
Networks consisting of strings with one fixed vertex
.We consider the general networks of elastic strings with Neumann boundary feedbacks and collocated observations in this paper. By selecting an appropriate multiplier, we show that this system is input-output L2-well-posed. Moreover, we verify its regularity by calculating the input-output transfer function of system. In the end, by choosing an appropriate multiplier, we give a method to construct a Lyapunov functional and prove the exponential decay of tree-shaped networks with one fixed root under velocity feedbacks acted on all leaf vertices.
Citation: Dongyi Liu, Genqi Xu. Input-output L2-well-posedness, regularity and Lyapunov stability of string equations on networks[J]. Networks and Heterogeneous Media, 2022, 17(4): 519-545. doi: 10.3934/nhm.2022007
[1] | Felisia Angela Chiarello, Harold Deivi Contreras, Luis Miguel Villada . Nonlocal reaction traffic flow model with on-off ramps. Networks and Heterogeneous Media, 2022, 17(2): 203-226. doi: 10.3934/nhm.2022003 |
[2] | Christian Budde, Marjeta Kramar Fijavž . Bi-Continuous semigroups for flows on infinite networks. Networks and Heterogeneous Media, 2021, 16(4): 553-567. doi: 10.3934/nhm.2021017 |
[3] | Sara Monsurrò, Carmen Perugia . Homogenization and exact controllability for problems with imperfect interface. Networks and Heterogeneous Media, 2019, 14(2): 411-444. doi: 10.3934/nhm.2019017 |
[4] | Kota Kumazaki, Adrian Muntean . Local weak solvability of a moving boundary problem describing swelling along a halfline. Networks and Heterogeneous Media, 2019, 14(3): 445-469. doi: 10.3934/nhm.2019018 |
[5] | Sergei A. Nazarov, Rafael Orive-Illera, María-Eugenia Pérez-Martínez . Asymptotic structure of the spectrum in a Dirichlet-strip with double periodic perforations. Networks and Heterogeneous Media, 2019, 14(4): 733-757. doi: 10.3934/nhm.2019029 |
[6] | Young-Pil Choi, Cristina Pignotti . Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays. Networks and Heterogeneous Media, 2019, 14(4): 789-804. doi: 10.3934/nhm.2019032 |
[7] | Jacek Banasiak, Adam Błoch . Telegraph systems on networks and port-Hamiltonians. Ⅱ. Network realizability. Networks and Heterogeneous Media, 2022, 17(1): 73-99. doi: 10.3934/nhm.2021024 |
[8] | Yogiraj Mantri, Michael Herty, Sebastian Noelle . Well-balanced scheme for gas-flow in pipeline networks. Networks and Heterogeneous Media, 2019, 14(4): 659-676. doi: 10.3934/nhm.2019026 |
[9] | Xiaoqian Gong, Benedetto Piccoli . A measure model for the spread of viral infections with mutations. Networks and Heterogeneous Media, 2022, 17(3): 427-442. doi: 10.3934/nhm.2022015 |
[10] | Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou . A class of infinite horizon mean field games on networks. Networks and Heterogeneous Media, 2019, 14(3): 537-566. doi: 10.3934/nhm.2019021 |
We consider the general networks of elastic strings with Neumann boundary feedbacks and collocated observations in this paper. By selecting an appropriate multiplier, we show that this system is input-output L2-well-posed. Moreover, we verify its regularity by calculating the input-output transfer function of system. In the end, by choosing an appropriate multiplier, we give a method to construct a Lyapunov functional and prove the exponential decay of tree-shaped networks with one fixed root under velocity feedbacks acted on all leaf vertices.
Generally, the motion of elastic strings on network can be formulated by means of a graph ([12,15,24,25]). In this paper, we always suppose that
I+E(pj)={k∈IE(G)|pj is the starting point (tail) of the edge ek,ek∈E} |
and
I−E(pj)={k∈IE(G)|pj is the final point (head) of the edge ek,ek∈E}. |
Then, the number of elements in sets
∂G={pj∈V(G)|deg(pj)=1} and Int(G)={pj∈V(G)|deg(pj)>1}. |
Denote the set
{ρj(x)wj,tt(x,t)=(Tj(x)wj,x)x(x,t),x∈(0,1),j∈IE(G),∀p∈D,wi(1,t)=wk(0,t)=w(p,t)=0,i∈I−E(p),k∈I+E(p),∀p∈∂GN, either Tk(1)wk,x(1,t)=u(p,t),k∈I−E(p), or −Tk(0)wk,x(0,t)=u(p,t),k∈I+E(p),∀p∈Int(G)∖D,wi(1,t)=w(p,t)=wk(0,t),i∈I−E(p),k∈I+E(p), and ∑i∈I−E(p)Ti(1)wi,x(1,t)−∑k∈I+E(p)Tk(0)wk,x(0,t)=u(p,t), | (1) |
where
yk(t)=wt(pȷk,t)for pȷk∉F,k=1,…,m0, | (2) |
where
One of the objective of this paper is to investigate the input-output well-posedness and regularity of 1-d wave equations on networks (1). Let the state space
‖X(t)‖2+∫t0‖Y(s)‖2ds≤Mt[‖X0‖2+∫t0‖U(s)‖2ds], |
where
Theorem 1.1. Assume that
It is well-known that only tree-shaped networks with one fixed vertex can be exponential decay under appropriate velocity feedbacks; and when there exist more than two fixed vertices or closed cycles in networks of strings, under velocity feedbacks, the networks is at most polynomial decay or is not stable [13]. Based on the observability estimate, the polynomial decay of a planar tree-shaped network of strings under only one vertex being damped (one-node stabilization) were discussed in [1,2,8,24]. Riesz basis approach is used in [15,28,29] to prove that the spectrum-determined-growth (SDG) condition holds for the networks, so the stability of closed-loop systems can be determined by their spectral bound. The decay rate of the chain-shaped and star-shaped networks was estimated by choosing a suitable weighted energy functional in [27]. By means of the frequency domain method, the exponential stability of a tree-shaped network was confirmed in [16]. However, Lyapunov stability is more common and intuitive in engineering. So, in this paper, we use the Lyapunov method to study the stability on networks, e.g., the tree-shaped networks shown as Figure 1b and Figure 2. Thus, the second contribution of this paper is to provide a construction method of Lyapunov functional for general tree-shaped networks of strings with one fixed vertex.
For a connected tree
Hypotheses 1.2.
