−∑|β|=m1β!(DβA)˜Qxβ. We write, for f=fχ4Q+fχ(4Q)c=f1+f2 and z∈3Q∖2Q,
˜TAδ(f)(x)=˜TAδ(f1)(x)+∫RnRm(˜A;x,y)|x−y|mK(x,y)f2(y)dy−∑|β|=m1β!(DβA(x)−(DβA)Q)(Tδ,β(f2)(x)−Tδ,β(f2)(z))−∑|β|=m1β!(DβA(x)−(DβA)Q)Tδ,β(f2)(z)=I1(x)+I2(x)+I3(x,z)+I4(x,z), |
where Tδ,β is the singular integral operator with the kernel (x−y)β|x−y|mK(x,y) for |β|=m. Note that (I4(⋅,z))Q=0, we have
˜TAδ(f)(x)−(˜TAδ(f))Q=I1(x)−(I1(⋅))Q+I2(x)−I2(z)−[I2(⋅)−I2(z)]Q−I3(x,z)+(I3(x,z))Q−I4(x,z). |
By the (Lp,Lq)-bounded of ˜TAδ, we get
1|Q|∫Q|I1(x)|dx≤(1|Q|∫Q|˜TAδ(f1)(x)|qdx)1/q≤C|Q|−1/q||f1||Lp≤C||f||Bδp. |
Similar to the proof of Theorem 1, we obtain
|I2(x)−I2(z)|≤C||f||Bδp |
and
1|Q|∫Q|I3(x,z)|dx≤C||f||Bδp. |
Then integrating in x on Q and using the above estimates, we obtain the equivalence of the estimate
1|Q|∫Q|˜TAδ(f)(x)−(˜TAδ(f))Q|dx≤C||f||Bδp |
and the estimate
1|Q|∫Q|I4(x,z)|dx≤C||f||Bδp. |
This completes the proof of Theorem 3.
In this section we shall apply the theorems of the paper to some particular operators such as the Calderón-Zygmund singular integral operator and fractional integral operator.
Application 1. Calderón-Zygmund singular integral operator.
Let T be the Calderón-Zygmund operator defined by (see [10,11,15])
T(f)(x)=∫RnK(x,y)f(y)dy, |
the multilinear operator related to T is defined by
TA(f)(x)=∫RnRm+1(A;x,y)|x−y|mK(x,y)f(y)dy. |
Then it is easily to see that T satisfies the conditions in Theorems 1–3, thus the conclusions of Theorems 1–3 hold for TA.
Application 2. Fractional integral operator with rough kernel.
For 0<δ<n, let Tδ be the fractional integral operator with rough kernel defined by (see [2,7])
Tδf(x)=∫RnΩ(x−y)|x−y|n−δf(y)dy, |
the multilinear operator related to Tδ is defined by
TAδf(x)=∫RnRm+1(A;x,y)|x−y|m+n−δΩ(x−y)f(y)dy, |
where Ω is homogeneous of degree zero on Rn, ∫Sn−1Ω(x′)dσ(x′)=0 and Ω∈Lipε(Sn−1) for some 0<ε≤1, that is there exists a constant M>0 such that for any x,y∈Sn−1, |Ω(x)−Ω(y)|≤M|x−y|ε. Then Tδ satisfies the conditions in Theorem 1. In fact, for suppf⊂(2Q)c and x∈Q=Q(x0,d), by the condition of Ω, we have (see [16])
|Ω(x−y)|x−y|n−δ−Ω(x0−y)|x0−y|n−δ|≤C(|x−x0|ε|x0−y|n+ε−δ+|x−x0||x0−y|n+1−δ), |
thus, the conclusions of Theorems 1–3 hold for TAδ.
The author would like to express his deep gratitude to the referee for his/her valuable comments and suggestions. This research was supported by the National Natural Science Foundation of China (Grant No. 11901126), the Scientific Research Funds of Hunan Provincial Education Department. (Grant No. 19B509).
The authors declare that they have no competing interests.