(1) The rooted tree-shaped networks
(2)
(3)
Under Hypothesis 1.2, the motion of the tree-shaped network
{ρj(x)wj,tt(x,t)=(Tj(x)wj,x)x(x,t),x∈(0,1),j∈IE(G),wr(0,t)=w(pr,t)=0,∀p∈Int(G)∖{pr},I−E(p)={k},wk(1,t)=w(p,t)=wi(0,t)for i∈I+E(p), and Tk(1)wk,x(1,t)=∑i∈I+E(p)Ti(0)wi,x(0,t),∀p∈∂GN,I−E(p)={k},Tk(1)wk,x(1,t)=u(p,t). | (3) |
Thus, we have the following result.
Theorem 1.3. Assume that Hypothesis 1.2 holds and that
u(pȷk,t)=−βkyk(t)=−βkwt(pȷk,t),pȷk∈∂GN, | (4) |
where
Theorem 1.3 will be proven by constructing a suitable Lyapunov functional in Section 4.
Remark 1. Under Hypothesis 1.2 (3), a tree
All in all, main contributions of this paper are:
(1): to prove the input-output
(2): to provide a construction method of Lyapunov functional for general tree-shaped networks of strings with one fixed root.
The choice of multipliers for the
To study the 1-d wave propagation on general networks, we need some fundamental notations, concepts of the graph theory and a proposition. See [3] and [9] for more details about the graph theory.
Definition 2.1. The matrices
υ+i,j={1, if πj(0)=pi,0, otherwise and υ−i,j={1, if πj(1)=pi,0, otherwise, |
are called the outgoing incidence matrix and the incoming incidence matrix, respectively. The incidence matrix is defined by
From the above definition, it follows that
Υ+=(ϵȷ+1,…,ϵȷ+k,…,ϵȷ+n)m×n and Υ−=(ϵȷ−1,…,ϵȷ−k,…,ϵȷ−n)m×n | (5) |
where
PD=(ϵȷ1,ϵȷ2,…,ϵȷm0)⊤,pȷk∈V(G)∖D, | (6) |
where the vector
PDP⊤D=Im0∈Rm0×m0 and P⊤DPD=ID∈Rm×m, | (7) |
where
Let
w(x,t)=(w1(x,t)⋮wn(x,t)) and w(p,t)=(w(p1,t)⋮w(pm,t)), |
and call them the vectorization of
{M(x)wtt(x,t)=(T(x)wx)x(x,t),x∈(0,1),t>0,w(0,t)=(Υ+)⊤w(p,t),w(1,t)=(Υ−)⊤w(p,t),PD[Υ−T(1)wx(1,t)−Υ+T(0)wx(0,t)]=u(t), | (8) |
where
u(t)=(u(pȷ1,t)⋮u(pȷm0,t)) withu(pȷk,t)=0as pȷk∈F andu(⋅)∈L2loc([0,+∞);Rm0). |
The output of system (2) can be read as
Y(t)=(y1(t)⋮ym0(t))=PDwt(p,t)=(wt(pȷ1,t)⋮wt(pȷm0,t)), | (9) |
where
Remark 2. Similar to the matrix
Pu=(ϵȷk1,ϵȷk2,…,ϵȷkmu)⊤,for pȷki∈V(G)∖(D∪F) | (10) |
and
P⊥u=(ϵȷˆk1,ϵȷˆk2,…,ϵȷˆkm0−mu)⊤,for pȷˆki∈F, |
where the vector
(P⊥uPu)[Υ−T(1)wx(1,t)−Υ+T(0)wx(0,t)]=(0PuP⊤Du(t)), |
where
Yu(t)=PuP⊤DY(t)=(yk1(t)⋮ykmu(t))=Puwt(p,t)=(wt(pȷk1,t)⋮wt(pȷkmu,t)). |
The energy function of system (1) is defined as follows:
E(t)=12∫10[⟨M(x)wt(x,t),wt(x,t)⟩+⟨T(x)wx(x,t),wx(x,t)⟩]dx, | (11) |
where
dE(t)dt=⟨(Υ−)T(1)wx(1,t)−(Υ+)T(0)wx(0,t),wt(p,t)⟩=⟨u(t),PDwt(p,t)⟩Rm0=⟨u(t),Y(t)⟩Rm0, | (12) |
which means that the output of system (1), i.e.,
In the end of this section, we introduce the following definition of edge adjacency matrix and its proposition which discloses relationship between this definition and Definition 2.1.
Definition 2.2. An edge in
b+i,j={1,iftwodifferentedgeseiandejjoinatacommontail,0,otherwise, |
is called the outgoing edge adjacency matrix of
b−i,j={1,iftwodifferentedgeseiandejjoinatacommonhead,0,otherwise, |
is called the incoming edge adjacency matrix of
bt,hi,j={1, ifpisthetailofeiandtheheadofej,forsomevertexp∈V(G),0,otherwise, |
is called the outgoing-incoming edge adjacency matrix
bh,ti,j={1,ifpistheheadofei,andthetailofej,forsomevertexp∈V(G),0,otherwise, |
is called the incoming-outgoing edge adjacency matrix of
Note that, in Definition 2.2, the diagonal entries of these matrices,
Proposition 1. Assume that
Λ=diag(λ1,…,λm),Λ⊖=diag(λȷ−1,λȷ−2,…,λȷ−n) |
and
(1):
(2):
(3):
(4):
where we agree that
(Υ−)⊤Υ+=Bh,tG,(Υ+)⊤Υ−=Bt,hG,(Υ−)⊤Υ−=I+B−Gand(Υ+)⊤Υ+=I+B+G. |
Remark 3. Assume that
˜Λ⊖=diag(λȷ−1,λȷ−2,…,λȷ−n)=diag(˜λȷ−1−1,˜λȷ−2−1,…,˜λȷ−n−1) |
and
˜Λ⊕=diag(λȷ+1,λȷ+2,…,λȷ+n)=diag(˜λȷ+1−1,˜λȷ+2−1,…,˜λȷ+n−1). |
The proof is divided into two parts: the input-output
Proof. We choose bounded continuous and differentiable functions on
ξk(1)/Tk(1)>2n,−ξk(0)/Tk(0)>2n,k∈IE(G), | (13a) |
and
{maxx∈[0,1]{‖M1/2(x)Ξ(x)T1/2(x)‖2}≤cE,maxx∈[0,1]{‖[Ξ(x)T−1(x)]′T(x)‖2}≤cE,maxx∈[0,1]{‖[Ξ(x)M(x)]′M−1(x)‖2}≤cE, | (13b) |
where
The first equation in (8) multiplied by
∫t0∫10⟨Ξ(x)wx(x,t),M(x)wtt(x,t)⟩dxdt=∫t0∫10⟨Ξ(x)wx(x,t),(T(x)wx)x(x,t)⟩dxdt. | (14) |
Applying integration by parts, (9), the following equality
∫t0∫10⟨Ξ(x)wxt(x,t),M(x)wt(x,t)⟩dxdt=12∫t0⟨wt(1,t),Ξ(1)M(1)wt(1,t)⟩dt−12∫t0⟨wt(0,t),Ξ(0)M(0)wt(0,t)⟩dt−12∫t0∫10⟨wt(x,t),(Ξ(x)M(x))′wt(x,t)⟩dxdt, |
and boundary conditions in (8):
LHS=∫10[⟨Ξ(x)wx(x,t),M(x)wt(x,t)⟩−⟨Ξ(x)wx(x,0),M(x)wt(x,0)⟩]dx−∫t0∫10⟨Ξ(x)wxt(x,t),M(x)wt(x,t)⟩dxdt=∫10⟨Ξ(x)wx(x,t),M(x)wt(x,t)⟩dx−∫10⟨Ξ(x)wx(x,0),M(x)wt(x,0)⟩dx−12∫t0⟨Y(t),PD[Υ−Ξ(1)M(1)(Υ−)⊤−Υ+Ξ(0)M(0)(Υ+)⊤]P⊤DY(t)⟩dt+12∫t0∫10⟨wt(x,t),(Ξ(x)M(x))′wt(x,t)⟩dxdt. |
Similarly, applying integration by parts to the right-hand side of (14) yields
RHS=12∫t0⟨Ξ(1)wx(1,t),T(1)wx(1,t)⟩dt−12∫t0⟨Ξ(0)wx(0,t),T(0)wx(0,t)⟩dt−12∫t0∫10⟨[Ξ(x)T−1(x)]′T(x)wx(x,t),T(x)wx(x,t)⟩dxdt. |
Thus, it can be derived from (14) that
∫10⟨Ξ(x)wx(x,t),M(x)wt(x,t)⟩dx−∫10⟨Ξ(x)wx(x,0),M(x)wt(x,0)⟩dx+12∫t0∫10⟨wt(x,t),[Ξ(x)M(x)]′wt(x,t)⟩dxdt+12∫t0∫10⟨[Ξ(x)T−1(x)]′T(x)wx(x,t),T(x)wx(x,t)⟩dxdt=12∫t0⟨Ξ(1)wx(1,t),T(1)wx(1,t)⟩dt−12∫t0⟨Ξ(0)wx(0,t),T(0)wx(0,t)⟩dt+12∫t0⟨Y(t),PD[Υ−Ξ(1)M(1)(Υ−)⊤−Υ+Ξ(0)M(0)(Υ+)⊤]P⊤DY(t)⟩dt. | (15) |
From the boundary condition
‖u(t)‖2=⟨u(t),u(t)⟩Rm0≤2⟨(PDΥ−)⊤PDΥ−T(1)wx(1,t),T(1)wx(1,t)⟩+2⟨[PDΥ+]⊤PDΥ+T(0)wx(0,t),T(0)wx(0,t)⟩. |
It can be deduced from Definition 2.2 that
0≤min1≤i≤n{n∑j=1b−i,j}≤max1≤i≤n{n∑j=1b−i,j}≤n−1 |
and
0≤min1≤i≤n{n∑j=1b+i,j}≤max1≤i≤n{n∑j=1b+i,j}≤n−1, |
thus, it follows from (7), the equalities (4) in Proposition 1 and (13a) that
Ξ(1)T(1)−1−2(Υ−)⊤P⊤DPDΥ−=Ξ(1)T(1)−1−2[I⊖D](I+B−G)>0 |
and
−Ξ(0)T(0)−1−2(Υ+)⊤P⊤DPDΥ+=−Ξ(0)T(0)−1−2[I⊕D](I+B+G)>0, |
i.e.,
⟨Ξ(1)wx(1,t),T(1)wx(1,t)⟩−⟨Ξ(0)wx(0,t),T(0)wx(0,t)⟩−‖u(t)‖2≥⟨Ξ(1)wx(1,t),T(1)wx(1,t)⟩−⟨Ξ(0)wx(0,t),T(0)wx(0,t)⟩−2⟨(PDΥ−)⊤PDΥ−T(1)wx(1,t),T(1)wx(1,t)⟩−2⟨[PDΥ+]⊤PDΥ+T(0)wx(0,t),T(0)wx(0,t)⟩≥0. | (16) |
Obviously, the equalities (1) and (2) in Proposition 1 and (13a) imply that
PD[(Υ−)Ξ(1)M(1)(Υ−)⊤−(Υ+)Ξ(0)M(0)(Υ+)⊤]P⊤D=diag(cpȷ1,…,cpȷm0) |
with
cpȷk=[∑i∈I−E(pȷk)ξi(1)ρi(1)−∑i∈I+E(pȷk)ξi(0)ρi(0)]>0. |
So, it yields that
⟨Y(t),PD[Υ−Ξ(1)M(1)(Υ−)⊤−Υ+Ξ(0)M(0)(Υ+)⊤]P⊤DY(t)⟩≥cp‖Y(t)‖2, | (17) |