[1] |
W. M. Elsässer, Induction effects in terrestrial magnetism part Ⅰ. Theory, Phys. Rev., 69 (1946), 106–116. https://doi.org/10.1103/PhysRev.69.106 doi: 10.1103/PhysRev.69.106
![]() |
[2] |
W. M. Elsässer, Induction effects in terrestrial magnetism part Ⅱ. The secular variation, Phys. Rev., 70 (1946), 202–212. https://doi.org/10.1103/PhysRev.70.202 doi: 10.1103/PhysRev.70.202
![]() |
[3] | R. T. Merrill, M. W. McElhinny, P. L. McFadden, The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle, Academic Press, 1998. |
[4] | J. Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier, Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier-Stokes Equations, The Clarendon Press Oxford University Press, Oxford, 2006. |
[5] |
G. Duvaut, J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241–279. https://doi.org/10.1007/BF00250512 doi: 10.1007/BF00250512
![]() |
[6] |
X. Zhai, Y. Li, W. Yan, Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces, Commun. Pure Appl. Anal., 14 (2015), 1865–1884. https://doi.org/10.3934/cpaa.2015.14.1865 doi: 10.3934/cpaa.2015.14.1865
![]() |
[7] |
J. Chemin, D. McCormick, J. Robinson, J. Rodrigo, Local existence for the nonresistive MHD equations in Besov spaces, Adv. Math., 286 (2016), 1–31. https://doi.org/10.1016/j.aim.2015.09.004 doi: 10.1016/j.aim.2015.09.004
![]() |
[8] |
C. Fefferman, D. McCormick, J. Robinson, J. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD equations and related models, J. Funct. Anal., 267 (2014), 1035–1056. https://doi.org/10.1016/j.jfa.2014.03.021 doi: 10.1016/j.jfa.2014.03.021
![]() |
[9] |
Q. Liu, J. Zhao, Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier-Herz spaces, J. Math. Anal. Appl., 420 (2014), 1301–1315. https://doi.org/10.1016/j.jmaa.2014.06.031 doi: 10.1016/j.jmaa.2014.06.031
![]() |
[10] |
X. Zhai, Stability for the 2D incompressible MHD equations with only magnetic diffusion, J. Differ. Equations, 374 (2023), 267–278. https://doi.org/https://doi.org/10.1016/j.jde.2023.07.033 doi: 10.1016/j.jde.2023.07.033
![]() |
[11] |
J. Y. Chemin, B. Desjardin, I. Gallagher, E. Grenier, Anisotropy and dispersion in rotating fluids, Stud. Math. Appl., 31 (2002), 171–192. https://doi.org/10.1016/S0168-2024(02)80010-8 doi: 10.1016/S0168-2024(02)80010-8
![]() |
[12] |
T. Iwabuchi, R. Takada, Global solutions for the Navier-Stokes equations in the rotational framework, Math. Ann., 357 (2013), 727–741. https://doi.org/10.1007/s00208-013-0923-4 doi: 10.1007/s00208-013-0923-4
![]() |
[13] |
Y. Koh, S. Lee, R. Takada, Dispersive estimates for the Navier-Stokes equations in the rotational framework, Adv. Differ. Equations, 19 (2014), 857–878. https://doi.org/10.57262/ade/1404230126 doi: 10.57262/ade/1404230126
![]() |
[14] |
J. Sun, M. Yang, S. Cui, Existence and analyticity of mild solutions for the 3D rotating Navier-Stokes equations, Ann. Mat. Pura Appl., 196 (2017), 1203–1229. https://doi.org/10.1007/s10231-016-0613-4 doi: 10.1007/s10231-016-0613-4
![]() |
[15] |
Y. Giga, K. Inui, A. Mahalov, J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data, Indiana Univ. Math. J., 57 (2008), 2775–2791. https://doi.org/10.1512/iumj.2008.57.3795 doi: 10.1512/iumj.2008.57.3795
![]() |
[16] |
M. Hieber, Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., 265 (2010), 481–491. https://doi.org/10.1007/s00209-009-0525-8 doi: 10.1007/s00209-009-0525-8
![]() |
[17] |
T. Iwabuchi, R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal., 267 (2014), 1321–1337. https://doi.org/10.1016/j.jfa.2014.05.022 doi: 10.1016/j.jfa.2014.05.022
![]() |
[18] |