where
|∫10⟨Ξ(x)wx(x,t),M(x)wt(x,t)⟩dx|≤cEE(t) | (18) |
and
12∫10⟨wt(x,t),(Ξ(x)M(x))′wt(x,t)⟩dx+12∫10⟨[Ξ(x)T−1(x)]′T(x)wx(x,t),T(x)wx(x,t)⟩dx≤cEE(t). | (19) |
Thus, it follows from (15), (16), (17), (18) and (19) that
c0[E(t)+E(0)+∫t0E(t)dt]≥∫t0‖u(t)‖2dt+∫t0‖Y(t)‖2dt | (20) |
with
E(t)≤E(0)+c0γ[E(t)+E(0)+∫t0E(t)dt]+(14γ−γ)∫t0‖u(t)‖2dt |
with
E(t)≤1+c0γ1−c0γE(0)+1−4γ24γ(1−c0γ)∫τ0‖u(s)‖2ds+c0γ1−c0γ∫t0E(s)ds. | (21) |
Applying the Gronwall inequality to (21) leads to
E(t)≤[1+c0γ1−c0γE(0)+1−4γ24γ(1−c0γ)∫τ0‖u(s)‖2ds]ec0γ1−c0γt |
and
∫t0E(s)ds≤[1+c0γ1−c0γE(0)+1−4γ24γ(1−c0γ)∫τ0‖u(s)‖2ds]1−c0γc0γ(ec0γ1−c0γt−1). |
From (20) and the above two inequalities, it follows that
∫t0|Y(t)|2dt≤c0[E(t)+E(0)+∫t0E(s)ds]≤[c01+c0γ1−c0γec0γ1−c0γt+c0+1+c0γγ(ec0γ1−c0γt−1)]E(0)+[c0(1−4γ2)4γ(1−c0γ)ec0γ1−c0γt+1−4γ24γ2(ec0γ1−c0γt−1)]∫τ0‖u(s)‖2ds. |
Hence
E(t)+∫t0|Y(s)|2ds≤[(1+γ)(1+c0γ)γ(1−c0γ)ec0γ1−c0γt−1γ]E(0)+[(1+γ)(1−4γ2)4γ2(1−c0γ)ec0γ1−c0γt−1−4γ24γ2]∫τ0‖u(s)‖2ds, |
which shows that
E(τ)+∫τ0|Yu(s)|2ds=E(τ)+∫τ0|Y(s)|2ds≤Mτ[E(0)+∫τ0‖u(s)‖2ds]=Mτ[E(0)+∫τ0‖PuP⊤Du(s)‖2ds]. |
Therefore, the system (1) is input-output
Proof. Applying Laplace transform to the first equation in (1) leads to
s2ρj(x)ˆwj,ss(x,s)=(Tj(x)ˆwj,x)x(x,s),x∈(0,1),j∈IE(G). | (22) |
We introduce a new independent variable for (22)
θ(x)=˜a−1j∫x0√ρj(x)T−1j(x)dxfor x∈[0,1], with ˜aj=∫10√ρj(x)T−1j(x)dx. |
Obviously,
dθ(x)dx=˜a−1j√ρj(x)Tj(x)>0 and dx(θ)dθ=˜aj√Tj(x(θ))ρj(x(θ))>0. |
So, the following equalities can be easily calculated
ˆwj,x(x(θ),s)=ˆwj,θ(x(θ),s)dθ(x)dx=˜a−1jˆwj,θ(x(θ),s)√ρj(x(θ))Tj(x(θ)) |
and
∂∂x[Tj(x(θ))ˆwj,x(x(θ),s)]=ˆwj,θ(x(θ),s)[(ρj(x(θ))Tj(x(θ)))3/2dTj(x)dx+√Tj(x(θ))√ρj(x(θ))dρj(x)dx]2˜a3j+˜a−2jρj(x(θ))ˆwj,θ2(x(θ),s). |
Let
αj(θ)=[ρj(x(θ))T′j(x(θ))2˜a2j[Tj(x(θ))]2+ρ′j(x(θ))2˜a2jρj(x(θ))],j∈IE(G), |
where the prime denotes the derivative with respect to
˜a2js2˜wj(θ,s)=˜wj,θθ(θ,s)+αj(θ)˜wj,θ(θ,s),θ∈(0,1). |
So, Laplace transform of the system (1) can be written as follows:
{˜A2s2˜w(θ,s)=˜wθθ(θ,s))+α(θ)˜wθ(θ,s),θ∈(0,1),˜w(0,s)=ˆw(0,s)=(Υ+)⊤ˆw(p,s),˜w(1,s)=ˆw(1,s)=(Υ−)⊤ˆw(p,s),PD[Υ−˜T(1)˜wθ(1,s)−Υ+˜T(0)˜wθ(0,s)]=ˆu(s), | (23) |
where
˜A=diag(˜a1,…,˜an) and α(θ)=diag(α1(θ),…,αn(θ)). |
Let
d˜ηdθ=s(0I˜A20)˜η+(00s−1α0)˜η. | (24) |
According to the asymptotical theory of fundamental solution ([17,19]), the fundamental solution matrix of (24) has the form:
˜W(θ,s)=(I+s−1Q(θ,s))˜W0(θ,s), |
where
˜W0(θ,s)=(cosh(sθ˜A)˜A−1sinh(sθ˜A)˜Asinh(sθ˜A)cosh(sθ˜A)). |
Thus,
˜η(θ)=˜W(θ,s)˜η(0)=(I+s−1Q(θ,s))˜W0(θ,s)˜η(0)=(cosh(sθ˜A)+s−1WQ11(sθ˜A)˜A−1sinh(sθ˜A)+s−1WQ12(sθ˜A)˜Asinh(sθ˜A)+s−1WQ21(sθ˜A)cosh(sθ˜A)+s−1WQ22(sθ˜A))˜η(0), | (25) |
where
WQ(θ,s)=Q(θ,s)˜W0(θ,s)=(WQ11(sθ˜A)WQ12(sθ˜A)WQ21(sθ˜A)WQ22(sθ˜A))=(Q11cosh(sθ˜A)+Q12˜Asinh(sθ˜A)Q11˜A−1sinh(sθ˜A)+Q12cosh(sθ˜A)Q21cosh(sθ˜A)+Q22˜Asinh(sθ˜A)Q21˜A−1sinh(sθ˜A)+Q22cosh(sθ˜A)). |
Let
˜η(1)=(˜w(1,s)s−1˜w′(1,s))=((Υ−)⊤ˆw(p,s)s−1˜w′(1,s))=((Υ−)⊤P⊤Dd(s)s−1˜w′(1,s)). |
Thus, it follows from (25) and the last boundary condition in (23) that
˜D(s)(d(s)˜η0,2)=(s−1ˆu(s)0), | (26) |
where
˜D(s)=(PD(Υ−)˜T(1)˜Asinh(s˜A)(PDΥ+)⊤PD(Υ−)˜T(1)cosh(s˜A)−PD(Υ+)˜T(0)cosh(s˜A)(PDΥ+)⊤−(PDΥ−)⊤˜A−1sinh(s˜A))+s−1(PD(Υ−)˜T(1)WQ21(s˜A)(PDΥ+)⊤PD(Υ−)˜T(1)WQ22(s˜A)WQ11(s˜A)(PDΥ+)⊤WQ12(s˜A)). |
Moreover, it can be deduced that
˜D(s)(I0−˜A(PDΥ+)⊤I)=˜D−e(s)+˜DC(I0012exp(s˜A)) |
with
˜DC=[(PDΥ+˜T(0)˜A(PDΥ+)⊤PDΥ−˜T(1)−(PDΥ−)⊤˜A−1)+s−1(0Q21˜A−1+Q220Q11˜A−1+Q12)] |
and
˜D−e(s)=(−PDΥ−˜T(1)˜Aexp(−s˜A)(PDΥ+)⊤PDΥ−˜T(1)exp(−s˜A)2−PDΥ+˜T(0)exp(−s˜A)(PDΥ+)⊤−˜A−1exp(−s˜A)2)+s−1(PDΥ−˜T(1)(Q11−Q12˜A)exp(−s˜A)(PDΥ+)⊤12(−Q21˜A−1+Q22)exp(−s˜A)(Q11−Q12˜A)exp(−s˜A)(PDΥ+)⊤12(−Q11˜A−1+Q12)exp(−s˜A)). |
Thus, the linear system of equations (26) can be reformulated by
[˜DC+˜D−e(s)(I0012exp(−s˜A))](d(s)˜ηd(s))=(s−1ˆu(s)0), | (27) |
where
(I−PDΥ−T(1)˜A0I)˜DC=(˜DΛ0−(PDΥ−)⊤˜A−1)+s−1(0Q21˜A−1+Q22−PDΥ−T(1)˜A(Q11˜A−1+Q12)0Q11˜A−1+Q12) |
with
˜DΛ=PDΥ+˜T(0)˜A(Υ+)⊤P⊤D+PDΥ−˜T(1)˜A(Υ−)⊤P⊤D=diag(∑i∈I+E(pȷ1)√ρi(0)Ti(0),…,∑i∈I+E(pȷm0)√ρi(0)Ti(0))+diag(∑i∈I−E(pȷ1)√ρi(1)Ti(1),…,∑i∈I−E(pȷm0)√ρi(1)Ti(1)), | (28) |
˜D−1C=[(˜DΛ0−(PDΥ−)⊤˜A−1)−1+o(D)](I−PDΥ−T(1)˜A0I)=(˜D−1Λ−˜D−1Λ(PDΥ−)T(1)˜A˜A(PDΥ−)⊤˜D−1Λ˜A[I−(PDΥ−)⊤˜D−1Λ(PDΥ−)T(1)˜A])+o(D), | (29) |
where
˜D−e(s)(I0012exp(−s˜A))→0 as s→+∞, |
(27) and (29) that
(d(s)˜ηd)=[˜D−1C+o(D)](s−1ˆu(s)0)andd(s)=s−1[˜D−1Λ+o(D)]ˆu(s), |
which implies that
lims→+∞H(s)=PuP⊤D˜D−1ΛPDP⊤u=diag(∑i∈I+E(pȷk1)√ρi(0)Ti(0)+∑i∈I−E(pȷk1)√ρi(1)Ti(1),…,∑i∈I+E(pȷkmu)√ρi(0)Ti(0)+∑i∈I−E(pȷkmu)√ρi(1)Ti(1))−1, | (30) |
i.e., the system (1) is regular.
Here, we give two networks: one is a network with cycles, another is a tree-shaped network with the fixed root
See Figure 1a, the motion of strings on the network
{ρj(x)wj,tt(x,t)=(Tj(x)wj,x)x(x,t),x∈(0,1),j=1,2,3,4,5,6,7,w1(0,t)=w4(1,t)=w5(1,t),w3(1,t)=w2(0,t)=w1(1,t),w3(0,t)=w4(0,t)=w6(1,t),w5(0,t)=w6(0,t)=w7(1,t),w7(0,t)=0,T1(1)w1,x(1,t)+T3(1)w3,x(1,t)−T2(0)w2,x(0,t)=0,T6(1)w6,x(1,t)−[T4(0)w4,x(0,t)+T3(0)w3,x(0,t)]=0,T7(1)w7,x(1,t)−[T5(0)w5,x(0,t)+T6(0)w6,x(0,t)]=0,T4(1)w4,x(1,t)+T5(1)w5,x(1,t)−T1(0)w1,x(0,t)=u(p1,t),T2(1)w2,x(1,t)=u(p3,t), | (31) |
where
P⊤D=ȷ1ȷ2ȷ3ȷ4ȷ5(ϵ1ϵ2ϵ3ϵ4ϵ5) and P⊤u=ȷk1ȷk2(ϵ1ϵ3), |
where the vector
lims→+∞H(s)=diag([√ρ1(0)T1(0)+∑k∈{4,5}√ρk(1)Tk(1)]−1,[√ρ2(1)T2(1)]−1), |
i.e., the system (31) is regular.
See Figure 1b, the motion of strings on the tree-shaped network
{ρj(x)wj,tt(x,t)=(Tj(x)wj,x)x(x,t),x∈(0,1),j=1,…,9,w1(0,t)=0,w1(1,t)=w2(0,t)=w3(0,t),w6(1,t)=w7(0,t),w2(1,t)=w4(0,t)=w5(0,t)=w6(0,t),w5(1,t)=w8(0,t)=w9(0,t),T1(1)w1,x(1,t)=T2(0)w2,x(0,t)+T3(0)w3,x(0,t),T2(1)w2,x(1,t)=T4(0)w4,x(0,t)+T5(0)w5,x(0,t)+T6(0)w6,x(0,t),T5(1)w5,x(1,t)=T8(0)w8,x(0,t)+T9(0)w9,x(0,t),T6(1)w6,x(1,t)=T7(0)w7,x(0,t),T3(1)w3,x(1,t)=u(p6,t),T9(1)w9,x(1,t)=u(p7,t),T8(1)w8,x(1,t)=u(p8,t),T7(1)w7,x(1,t)=u(p9,t),T4(1)w4,x(1,t)=u(p10,t). | (32) |
where
P⊤D=ȷ1ȷ2ȷ3ȷ4ȷ5ȷ6ȷ7ȷ8ȷ9(ϵ2ϵ3ϵ4ϵ5ϵ6ϵ7ϵ8ϵ9ϵ10) and P⊤u=ȷk1ȷk2ȷk3ȷk4ȷk5(ϵ6ϵ7ϵ8ϵ9ϵ10), |
where the vector
lims→+∞H(s)=diag(√ρ3(1)T3(1),√ρ9(1)T9(1),√ρ8(1)T8(1),√ρ7(1)T7(1),√ρ4(1)T4(1))−1, |
i.e., the system (32) is regular.