P. Konieczny, T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differ. Equations, 250 (2011), 3859–3873. https://doi.org/10.1016/j.jde.2011.01.003 doi: 10.1016/j.jde.2011.01.003
![]() |
[19] |
F. Charve, Global well-posedness and asymptotics for a geophysical fluid system, Commun. Partial Differ. Equations, 29 (2004), 1919–1940. https://doi.org/10.1081/PDE-200043510 doi: 10.1081/PDE-200043510
![]() |
[20] |
J. Sun, S. Cui, Sharp well-posedness and ill-posedness of the three-dimensional primitive equations of geophysics in Fourier-Besov spaces, Nonlinear Anal. Real World Appl., 48 (2019), 445–465. https://doi.org/10.1016/j.nonrwa.2019.02.003 doi: 10.1016/j.nonrwa.2019.02.003
![]() |
[21] |
J. Sun, C. Liu, M. Yang, Global solutions to 3D rotating Boussinesq equations in Besov spaces, J. Dyn. Differ. Equations, 32 (2020), 589–603. https://doi.org/10.1007/s10884-019-09747-0 doi: 10.1007/s10884-019-09747-0
![]() |
[22] |
J. Sun, C. Liu, M. Yang, Global existence for three-dimensional time-fractional Boussinesq-Coriolis equations, Fract. Calc. Appl. Anal., 27 (2024), 1759–1778. https://doi.org/10.1007/s13540-024-00272-6 doi: 10.1007/s13540-024-00272-6
![]() |
[23] |
J. Sun, M. Yang, Global well-posedness for the viscous primitive equations of geophysics, Boundary Value Probl., 21 (2016), 16. https://doi.org/10.1186/s13661-016-0526-6 doi: 10.1186/s13661-016-0526-6
![]() |
[24] |
V. S. Ngo, A global existence result for the anisotropic rotating magnetohydrodynamical systems, Acta Appl. Math., 150 (2017), 1–42. https://doi.org/10.1007/s10440-016-0092-z doi: 10.1007/s10440-016-0092-z
![]() |
[25] |
J. Ahn, J. Kim, J. Lee, Global solutions to 3D incompressible rotational MHD system, J. Evol. Equations, 21 (2021), 235–246. https://doi.org/10.1007/s00028-020-00576-z doi: 10.1007/s00028-020-00576-z
![]() |
[26] |
J. Kim, Rotational effect on the asymptotic stability of the MHD system, J. Differ. Equations, 319 (2022), 288–311. https://doi.org/10.1016/j.jde.2022.02.033 doi: 10.1016/j.jde.2022.02.033
![]() |
[27] |
C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359–369. https://doi.org/10.1016/0022-1236(89)90015-3 doi: 10.1016/0022-1236(89)90015-3
![]() |
[28] |
H. Bae, A. Biswas, E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., 205 (2012), 963–991. https://doi.org/10.1007/s00205-012-0532-5 doi: 10.1007/s00205-012-0532-5
![]() |
[29] |
M. Oliver, E. S. Titi, Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in Rn, J. Funct. Anal., 172 (2000), 1–18. https://doi.org/10.1006/jfan.1999.3550 doi: 10.1006/jfan.1999.3550
![]() |
[30] |
J. Y. Chemin, N. Lerner, Flow of non-Lipschitz vector fields and Navier-Stokes equations(French), J. Differ. Equations, 121 (1995), 314–328. https://doi.org/10.1006/jdeq.1995.1131 doi: 10.1006/jdeq.1995.1131
![]() |
[31] | H. Bahouri, J. Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-16830-7 |
[32] |
H. Abidi, M. Paicu, Existence globale pour un fluide inhomogéne (French), Ann. Inst. Fourier, 57 (2007), 883–917. https://doi.org/10.5802/aif.2280 doi: 10.5802/aif.2280
![]() |
[33] |
H. Kozono, T. Ogawa, Y. Taniuchi, Navier-Stokes equations in the Besov space near L1 and BMO, Kyushu J. Math., 57 (2003), 303–324. https://doi.org/10.2206/kyushujm.57.303 doi: 10.2206/kyushujm.57.303
![]() |
[34] |
R. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions to the wave equation, Duke Math. J., 44 (1977), 705–714. https://doi.org/10.1215/S0012-7094-77-04430-1 doi: 10.1215/S0012-7094-77-04430-1
![]() |
[35] |
P. A Tomas, A restriction theorem for the Fourier transform, Bull. Am. Math. Soc., 81 (1975), 477–478. https://doi.org/10.1090/S0002-9904-1975-13790-6 doi: 10.1090/S0002-9904-1975-13790-6
![]() |