For the tree-shaped network
w(p,t)=(0w(p2,t)⋮w(pn+1,t))=D−GΥ−w(1,t) and w(0,t)=(Υ+)⊤w(p,t)=Bt,hGw(1,t), |
where
D−G=Υ−(Υ−)⊤=diag(deg−(p1),deg−(p2),…,deg−(pn+1))=diag(0,1,…,1) |
and
(Υ−)⊤D−GP⊤Du(t)=T(1)wx(1,t)−(Υ−)⊤D−GΥ+T(0)wx(0,t)=T(1)wx(1,t)−Bh,tGT(0)wx(0,t). |
In the feedback control law (4),
u(t)=−βPDwt(p,t) with βk={0, if pȷk∈F,>0, if pȷk∈∂GN. | (33) |
In addition, it can be obtained from
(Υ−)⊤D−GP⊤Du(t)=−(Υ−)⊤D−GP⊤DβPDD−GΥ−wt(1,t). |
Denote by
β−=diag(β−1,…,β−n), with β−k=βȷ−k−1={0, if deg(pȷ−k)>1,>0, if deg(pȷ−k)=1, | (34) |
where
{M(x)wtt(x,t)=(T(x)wx)x(x,t),x∈(0,1),t>0,w(0,t)=Bt,hGw(1,t),T(1)wx(1,t)−Bh,tGT(0)wx(0,t)=−β−wt(1,t). | (35) |
Remark 4. Since
Let
Condition 4.1.
(1) For every
(2) For every edge
{min{2[bk(1)(β−k)2Tk(1)+bk(1)ρk(1)]−1β−k,1cb}>cV>0 aspȷ−k∈∂GN,bk(1)ρk(1)≤∑i∈I+E(pȷ−k)bi(0)ρi(0), as pȷ−k∈Int(G), |
where
(3) For every edge
{deg+(pȷ+k)∑i∈I−E(pȷ+k)bi(1)Ti(1)<bk(0)Tk(0),as pȷ+k∈Int(G),bk(0)Tk(0)≥0,aspȷ+k=p1(k∈I+E(p1)), |
where the starting point (tail) of the edge
According to (1) and (2) in Condition 4.1, obviously, the following inequality
|Vb(t)|≤12∫10⟨b(x)wx(x,t),b(x)wx(x,t)⟩Rndx+12∫10⟨M(x)wt(x,t),M(x)wt(x,t)⟩Rndx≤cbE(t) | (36) |
holds, and there exist
cLE(t)≤O(E)=12∫10⟨wt(x,t),(b(x)M(x))′wt(x,t)⟩Rndx+12∫10⟨[b(x)T−1(x)]′T(x)wx(x,t),T(x)wx(x,t)⟩Rndx≤cUE(t). | (37) |
Now, we construct a Lyapunov functional
V(t)=E(t)+cVVb(t),∀t>0, |
where
(1−cbcV)E(t)≤V(t)≤(1+cbcV)E(t),∀t>0. | (38) |
In what follows, using this Lyapunov functional, we prove Theorem 1.3.
Proof. Using (35) and the following two equalities
∫10⟨b(x)wxt(x,t),M(x)wt(x,t)⟩dx=−12∫10⟨wt(x,t),(b(x)M(x))′wt(x,t)⟩dx+12⟨[b(1)M(1)−Bh,tGb(0)M(0)Bt,hG]wt(1,t),wt(1,t)⟩ |
and
∫10⟨b(x)wx(x,t),M(x)wtt(x,t)⟩dx=12⟨b(1)wx(1,t),T(1)wx(1,t)⟩−12⟨b(0)wx(0,t),T(0)wx(0,t)⟩−12∫10⟨[b(x)T−1(x)]′T(x)wx(x,t)),T(x)wx(x,t)⟩dx, |
we can get that
dVb(t)dt=12⟨[b(1)T(1)−1(β−)2+b(1)M(1)−Bh,tGb(0)M(0)Bt,hG]wt(1,t),wt(1,t)⟩+12⟨[T(0)Bt,hGb(1)T(1)−1Bh,tGT(0)−T(0)b(0)]wx(0,t),wx(0,t)⟩−⟨b(1)T(1)−1Bh,tGT(0)wx(0,t),β−wt(1,t)⟩−O(E). | (39) |
Moveover, it follows from (11) and (35) that
dE(t)dt=⟨T(1)wx(1,t)−Bh,tGT(0)wx(0,t),wt(1,t)⟩=−⟨β−wt(1,t),wt(1,t)⟩. | (40) |
Thus, it can be obtained from Remark 4, (37), (39) and (40) that
dV(t)dt=dE(t)dt+cVdVb(t)dt≤−cVcLE(t)−⟨Cβwt(1,t),wt(1,t)⟩−cV2⟨CbT(0)wx(0,t),T(0)wx(0,t)⟩, | (41) |
where
Cβ=β−−cV2[b(1)T(1)−1(β−)2+b(1)M(1)−Bh,tGb(0)M(0)Bt,hG] |
and
Cb=b(0)T(0)−1−Bt,hGb(1)T(1)−1Bh,tG. |
Next, we prove that the symmetric matrices
λj=∑i∈I+E(pj)bi(0)ρi(0)={b1(0)ρ1(0), as j=1,0, as pj∈∂GN,∑i∈I+E(pj)bi(0)ρi(0), as pj∈Int(G)∖D. |
From Proposition 1,
Cβ=β−−12cV[b(1)T(1)−1(β−)2+b(1)M(1)−(Υ−)⊤Υ+b(0)M(0)(Υ+)⊤Υ−]=β−−cV2[b(1)T(1)−1(β−)2+b(1)M(1)]+cV2diag(λȷ−1,⋯,λȷ−n)=diag(cβ,1,…,cβ,n), |
where
cβ,k=β−k−cV2[bk(1)(β−k)2Tk(1)+bk(1)ρk(1)−λȷ−k],k=1,…,n. |
Thus, (2) in Condition 4.1 and (34) lead to
{cβ,k=β−k−cV2[bk(1)(β−k)2Tk(1)+bk(1)ρk(1)]≥0, as pȷ−k∈∂GN,cβ,k=∑i∈I+E(pȷ−k)bi(0)ρi(0)−bk(1)ρk(1)≥0, as pȷ−k∈Int(G), |
i.e.,
Cb=b(0)T−1(0)−(Υ+)⊤Υ−b(1)T(1)−1(Υ−)⊤Υ+=b(0)T−1(0)−(Υ+)⊤diag(∑i∈I−E(p1)bi(1)Ti(1),⋯,∑i∈I−E(pn+1)bi(1)Ti(1))Υ+=b(0)T−1(0)−diag(∑i∈I−E(pȷ+1)bi(1)Ti(1),⋯,∑i∈I−E(pȷ+n)bi(1)Ti(1))(I+B+G). |
The
Thus, it follows from (38) and (41) that
dV(t)dt≤−cVcL1+cbcVV(t), |
which, together with (38), implies that the system (35), i.e., the closed-loop system (3)-(4), is exponential stable.
Remark 5. The construction of matrix multiplier
Ek(G)={e∈E(G)|∃p∈Vk−1(G),q∈Vk(G)suchthattheyarejoinedbye}, |
then
Step 1: For every
VP={pι0,pι1,…,pιmp−1,pιmp} and EP={ei1,ei2,…,eimp}, |
where
bimp(1)>mpecρTLρLmax{Timp(0)ρimp(0)ρimp(1),Timp(1)}. |
Step 2: Beginning with the maximum
bik(1)=min{Tik(1)minj∈I+E(pιk){bj(0)Tj(0)}1+deg+(pιk),∑j∈I+E(pιk)bj(0)ρj(0)1+ρik(1)}, |
and
Step 3: For every edge
bk(x)=[ecρxTLρL(bk(0)Tk(0)+c(k)b)−c(k)b]Tk(x) with cρ>|[Tk(x)ρk(x)]′| |
and
At last, after
cρTLρLmink∈IE{bk(1)Tk(1)}≤cρTLρLbk(1)Tk(1)≤[bk(x)Tk(x)]′≤cρecρTLρLTLρL(ecρTLρL−1)bk(1)Tk(1)≤cρecρTLρLTLρL(ecρTLρL−1)maxk∈IE{bk(1)Tk(1)} |
and
cρ(1−12ecρTLρL)mink∈IE{bk(1)Tk(1)}≤cρ(1−12ecρTLρL)bk(1)Tk(1)≤[bk(x)ρk(x)]′≤(ecρTLρLecρTLρL−1TUρUTLρL+1)bk(1)Tk(1)cρ≤(ecρTLρLecρTLρL−1TUρUTLρL+1)cρmaxk∈IE{bk(1)Tk(1)}. |
Thus, Condition 4.1 is always fulfilled. Note that the construction of
To explain further how to choose the diagonal matrix-valued function
We reconsider the tree-shaped network governed by (32), shown in Figure 1b. The outgoing incidence matrix and the incoming incidence matrix of the underlying tree-shaped graph of system (32) are
Υ+=e1e2e3e4e5e6e7e8e9(100000000011000000000111000000000100000000011000000000000000000000000000000000000000000000)p1p2p3p4p5p6p7p8p9p10ȷ+1ȷ+2ȷ+3ȷ+4ȷ+5ȷ+6ȷ+7ȷ+8ȷ+9 | (42) |
and
Υ−=e1e2e3e4e5e6e7e8e9(000000000100000000010000000000001000000010000001000000000000001000000010000000100000100000)p1p2p3p4p5p6p7p8p9p10ȷ−1ȷ−2ȷ−3ȷ−4ȷ−5ȷ−6ȷ−7ȷ−8ȷ−9, | (43) |
respectively.
To choose
Paths from the root
indices | |||||||||
Second, according to Remark 5, we choose the function
Step 1: For the leaf
Step 2: The maximum
b5(1)=min{T5(1)3min{b8(0)T8(0),b9(0)T9(0)},b8(0)ρ8(0)+b9(0)ρ9(0)1+ρ5(1)}. |
For
b6(1)=min{T6(1)b7(0)2T7(0),b7(0)ρ7(0)1+ρ5(1)} |
and
b6(0)=12min{ρ6(1)ρ6(0),e−cρTLρLT6(0)T6(1)}b6(1). |
For
b2(1)=min{14T2(1)minj∈{4,5,6}{bj(0)Tj(0)},11+ρ2(1)∑j∈{4,5,6}bj(0)ρj(0)} |
and
b1(1)=min{13T1(1)minj∈{2,3}{bj(0)Tj(0)},b2(0)ρ2(0)+b3(0)ρ3(0)1+ρ1(1)}. |
Thus,
{u(p6,t)=−β5wt(pȷ5,t)=−β5wȷ−3,t(1,t)=−β−3w3,t(1,t),u(p7,t)=−β6wt(pȷ6,t)=−β6wȷ−9,t(1,t)=−β−9w9,t(1,t),u(p8,t)=−β7wt(pȷ7,t)=−β7wȷ−8,t(1,t)=−β−8w8,t(1,t),u(p9,t)=−β8wt(pȷ8,t)=−β8wȷ−7,t(1,t)=−β−7w7,t(1,t),u(p10,t)=−β9wt(pȷ9,t)=−β9wȷ−4,t(1,t)=−β−4w4,t(1,t), |
is exponentially stable.
The tree-shaped network consisting of six strings with one fixed root is shown in Figure 2. The motion of the network can be formulated by
{ρj(x)wj,tt(x,t)=(Tj(x)wj,x)x(x,t),x∈(0,1),j=1,…,6,w3(0,t)=w4(0,t)=0,w1(0,t)=w2(0,t)=w3(1,t),w6(0,t)=w5(1,t)=w4(1,t),T3(1)w3,x(1,t)−[T1(0)w1,x(0,t)+T2(0)w2,x(0,t)]=0,T4(1)w4,x(1,t)+T5(1)w5,x(1,t)−T6(0)w6,x(0,t)]=0,T1(1)w1,x(1,t)=u(p1,t),T2(1)w2,x(1,t)=u(p2,t),−T5(0)w5,x(0,t)=u(p7,t),T6(1)w6,x(1,t)=u(p5,t), | (44) |
where
Υ+=e1e2e3e4e5e6(000000000000110000001100000000000001000010)p1p2p3p4p5p6p7ȷ+1ȷ+2ȷ+3ȷ+4 and Υ−=e1e2e3e4e5e6(100000010000001000000000000001000110000000)p1p2p3p4p5p6p7ȷ−1ȷ−2ȷ−3ȷ−4ȷ−5ȷ−6, | (45) |
respectively. The Dirichlet set
Similar to (4), the collocated output feedback is read as
u(pȷk,t)=−βkwt(pȷk,t), for k=1,2,4,6, | (46) |
where
{ρj(x)wj,tt(x,t)=(Tj(x)wj,x)x(x,t),x∈(0,1),j=1,…,6,w3(0,t)=w4(0,t)=0,w1(0,t)=w2(0,t)=w3(1,t),w5(0,t)=w6(0,t)=w4(1,t),T1(1)w1,x(1,t)=−β1w1,t(1,t),T2(1)w2,x(1,t)=−β2w2,t(1,t),T3(1)w3,x(1,t)−[T1(0)w1,x(0,t)+T2(0)w2,x(0,t)]=0,T4(1)w4,x(1,t)+T5(1)w5,x(1,t)−T6(0)w6,x(0,t)=0,T5(0)w5,x(0,t)=β6w5,t(0,t),T6(1)w6,x(1,t)=−β4w6,t(1,t). | (47) |
Notice that the closed-loop system (47) can not be written in the form of (35). Thus, the matrix-vector form of (47) can only be formulated by (8) with
u(t)=(−β1w1,t(1,t),−β2w2,t(1,t),0,−β4w6,t(1,t),0,−β6w5,t(0,t))⊤. | (48) |
To construct a Lyapunov functional for (47), we do a change of variable
{˜ρj(x)˜wj,tt(x,t)=(˜Tj(x)˜wj,x)x(x,t),x∈(0,1),j=1,…,6,˜w3(0,t)=˜w4(0,t)=0,˜w1(0,t)=˜w2(0,t)=˜w3(1,t),˜w5(0,t)=˜w6(0,t)=˜w4(1,t),˜T3(1)˜w3,x(1,t)−[˜T1(0)˜w1,x(0,t)+˜T2(0)˜w2,x(0,t)]=0,˜T4(1)˜w4,x(1,t)−[˜T5(0)˜w5,x(0,t)+˜T6(0)˜w6,x(0,t)]=0,˜T1(1)˜w1,x(1,t)=−β1˜w1,t(1,t),˜T2(1)˜w2,x(1,t)=−β2˜w2,t(1,t),˜T5(1)˜w5,x(1,t)=−β6˜w5,t(1,t),˜T6(1)˜w6,x(1,t)=−β4˜w6,t(1,t). | (49) |
Thus, (1) and (3) in Hypothesis 1.2 are satisfied and the underlying tree of system (49) is a branching with the root
In the following, we determine the multiplier
|[˜Tk(x)˜ρk(x)]′|≤158+14π=cρ<2=ˆcρ, on [0,1]. |
All paths from the root
{˜b1(x)=2[ecρx+(eˆcρ−ecρ)ecρx−1ecρ−1],˜b3(x)=23[ecρ(x−1)+ecρx−1ecρ−1],˜b2(x)=32˜b1(x),˜b4(x)=˜T4(x)2˜b3(x),˜b5(x)=˜T5(x)˜b1(x),˜b6(x)=˜T6(x)˜b1(x). |
Paths from the root
indices | |||||
Hence, we obtain the matrix multiplier
{b1(x)=2[ecρx+eˆcρ−ecρecρ−1(ecρx−1)],b2(x)=3b1(x)2,b3(x)=23[ecρ(x−1)+ecρx−1ecρ−1],b4(x)=T4(x)b3(x)2,b5(x)=−T5(x)b1(1−x),b6(x)=T6(x)b1(x). | (50) |
Thus, the Lyapunov functional for the system (47) is
V(t)=E(t)+cVVb(t)=E(t)+cV∫10⟨b(x)wx(x,t),M(x)wt(x,t)⟩dx. |
From (6), (8), (12), (45) and (48), it can be deduced that
dE(t)dt=−β1w21,t(1,t)−β2w22,t(1,t)−β4w26,t(1,t)−β6w25,t(0,t). | (51) |
Similar to (39), it follows from integration by parts, (6), (8), (44) and (45) that
dVb(t)dt=12⟨CwPDwt(p,t),PDwt(p,t)⟩Cm0+12⟨b(1)wx(1,t),T(1)wx(1,t)⟩Cn−12⟨b(0)wx(0,t),T(0)wx(0,t)⟩Cn−O(E), | (52) |
where
Cw=PD[(Υ−)M(1)b(1)(Υ−)⊤−(Υ+)M(0)b(0)(Υ+)⊤]P⊤D=diag(2eˆcρ,3eˆcρ,−113,258eˆcρ,−356,4eˆcρ) | (53) |
and
12⟨b(1)wx(1,t),T(1)wx(1,t)⟩−12⟨b(0)wx(0,t),T(0)wx(0,t)⟩=23[T1(0)w1,x(0,t)+T2(0)w2,x(0,t)]2−2T21(0)w21,x(0,t)−2T22(0)w22,x(0,t)+23T24(1)w24,x(1,t)−2T25(1)w25,x(1,t)−2[T4(1)w4,x(1,t)+T5(1)w5,x(1,t)]2+2eˆcρ[β21w21,t(1,t)+β22w22,t(1,t)+β24w26,t(1,t)+β26w25,t(0,t)]−13ecρT23(0)w23,x(0,t)−16ecρT24(0)w24,x(0,t)≤2eˆcρ[β21w21,t(1,t)+β22w22,t(1,t)+β24w26,t(1,t)+β26w25,t(0,t)]. | (54) |
Thus, it follows from (51), (52), (53) and (54) that
dV(t)dt=dE(t)dt+cVdVb(t)dt≤−[β1−cVeˆcρ−cVeˆcρβ21]w21,t(1,t)−[β2−32cVeˆcρ−cVeˆcρβ22]w22,t(1,t)−[β4−2516cVeˆcρ−cVeˆcρβ24]w26,t(1,t)−[β6−2cVeˆcρ−cVeˆcρβ26]w25,t(0,t)−cVO(E). |
Let
dV(t)dt≤−cVO(E)≤−cLcVE(t)≤−cLcV1+cVcbV(t). |
Hence, the system (47) is exponentially stable.
The multiplier method is applied to discuss the well-posedness and regularity of the open-loop system of strings network and the exponential stability of the closed-loop system in this paper. Especially, a Lyaponuv functional for tree-shaped networks of elastic strings is presented by constructing an appropriate multiplier. This construction method (see Remark 5) may be generalized to other types of networks, e.g., networks of beams etc, even for nonlinear networks, which will be discussed in other papers. In engineering, it is more meaningful work. Additionally, the issues of time-delay and anti-disturbance for networks governed by partial differential equations may also be investigated based on the same methods. These problems are worth exploring in future.
The authors would like to thank the editors and the anonymous reviewers whose valuable comments and suggestions were very helpful to the improvement of the manuscript.
Paths from the root
indices | |||||||||
Paths from the root
indices | |||||
indices | |||||||||
indices | |||||
Networks consisting of strings with one fixed vertex
The tree-shaped network consisting of six strings with the fixed root